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Abstract: All small area analyses need to compare the observed
variability in rates to that expected by chance alone, but the expected
variability is usually not known. This paper uses patient-level data
for five dental procedures to simulate the distributions of the
summary statistics that are usually generated in such studies. These
statistics are found to vary greatly even under the "null hypothesis"
that all dentists are using procedures at the same rates. The simulated
dentist rates are compared to observed rates obtained in a different

Introduction
Small area analysis is a popular methodology in health

services research. A typical study might calculate the utili-
zation rate for a service in several small areas, compare the
largest rate to the smallest, note that the difference is large,
and attempt to explain the high variability as a function of
service availability, physician uncertainty, and other varia-
bles of interest. The statistical methods used in such studies
have been questioned by an author of this paper.1

A recent paper using computer simulation to examine the
statistical properties of the most frequently used descriptive
statistics2 demonstrated that all of the usual descriptive sta-
tistics could be deceptive, showing large apparent variation
when there was no more variation than would be expected by
chance alone. A simple 2 x k chi-square test (classifying
people in each of k communities into two cells, by whether
they had or did not have the procedure) was an appropriate test
for excess variability as long as each person could have the
procedure at most once. However, the chi-square test could be
deceptive; results would be "statistically significant" too often
if an individual could have the procedure more than once.
Simulation studies were recommended for these situations;
this requires that the distribution of the number of procedures
per person be known. Finally, it was pointed out that studies
very similar to small area analyses were being conducted in
other situations: e.g., a "small area" might be a hospital or a
dental practice. This paper applies the small area simulation
approach to a set of dental data, to determine if there is more
variation in procedure rates among dentists than would be
expected by chance alone.

Grembowski, et al,3 calculated procedure rates for 200
dentists in general practice in four urban counties of Wash-
ington State from 1984 and 1985 dental claims of members of
the Washington Education Association (WEA) and their
dependents. The number of patients seen at least once in the
two-year period ranged from 75 to 300 for the 200 dentists, as
shown in Table 1.

Procedure rates for each dentist were calculated by
dividing the total number of procedures performed in a
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study. These findings illustrate problems that can occur in small area
analysis studies, and emphasize the importance of using statistical
techniques that are appropriate for the data that are to be analyzed.
Investigators should make every effort to obtain patient-level data,
or at least to understand the underlying distribution of the number of
procedures per patient, to avoid mistaking significant deviations from
an incorrect model as evidence for significant variation among small
areas. (Am J Public Health 1990; 80:1343-1348.)

TABLE 1-Number of Washington Education Association Patients Seen
by each Dentist in Two Years

N of N of
Patients Seen Dentists

75-99 94
100-124 54
125-149 19
150-199 24
200-300 9

two-year period by the number of people seen at least once
by the dentist during that period. Results were age-adjusted.
Table 2 shows the substantial variability that was found
among dentists: rates of oral examinations ranged from 10 per
1,000 patients to 3,543 per 1,000 patients. The coefficient of
variation (the standard deviation divided by the mean) was
0.289. This seems like substantial variation. However, agood
deal of variation can be expected by chance alone, even if the
underlying rate of examinations per person is the same in
each practice.2 If "exams" were a binary variable, which a
person could have once or never, it would be appropriate to
use a 2 x 200 chi-square test to examine the null hypothesis
that the probability of having an oral exam was the same in
all practices.2 However, it is obvious that many people have
more than one examination in two years, which means that
the chi-square test and the usual small area statistics are
either inappropriate or have unknown distributions under the
null hypothesis.

Ifthe number oforal exams for each person were known,
techniques could be developed to study whether there was
excess variation. The data could be recoded so that each

TABLE 2-Observed Procedure Rates in 200 Dental Practices
(number of procedures per 1,000 patients)

Category Mean SD Min Max EQ CV

Oral Exams 1617 467 10* 3543* 354.3* .289*
Fillings 889 373 188* 2379 12.65* .420*
Extractions 119 83 0 529 - .698*
Root Canals 44 40 0 228 - .909*
Scalings 23 47 0 345* - 2.044*

EQ = Maximum/Minimum.
CV = coefficient of variation.
'Minimum lower than 5th percentile of null distribution, or maximum higher than 95th

percentile (see Tables 3 and 4).
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person was coded 1 if he had one or more exams, and 0
otherwise, and the chi-square statistic could be used; or, one
could assume that the number of exams per person was
approximately normally distributed, and perform an analysis
of variance to study whether the average number of exams
per person were different among the dentists. Unfortunately,
the only data available for the Washington study were the
rates per dentist of the various procedures. No patient level
data were available. For these reasons, we attempted a
simulation approach, discussed elsewhere in detail.2 The goal
is to determine what the distribution ofprocedures among the
200 practices would have been under the null hypothesis that
no dentists were "high users" but, on the contrary, that all
dentists performed the same number of procedures per
person, on average. The simulation method attempts to
determine how much variation among practices would be
expected by chance alone. This is then used as a benchmark
to determine whether the observed variation in Table 2 is
important.

