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On fixed-interval schedules of reinforcement, subjects are reinforced for the first response
which occurs after a fixed time interval has elapsed. Responses occurring before the interval
has elapsed are recorded, but have no specified consequences. Fixed-interval schedules pro-
duce characteristic response patterns. A period without responses (initial pause) occurs at
the start of each interval, and is followed by accelerated responding which reaches a con-
stant high rate that is maintained until reinforcement. The present paper reports the de-
velopment of a mathematical index for describing characteristics of fixed-interval curves.
Examples from behavioral and pharmacological studies will illustrate applications of this
index.

DERIVATION OF THE INDEX OF CURVATURE'

A cumulative-response record drawn to approximate the performance of a pigeon trained
on a 10-minute, fixed-interval schedule (FI 10) is presented in Fig. 1.

If the response rate were constant throughout the interval, the cumulative-response
record could be completely described by the straight line O Y. However, the actual cumula-
tive record departs from a straight line. Insofar as we can indicate the extent and the
direction of this departure from a straight line, we indicate the curve characteristic of the
cumulative record.
The extent to which the cumulative record departs from a straight line can be de-

termined by comparing the area under the cumulative record with the area under the
straight line. That is, the difference between the area of the triangle OXY and the area of
the figure 0 a'b'c'YX can be used to indicate the curvature of the cumulative record.
Although it is simple to compute the area of OXY, certain assumptions are required to com-
pute the area of 0 a'b'c'YX.
The 10-minute fixed interval shown in Fig. I has been subdivided into four equal time

intervals (Oa, ab, bc, and cX). Perpendiculars constructed from the base at each of these
points form the lines aa', b'b', and cc'. The points at which these perpendicular
lines intersect the cumulative curve could be connected by straight lines of different slopes
(Oa', a'b', b'c', and c' Y). Inspection of Fig. 1 indicates that the sum of the areas under
these straight lines would closely approximate the area under the cumulative record. If the
total area under the straight lines is subtracted from the area of the triangle OXY, the
remaining area (enclosed by OY c'b'a') is related to the amount of curvature of the
cumulative record.
An index including tne direction of curvature can be computed by subtracting th,e area

under the cumulative curve (O a'b'c'YX) from the area of the triangle (OYX), and
dividing the remaining area (OY c'b'a') by the area of the triangle (OYX). Any neg-

'The authors are indebted to Dr. S. M. Free, Jr., for his suggestions concerning the mathematical rationale
for the index of curvature.
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Figure 1. Cumulative-response record drawn to illustrate geometrically the assumptions underlying the in-
dex of curvature.

atively accelerated curve will produce a negative index, and any positively accelerated curve
will produce a positive index.

In mathematical terms, hypothetical responses along the straight line OY or actual re-
sponses along the cumulative curve O a'b'c' Y are a function of time. These functional
relationships are represented by the equation R = g (t) for the line OY and by the equation
R = f (t) for the cumulative curve (R = responses; t = time; g, f = different functions
within the same coordinate system). The area (A ) under the line OY can be represented by:2

A gI(t)dt
0

The area (A ') under the cumulative curve O a'b'c' Y can be represented by:

A t s f(t) dt
0

'The assumption is that the limit of the sums as n is increased and the numbers A tl,,. .,tn approach zero
is, by definition, the definite integral; therefore,

T C

af(t) dt =alim Erf(ee)[ tI
n X

A ti -0
tj , < t0 < tj+,
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The index of curvature (I) is defined as:

A - A'
A

Thus,

g (t) dt - f (t) dt
o o

gg(t) dt
o

A geometrical interpretation of the integral can be made in terms of the area under the
curve. Actually, the area is defined as being equal to the limit. The geometrical computa-
tions for obtaining the index of curvatures for the curve shown in Fig. 1 are as follows:

1) Area of Oa'a A t

2) Area of aa'b'b = (aat +

3) Area of bb'c'c (1bb1 + cc' t\2

4) Area of cc' YX = (cc + XY)At

5) Area of OXY = Y 4 A t
\2/

When these values are substituted in the formula for the index of curvature (I), it can be
modified as follows:

I_ A - A'= [(2 )4 ]- [(-2)(tat + b )t(bb'+ cc') (cc' + XY)]
A [XY)4A tJ

3XY- 2cc' - 2bb' - 2aa'
4XY

Since XY= total responses (R4), aa' = responses in the first time interval (R,),
bb' = responses in the first two time intervals (R2), and cc' = responses in the
first three time intervals (R3), the equation may be rewritten as:

I 3R4 - 2(R + R2 + R3)
4R4

This may be expressed in a general formula for dividing the total fixed interval into
any number of subdivisions (n) as follows:
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n-I

