Supplementary Figures

Figure 9 Comparison of the nucleotide sequences of ω_2 targets sites in *inc18* plamisds. The experimentally defined conserved -35 and -10 consensus regions of the *PcopS*, *P* δ and *P* ω promoters are boxed with a continuous line and with broken lines the putative region. Bent arrows and +1 denote known transcription start sites and bend arrows with a ?, putative start sites. Heptad repeats and their relative orientations indicated by arrows below the nucleotide sequences. In (A), the prototype of ω_2 targets sites in pSM19035. In (B), ω_2 target sites of *inc18* plasmids with different heptad organization. *Pcop*R of pIP501; *P* ω ^{2^a} of pAM β 1; *P* ω ^{2^b} of pIP501 and the sequence of *P* δ of pRE25.

Figure 10 Electrophoretic mobility shift assay (EMSA). 300-bp $[\alpha^{32}P]$ -*Hin*dIII-*KpnI PcopS* DNA (labelled at the 3'-end of the bottom strand) (0.2 nM) and 1 µg of poly[d(I-C)], as non-specific competitor DNA, were incubated with increasing concentrations of $\Delta 19\omega_2$ or ω_2 T29A for 15 min at 37°C. The formed ω_2 -DNA complexes were analysed by EMSA. The $\Delta 19\omega_2$ concentrations were 10, 20, 40, and 60 nM (lanes 2 to 5, respectively), and ω_2 T29A to DNA). The symbol – (lane 1) denotes the absence of protein.

Figure 11 Stereo view of $G^*(G-C)$ base-triplets. Bases are numbered according to Figure 1, label (f) refers to free DNA. The black triplet is closer to the viewer than the light grey one.

Figure 12 DNA-parameters for $[\Delta 19\omega_2]_2$ -bound and free DNA. Strong positive propeller twist is associated with opposite buckle in the CAC regions (see Figure 7). Parameters roll, slide and helical twist are similar in $\Delta 19\omega_2$ -bound direct ($\rightarrow \rightarrow$) and inverted ($\rightarrow \leftarrow$) heptads, whereas patterns for heptads of free ($\rightarrow \rightarrow$) do not correspond.

Figure 13 Helices $\alpha 2$ of repressors Arc₂ (yellow) and ω_2 (green) were superimposed to show that helices $\alpha 1$ and the β -sheets have different orientations/positions in ω_2 and Arc₂. Phosphate backbone DNA trace of Arc₂ is shown by thick yellow lines. Black arrows point at 2-3 Å separation between β -sheets while orange arrows indicate interactions between N-termini of helices $\alpha 2$ and DNA phosphate groups. Blue and yellow lines indicate the inclination of helices $\alpha 1$ of ω_2 and Arc₂, respectively. Note that helices $\alpha 1$ of Arc₂ are inclined by ~135° to accommodate the bent DNA double helix.