Methods
Data

A different data source was used to obtain information
about the distribution of procedures at the patient level.
Annual dental utilization data were obtained for 12,897
insureds from a random sample of adults and children
covered by Pennsylvania Blue Shield dental insurance in
1980. These data have been analyzed elsewhere.4.5 The 5,912
people with no dental visits in 1980 were eliminated from the
data set. Appendix 1 contains frequency distributions for five
dental procedures-oral exams, fillings, simple extractions,
root canals, and full-mouth periodontal scalings. (For exam-
ple, 2,764 patients had no oral exams, 2,717 had one exam,
and six people had 12 oral exams in one year.)
Fitting the Pennsylvania Data

We first attempted to fit the Pennsylvania data to the
Poisson and negative binomial distributions.6 If a known
distribution was appropriate, we could use it to generate
random data for the simulation. Clearly, none of the data are
normally distributed because of the long tails and the high
number of observations clustered at zero. The Poisson
distribution is not likely to fit the data because a Poisson
process assumes that procedures occur independently, which
is probably not the case for dental procedures. The negative
binomial distribution assumes that each person uses proce-
dures with a Poisson distribution, but that each person has a
different Poisson parameter, distributed according to a
gamma distribution.6 This distribution was considered be-
cause it has longer tails than the Poisson distribution.

We estimated the parameters ofthe Poisson and negative
binomial distributions using the maximum likelihood
procedure.6 This yielded expected numbers which were
compared to the observed numbers with the chi-square
goodness of fit test.7 Neither distribution provided an accept-
able fit for the number of oral exams or for fillings. The
negative binomial distribution did provide an adequate model
for the number of extractions, root canals, and scalings.

The following simulation work did not assume any
mathematical distribution, because there was none that
worked for all the data. Rather, data were generated directly
from the empirical distributions, as described below. Future
work in simulating procedure rates for extractions, root
canals, and scalings might use the negative binomial distri-
bution to generate random data, however.

Simulation of Utilization Rates
Our goal was to develop a simulation model to assess the

amount of variability that would have occurred among the
dental practices by chance alone if the null hypothesis (that
all dentists use procedures at the same underlying rate) is
true. We generated 100 different simulated sets of procedure
rates, in which the null hypothesis was true.

For each of the 200 dentists, a uniform random number
between 0 and 1 was generated for each patient in that practice
(e.g., for a dentist with 75 patients, 75 random numbers were
generated). Each of these numbers was compared to the
cumulative distribution in Appendix 1. For example, 2764/
6985 or 39.5 percent of the people had no oral exam; 78.46
percent had 0 or 1 exam; 97.7 percent had 0, 1, or 2 exams, etc.
For each random number, if it was less than .395, the patient
was assigned 0 exams; if between .395 and .7846, the patient
was assigned one exam, etc. Thus, on average, the number of
exams per patient match the distribution of Appendix 1, but
the distributions were somewhat different for each dentist.

After the number of exams were generated for all 75
patients in the first practice, the exams were summed,
multiplied by 2 (see discussion section) and divided by 75 to
provide a simulated two-year rate of oral exams for that
dentist. This was then continued for all 200 dentists, which
generated 200 different simulated examination rates. Next,
the minimum rate, the maximum rate, the extremal quotient
(EQ, ratio of the maximum rate to the minimum), the
coefficient of variation, and other statistics explained in the
results section were calculated. This process was repeated
100 times to give, for example, the "average" maximum rate,
or the 95th percentile of the maximum rate, under the null
hypothesis that each practice has the underlying distribution
of examinations shown in Appendix 1.

Results
Mean Procedure Rates

Table 2 shows the observed results, and Table 3 shows
the simulated results. The first column in Tables 2 and 3 is the
estimated mean number of procedures per 1,000 patients.
Recalling that the two sets of numbers arise from different
data sets, there is fairly good correspondence on the rate of
oral exams (1,725 versus 1,617), root canals (55 versus 44),
and full mouth scaling (34 versus 23). There is very poor
agreement on fillings (2,123 versus 889) and for simple
extractions (211 versus 119). This may be due to differences
in billing practices between Pennsylvania and Washington
Dental Service-the carrier for Washington Educational
Association. There are probably also socioeconomic differ-
ences between the Washington and the Pennsylvania pa-
tients. These differences are considered further below.