(n - )R -2 Ri
(n - 1)R. -2 (Rnl1 + Rn.2+ + R,) i=_

n R, n R,

The minimum and maximum values that the index can reach with different numbers
of subdivisions can be determined by assuming that all responses fall in the first or last
subdivision, respectively. That is, when all responses fall in the last time interval
(A tn) and are recorded as Rn:

(n - 1) Rn
n Rn

thus,

limit n-I = 1

or, when all responses fall in the first time interval (A t,) they are thus recorded as
R, = R2 = . * * = Rn.

and: I (n - 1) Rn - 2 (n - 1) Rn -(n - 1) Rn
nRn nRn

thus, limit -(n-i) -1
n-._ n

A constant rate of response gives I = 0. One can readily determine the maximum absolute
values for any fixed number of time intervals. For example when i = 4, 1 II max = 0.750;
wheni = 10,111 max = 0.900.
The index of curvature has many theoretical advantages; however, its ultimate worth will

depend upon its empirical utility. In the following section, we will present some representa-
tive experimental applications of the index.

APPLICATIONS OF THE INDEX OF CURVATURE

A variety of actual fixed-interval segments are presented in Fig. 2 to indicate the index
values that are associated with various types of curves. In all the examples that follow, we
will use four subdivisions (n = 4) of the fixed interval.
The index of curvature is not appropriate for some types of fixed-interval records that

occur occasionally. The curve at the lower right of Fig. 2 is characterized by positive ac-
celeration followed by negative acceleration; however, the index is near zero. This curve was
obtained following the oral administration of 200 micrograms per kilogram of LSD 25.
Similar curves are infrequent under control conditions. The index is misleading when ap-
plied to fixed intervals in which only a few responses are emitted. This is a difficulty which
occurs frequently; misleading indices can be avoided by rapid inspection of the cumulative
records before applying the index.
The index provides a concise and accurate method for showing the development of fixed-

interval curvature after a brief experimental history on continuous reinforcement or fixed-
ratio schedules. For example, Fig. 3 shows development of performance of a squirrel mon-
key on the FI 10 component of a multiple 10-minute fixed-interval, 30-response fixed-ratio
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Figure 2. Representative cumulative-response records illustrating the types of curves that are associated
with different values of the index of curvature. The index value is shown below each curve. The species,
manipulandum, schedule, and other relevant information are indicated above each curve.

schedule in which 2.5-minute "time outs" follow each reinforcement. Average response rates
and average indices of curvature selected from the first 120 sessions are indicated. Twelve
10-minute, fixed-interval components occurred in each session. After the 10th session, aver-
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Figure 3. Average response rate (dashed line) and average index of curvature (solid line) in sessions selected
to show the development of performance on FT 10. The range of the index of curvature for each session is indi-
cated by the vertical lines.
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age response rates continually decreased until Session 50, and then continually increased to
their initial level in Session 120. On the other hand, the mean values of the index of
curvature increased to an asymptotic value; changes were not large after Session 30. Also,
the variability of the index, as indicated by the range, remained low after Session 30. The
index of curvature provides a new means of assessing the development of FT performance.
The index is also useful for indicating the effects of a range of doses of a drug upon FI

curvature. Chlorpromazine has inconsistent effects upon the response rates of pigeons on
the Fl 10 component of a multiple Fl 10 FR 30 with 2.5-minute "time outs" following each
reinforcement. Although response rates vary, chlorpromazine has consistent effects upon
the curvature in the Fl 10 component. A representative result is presented in Fig. 4. The
results indicate that chlorpromazine tends to eliminate the curvature in the FT components;
that is, the birds respond at a relatively constant rate throughout each interval.
The index of curvature has several advantages. First, it is easy to compute, since the time

intervals at which responses are to be recorded can be determined in advance. Second, it is
easily understood, since variations in curvature from negative to positive are correlated with
indices which vary correspondingly. Finally, our experimental findings indicate that the in-
dex of curvature is very reliable.
Other techniques are available for the analysis of fixed-interval performance, for example,

the quarter life (Herrnstein & Morse, 1957). The relative merits of these techniques of
fixed-interval analysis must be determined by further research.
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Figure 4. The effects of chlorpromazine on the index of curvature of a pigeon on Fl 10. Twelve succes-
sive intervals are shown for each dose of drug. Chlorpromazine was orally administered 1 hour before the
start of the first interval.
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SUMMARY

A mathematical method for indicating the extent and direction of curvature on cumula-
tive records of fixed-interval performances has been developed. This index of curvature is in-
dependent of average response rates. The use of the index was illustrated by applying it to
the acquisition of fixed-interval performances by squirrel monkeys and to the effects of
chlorpromazine on the fixed-interval performances of pigeons.

REFERENCE

Herrnstein, R. J., and Morse, W. H. Effects of pentobarbital on intermittently reinforced behavior. Science,
1957, 125, 929-931.

Received February 5, 1960