TABLE 3-Simulated Procedure Rates (number of procedures per 1,000
patients)

Minimum Maximum EQ
Rate
Mean Mean 5% Mean 95% Mean 95%

Oral Exams 1725 1260 1136 2304 2537 1.8 2.1
Fillings 2123 1195 974 3422 3897 2.9 3.4
Extractions 211 30 0 529 667 17.5 30.1
Root Canals 55 0 0 259 342 - -
Scalings 34 0 0 227 316 -

EQ = Maximurr/Minimum
Based on 100 iterations per procedure.
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Maximum and Minimum
The simulated minimum and maximum are shown in

Table 3. For example, on average, the lowest rate of oral
exams was 1,260 per 1,000 patients, and the highest rate was
2,304 per 1,000, even though the underlying rate for all
dentists was 1,725. Thus, an observed minimum rate near
1,260 or a maximum rate near 2,300 would not be an
indication of excess variability among practices. Table 3 also
shows the simulated 5th percentile of the minimum and 95th
percentile of the maximum. That is, 95 percent of all
minimum values are above 1,136, and 95 percent of all
maximum values are below 2,537.

The observed minimum rates for oral exams, shown in
Table 2, can be thought of as extremely low, since 10 is
substantially below 1,136. The same is true for fillings. The
minimum for the other procedures is 0 for both the observed
and the simulated data. Comparing the maximum values of
Table 2 to the 95th percentiles in Table 3, the maximum rates
for oral exams and for full mouth scaling are higher than
would be expected by chance alone, but the other maxima are
not particularly high.
Extremal Quotient (EQ)

Table 3 shows the simulated average value and the 95th
percentile of the EQ (maximum divided by minimum). For
oral exams, one would expect an EQ of about 1.8, and values
above 2.1 (the 95th percentile) would be considered partic-
ularly high. For fillings, a ratio of 2.9 is expected, and 3.4
would be considered high. For extractions the minimum
value was 0 in 10 percent ofthe simulations, and the EQ could
not be computed. For the remaining 90 percent, the expected
EQ was 17.5 and the 95th percentile of the EQ was 30.7. The
EQ is infinite for root canals and scalings, as the minimum is
always zero. In Table 2, the observed EQ could be computed
only for oral examinations and fillings. Both of the observed
EQs are much larger than the 95th percentile of the EQ
distribution, indicating that the null hypothesis that all
dentists had the same rates is probably not true. The
variability in the rates is due in part to some dentists having
much lower use of procedures than would be expected.
Coefficient of Variation (CV)

Table 4 shows that the 95th percentile of the simulated CV
(standard deviation over mean) for oral exams is 0.115, as
compared to an observed value of 0.289 shown in Table 2. The
observed variation is thus higher than would have been ex-
pected by chance alone. All of the observed CVs are consid-

TABLE 4-Simulation Results-Other Summary Statistics*

95th percentiles (per 1,000 patients)

199 df 1 df
CV SCV Chi sq Chi sq F

Oral Exams .115 8 -441 7.28 1.22
Fillings .194 35 -1116 27.31 1.13
Extractions .442 148 1070 13.15 1.17
Root Canals .914 674 1035 14.35 1.19
Scalings 1.188 1468 1208 18.97 1.20
Degrees of Freedom 199 1 199, inf
Tabled 95th Percentile 233 3.84 1.17

*CV is the coefficient of variation and SCV is an estimate of the systematic component
of the variation, defined in the text. Chi-square with 199 degrees of freedom is 2 x k
chi-square assuming that each procedure is a person. Chi-square with 1 df is the test for a
particular practice (see text). F is the F statistic that arises from a 1 -way analysis of variance.
Tabled 95th percentiles are taken from tables of the chi-square and F distributions.

Based on 100 iterations per procedure.

erably above what would have been expected. Therefore, the
null hypothesis probably is not true, and there are some dentists
who use procedures at different rates from the others.
Systematic Component of Variation (SCV)

Table 4 shows some other statistics commonly used in
small area analysis, which were not calculated for the
Washington data. They are included for completeness. The
SCV has been proposed by McPherson and Wennberg as a
test for excess variability among small areas.8 The formula is:

SCV = (1/k) [Z((Oi - Ej)2)/Ei2 - (l/Ej)]* 1000

There is an F-test associated with this statistic, but it is not often
used. The SCV was derived under the assumption of Poisson
rates, which is not appropriate here. The data in Table 4 illustrate
further what has been shown elsewhere2; that is, that the SCV
can take on very large values, even when there is no underlying
variation among the small areas. In addition, it becomes larger as
the mean rate becomes smaller. Thus, it would be unwise to use
the SCV alone as a descriptive statistic in this situation.
Chi-Square

Two chi-square tests have been used in small area
analyses. One test is a 2 x 200 chi-square test, which assumes
that each person received a procedure at most once, calcu-
lates the number not receiving the procedure as "population
size minus the number of procedures," and creates a 2 x 200
table. This is clearly inappropriate in our situation, since
many people had more than one procedure. In fact, the 95th
percentile of this chi-square statistic is negative for oral
exams and fillings, because the expected numbers of people
who did not have the procedure are negative for some
dentists (for example, there are more fillings than patients).
A chi-square value greater than 1,000 would be needed to
demonstrate "significance" for the last three procedures, as
compared to the tabled 95th percentile of the chi-square with
199 degrees of freedom, which is 233.

Another test which is proposed in these situations is a 1
degree of freedom chi-square test of the hypothesis that a
particular dentist has a rate significantly different from what
would have been expected. The expected number of proce-
dures would be the grand rate (e.g., 1,725 oral exams per
1,000) times the number of patients (e.g., 75, for an expected
rate of 129 exams). If the observed rate were, e.g., 155, the
chi-square statistic would be X = (O - E)2/E = (155 -
129)2/129 = 5.2. This is much higher than the usual critical
value of 3.84 for the chi-square distribution with 1 degree of
freedom. However, Table 4 shows that the 95th percentile of
chi-square statistics in this situation is 7.28, meaning that 5.2
is not a particularly large value. The 95th percentiles for the
other dental procedures are even larger, ranging from 13 to
27. Thus, the simple chi-square test, to look for outliers,
could be extremely deceptive in this situation, indicating
significant variation when a practice was operating, on
average, like all other practices. Or, put another way, 16
percent of the chi-square statistics would have been greater
than 3.84 for oral examinations, giving a Type I error of 16
percent rather than the commonly accepted 5 percent level.
The other Type I errors are 47 percent for fillings, 30 percent
for extractions, 28 percent for root canals, and 19 percent for
scalings. If these data were being used to identify outlying
dentists, far more than 5 percent would be incorrectly labeled
as over-providers. This discrepancy occurs because the data
violate the essential property required for the chi-square test:
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that the counts be independent (or, that the distribution of
counts per person follow the Poisson distribution).

There is another problem with this chi-square test, which
is that it ignores multiple comparisons. If a chi-square test,
even using the correct 95th percentile, were performed for all
200 dentists, about 5 percent (10 practices) would be judged to
have excessive utilization rates by chance alone. The proba-
bility that no dentist was classified incorrectly is .9521 =
.00004. Thus, the experiment-wise Type I error is almost 1.0.
This might be adjusted for by using an alpha level of .05/200 =
.00025 instead of alpha = .05. This would require comparing
the observed chi-square values to the 99.975th percentile ofthe
distribution (about 17.17 instead of 3.84 in this situation).

Clearly, the combination of these two problems (that the
chi-square statistic does not follow the chi-square distribution,
and that there are multiple comparisons) will tend to yield
extremely high observed chi-square values even in the null case.
Users who are not aware of this problem risk labeling small
areas as outliers that are not extreme at all. We have seen
examples in which a large percent, or even all of the small areas
being considered, were labeled as outliers based on this test!9
Analysis of Variance (F-test)

The 95th percentile of the F distribution is given in Table
4. This statistic would have resulted if we had performed an
analysis of variance to detect a difference among the 200
dentists in the mean number of procedures per person.
Analysis of variance requires having patient-level data, so that
the variation among people can be computed. This was not
available in the Washington data, but could be computed from
the Pennsylvania distributions. The 95th percentile for an F
distribution with 199 and infinite degrees of freedom is 1.17 if
the null hypothesis is true. This is close to the simulated F
values for the dental procedures (1.22, 1.13, 1.17, 1.19, 1.20),
showing that analysis of variance would have been appropriate
if patient-level data had been available, even though the data
in Appendix 1 are farfrom normally distributed. (We used only
100 iterations, so the percentiles might be even closer than is
shown.) If the data are not available at the individual level, to
permit analysis of variance, it will be necessary to perform a
simulation study to determine whether there is more variabil-
ity than would be expected by chance alone.
Adjusting the Pennsylvania Rates

It is unfortunate that some of the average rates were so
different in the Washington and Pennsylvania data sets. This
suggests that some of the "significant" variation detected
could have been caused not by excess variation but because
the Washington data were being compared to the wrong
underlying distribution. To examine this possibility we stan-
dardized the results, so that the average simulated rate would
be the same as the average observed rate. Specifically, we
multiplied the simulated rates by a constant factor (e.g., for
oral exams 1617/1725 = 0.937 so that the simulated mean
would be 1617). This has the effect of multiplying most of the
values in Tables 3 and 4 by a factor less than one (0.937 for
oral exams). (The EQ, CV and F values would be un-
changed). The observed data would then be as extreme or
even more extreme, if compared to these adjusted tables. All
of the observed maxima would be larger than the adjusted
95th percentile except for root canals.

Discussion

The intent of this paper was to demonstrate that small
area analysis issues were similar to those in detecting excess

variation in other settings, and in particular to illustrate the
simulation approach. Both the findings and the methods merit
some discussion.

If we assume that the underlying distribution of proce-
dures is about the same in the Washington and Pennsylvania
data, the simulation method has demonstrated that there was
excess variability for oral examinations and full mouth
scaling. The other procedures also showed excess variability,
although not as unequivocally.

There are some shortcomings to these results, and also
to the methods that we used to obtain them. The Washington
population was a fairly homogeneous group of middle-class
patients. The Pennsylvania Blue Shield data were from a
random sample of all insureds, who varied by social class.
The differences between the two study populations may
explain why the mean rates for the rehabilitative services in
Table 3 were higher than those in Table 2. Also, Pennsylvania
had better coverage for fillings than did the Washington
contract, which may account for the discrepancy in filling
rates between Tables 2 and 3.

The estimated rates from one year of Pennsylvania data
were multiplied by 2 to give two-year rates for comparison
with the Washington data. This is not quite appropriate, as it
assumes that non-users in the first year would not have used
any services in the second year. The correct multiplier is
between 1.08 and 2.0 (details from authors). The "2" was
chosen as an upper bound, to provide as much variability as
possible. If 1.08 had been used, all of the observed maxima
would have been above the 95th percentile.

No effort was made in either data set to remove people who
were not covered for the entire period of time. If a person was
insured for only one month of the two-year period, the rate was
calculated as though the person had been at risk for the entire
24 months. This would tend to lower the rates, and would lower
them more for the Washington data than for the Pennsylvania
data, since the time period was longerfor Washington. This may
explain some of the differences in the two data sets.

We did not model one aspect of the variability-that a
different number of patients might have been seen in different
two-year periods. Age and sex differences were not incor-
porated in the simulation, as the Washington data had already
been age standardized, and sex is not an important determi-
nant of use in insured populations.45 We showed elsewhere2
that this was a reasonable way to proceed. Finally, the
estimated means and percentiles are not completely accurate,
as there were only 100 simulations per procedure.

Once excess variability has been established, it is ap-
propriate to examine reasons for this variability. Grem-
bowski, et al.,'0 have shown that structural features of the
practice, such as its age and size, explain some of the
variation in the rates.

Although not completely satisfactory, the simulation
approach has provided support for the finding of excess
variability among dentists. Utilization review programs oper-
ated by dental insurers are often implemented to identify
dentists who have high procedure rates. The insurer may, for
example, intensify review of the dentist's claims as a means of
reducing the dentist's rate. Our results indicate that insurers
need to determine whether excess variability exists for a given
procedure before a dentist is labeled as providing "too many"
services. Ofequal importance, ifexcess variability is detected,
dentists with the lowest rates may be underutilizing appropri-
ate services.3 Therefore, insurers should target utilization
review at both ends of the rate distribution.

The methodology of this study is applicable in other
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situations. We used the simulation method to examine the
characteristics of small area analysis statistics applied to
dental practices instead ofgeographic areas. Dental practices
have smaller numbers of patients in each "small area" and
some ofthe procedures are applied multiple times to the same
person. The distributions of root canals or scalings, which are
rare, are more similar to the distribution of the number of
hospital admissions for a particular diagnosis, which is often
considered in small area analyses. The main results of this
study have to do with the underlying distribution of services,
the properties of several descriptive statistics, and various
hypothesis testing procedures.

None of the distributions of services in Appendix 1 had
a Poisson distribution. This is important because several
approaches are now being used in the small area literature
which assume that the underlying distribution is Poisson: the
1 df chi-square test and the SCV were derived under these
assumptions8 and some regression approaches model devia-
tions from the Poisson distribution.1l,12 In all of these
methods, statistically significant departures from the Poisson
distribution are taken as evidence that there is unexplained
variability among the small areas. However, as shown here
and elsewhere,2 the underlying distribution at the person
level may not have a Poisson distribution, and finding
"significant" variation is as likely to be caused by this fact as
to represent excess variation among the small areas. Unless
there is evidence that the underlying distribution is Poisson
(e.g., that a person cannot have more than one of the
procedures of interest) this is an inappropriate inference.

Tables 3 and 4 demonstrate that a considerable amount
of variability can be expected among small areas by chance
alone, and that it is dangerous to "eyeball" descriptive
statistics as a test for excess variability. The minimum and
maximum rates, and the extremal quotient, could vary
considerably under the null hypothesis. The coefficient of
variation and the systematic coefficient of variation also vary
substantially, and tend to be larger for the less prevalent
procedures (i.e., higher for root canals and scaling than for
oral exams and fillings). It is common to compare CVs or
SCVs across several procedures, and to claim that those with
the largest coefficients represent "practitioner uncertainty."
If we had done this with the data of Table 4, we would have
"found" that there is less certainty about root canals and
scaling than about oral exams and fillings, even though under
the simulation model all dentists used procedures at exactly
the same underlying rates! It is inappropriate to infer differ-
ences in "certainty" based only on CVs or SCVs if proce-
dures have different mean rates.

Several tests of the hypothesis that there is underlying
variation among the small areas have been developed. One is
a 2 x k chi-square test which is appropriate if a person can
have the procedure of interest at most once (e.g., death,
removal ofan organ). This procedure failed for the data of this
study, even for procedures such as root canals, where the
assumption that few people had more than one per year
would have seemed "reasonable." Thus, the assumptions of
this test must be examined with care.

The second chi-square test, which purports to test
whether an individual dentist or small area is an "outlier"
(observed significantly different from expected) was also
shown to be inappropriate first, because the data do not meet
the underlying assumption of a Poisson distribution, and
second, because the problems of multiple comparisons are
ignored. It is very important that this test be used correctly,
since it singles out particular areas or dentists as outliers, and

may have deleterious effects.
A third test which is sometimes proposed is a simple

analysis of variance. The simulation results of Table 4 show
that it would have been appropriate for these data, if data had
been available at the patient level. (Such data may be difficult
to obtain, as there must be a unique patient identifier to
permit ascribing multiple procedures to a person.) If inves-
tigation of patient level data showed that they were inappro-
priate for analysis of variance, logarithmic or other transfor-
mations could be attempted.

The simulation method we have proposed has so far been
used only in the null situation. The power of the various
procedures to detect true underlying variation has not been
studied; it should be studied. It is possible that tests based on
the CV, for example, would be more powerful than other
types of tests. More methods research is needed in this area.

The major lesson of this paper is that it is important in
small area analysis to understand the underlying distribution
of services, at the patient level, to avoid mistaking misspeci-
fication of the underlying model for statistically significant
excess variability among small areas.

DISCLAIMER
Interpretations of the data are the authors' own and do

not necessarily represent those of the National Center for
Health Services Research and Health Care Technology
Assessment, Washington Dental Service, or the Washington
Education Association.

APPENDIX 1

Number of Procedures per Person in Pennsylvania Data*

Procedure

Number of Root Full Mouth
Procedures Exams Fillings Canals Scaling Extractions

0. 2764 4020 6839 3722 6446
1. 2717 1239 120 43 417
2. 1349 775 16 5 88
3. 92 382 5 15
4. 39 206 3 6
5. 4 117 3
6. 14 93 1 2 10
7. 49
8. 28 1
9. 20

10. 18
11. 4
12. 6 15
13. 2
14. 4
16. 4
18. 2
19. 1
21. 1
22. 1
24. 1
28. 1
29. 1
36. 1

*This is a sample of 12,897 people enrolled in Pennsylvania Blue Shield in 1980. Of
these, 5,912 had no dental procedures in this period. These were removed from this table
to match the WEA data more closely. (WEA data included only people who used one or more
procedures in two years). Thus, the distributions represent the utilization of 6,985 people who
had at least one dental procedure in one year. Only 3,772 of the patients had coverage for
full-mouth scalings.
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