Supplementary data on BENA435 and related molecules 1, 2, 3, 5, 6, 7, 8, 9, 10, 11 and 14

BENA435 (Free base, pale yellow crystals) 88% yield, mp 162°C (softens) to 210°C (dec.) (Et₂O): 1H NMR (DMSO-d6) δ 1.95 (m, 2 H, CH2- β), 2.32 (s, 6 H, N(CH3)2), 2.50 (m, 2 H, CH2- γ), 2.97 (s, 3 H, 12-CH3), 3.76 (m, 2 H, CH2- α), 3.99 & 3.96 (2*s, 2*3 H, 2*OCH3), 7.45-7.60 (m, 3 H, H-3 + H-9 + H-10), 7.75 (d, 1 H, H-1, J = 1.8 Hz), 7.85 (t, 1 H, N-H), 8.93 (m, 2 H, H-4 + H-7), 9.09. Anal. (C24H28N4O2. 0.5 H2O) Calcd: C, 69.71; H, 7.07; N, 13.55 ; Found : C, 70.01; H, 7.09; N, 13.73

Compound **1** (*6-Methyl-dibenzo*[*c*,*h*][1,5]*naphthyridine*): A mixture of 6-chloro-12-methyldibenzo [*c*,*h*][1,5]naphthyridine (1.10 g, 3.9 mmol) in DMF (100 mL) was hydrogenated at 100°C under 1 atmosphere H₂ pressure using 10% Pd-C (300 mg) as the catalyst. Once hydrogen uptake was complete, the catalyst was removed by filtration, while the mixture was still hot, and washed with hot DMF. The filtrate was evaporated to dryness. Compound **1**, a yellow crystalline solid (250 mg, 28%), was obtained after silica gel column chromatography (CH₂Cl₂) and recrystallization from ethanol (mp 153°C): ¹H NMR (CDCl₃) δ 3.13 (s, 3 H, CH₃), 7.72 (m, 2 H, H-2 + H-3), 7.88 (m, 2 H, H-8 + H-9), 8.07 (d, 1 H, H-1, J = 8.0 Hz), 8.21 (d, 1 H, H-7, J = 8.3 Hz), 9.24 (m, 2 H, H-4 + H-10), 9.39 (s, 1 H, H-12). Anal. (C₁₇H₁₂N₂) Calcd: C, 83.58; H, 4.95; N, 11.47; Found : C, 83,09; H, 4,86; N, 11,40.

Compounds 2, 5, 6 and 7 (6-Aminomethyl substituted dibenzo[c,h][1,5]naphthyridine derivatives):

*Step 1: SeO*₂ *oxidation:* To a solution of **1** (667 mg; 3 mmol) in dioxane (90 ml) was slowly added SeO₂ (380 mg). The reaction mixture was refluxed for 3 h and the hot solution was then filtered and washed with hot dioxane. The solvent was removed under reduced pressure and the residue was recrystallized in toluene giving dibenzo[c,h][1,5]naphthyridine-6-carbaldehyde (450 mg, 57%), Anal. ($C_{17}H_{10}N_{2}O$) Calcd: C, 79.06; H, 3.90; N, 10.85 ; Found : C, 78,61; H, 3,77; N, 10,41.

Step 2: Reductive amination: N'-Dibenzo[c,h][1,5]naphthyridin-6-ylmethyl-N,N-diethyl-propane-1,3-diamine (compound **2**) : Example of the general method.

NaBH₄ (293 mg, 7.8 mmol) was added portionwise to a refluxing solution of the above aldehyde intermediate (500 mg, 2 mmol) and N,N-diethylaminopropyl-1,3-diamine (620 mg, 6 mmol) in MeOH (10 mL). The mixture was refluxed for 1 h. Cold water was then added and the resulting mixture extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, concentrated, and the residue was neutral alumina (7% water) column chromatographed (CH₂Cl₂/EtOH: 100/0 to 95/5 gradient). The free base of compound **2**, obtained as yellow oil, was dissolved in HCl/MeOH and concentrated to dryness. Ether was added and the yellow precipitate of **2** HCl was collected (610 mg, 30%), mp 145°C (softens) ¹H NMR (DMSO-d₆) δ 1.29 (t, 6 H, 2*CH₃), 2.43 (m, 2 H, CH₂- β), 3.19 (m, 4 H, 2*CH₂CH₃), 3.31 (m, 2 H, CH₂- γ), 3.43 (m, 2 H, CH₂- α), 5.29 (br s, 2 H, CH₂-6), 8.02 (m, 2 H, H-2 + H-3), 8.16 (m, 2 H, H-8 + H-9), 8.47 (m, 2 H, H-1 + H-7), 9.35 (d, 1 H, H-4, J = 8.2 Hz), 9.54 (d, 1 H, H-10, J = 8.2 Hz), 9.75 (s, 1 H, H-12), 10.00 (br s, 2 H, H-Hydrochloride salt), 10.92 (br s, 1 H, H-Hydrochloride salt). Anal (C₂₄H₂₉N₄ 3 HCl 1.5 H₂O) Calcd: C, 56.64; H, 6.73; N, 11.01; Found : C, 56.43; H, 6.38; N, 10.78⁺

Using the requisite amines compounds 5, 6 and 7 were also prepared by reductive amination.

Compound **5** (yellow powder, 56% yield) mp 160°C (softens) 1H NMR (CDCl₃) δ 2.22 (s, 6 H, 2*CH₃), 2.54 (t, 2 H, CH₂- β J = 2.9 Hz), 2.91 (m, 2 H, CH₂- α), 4.58 (s, 2 H, CH₂- δ), 7.69 (m, 2 H, H-2 + H-3), 7.86 (m, 2 H, H-8 + H-9), 8.05 (d, 1 H, H-1, J = 7.8 Hz), 8.20 (d, 1 H, H-7, J = 8.1 Hz), 9.23 (m, 2 H, H-4 + H-10), 9.37 (s, 1 H, H-12). Anal. (C₂₁H₂₂N₄·3H₂O) Calcd: C, 65.60; H, 7.34; N, 14.57; Found : C, 65.84; H, 6.95; N, 14.60.

Compound **6** (yellow powder, 50% yield): mp 45°C (softens); ¹H NMR (DMSO-d₆) δ 1.72 (m, 2 H, CH₂- β), 2.15 (s, 6 H, N(CH₃)₂), 2.32 (t, 2 H, CH₂- γ), 2.82 (m, 2 H, CH₂- α), 4.58 (s, 2 H, CH₂- δ), 7.93 (m, 2 H, H-2 + H-3), 8.09 (m, 2 H, H-8 + H-9), 8.40 (d, 1 H, H-1, J = 8.0 Hz), 8.59 (d, 1 H, H-7, J = 8.3 Hz), 9.27 (m, 2 H, H-4 + H-10), 9.65 (s, 1 H, H-12). Anal. (C₂₂H₂₄N₄ · 3H₂O) Calcd: C, 66.31; H, 7.59; N, 14.06; Found : C, 66.62; H, 7.57; N, 14.12.

Compound 7 (pale pink powder, 57% yield): mp 156°C; ¹H NMR (CDCl₃) δ 1.15 (s, 3 H, CH₃), 3.40-3.65 (m, 4 H, 2*CH₂-OH), 4.67 (s, 2 H, CH₂-6), 7.72 (m, 2 H, H-2 + H-3), 7.92 (m, 2 H, H-8 + H-9), 8.09 (d, 1 H, H-1, J = 7.8 Hz), 8.22 (d, 1 H, H-7, J = 7.9 Hz), 9.10 (d, 1 H, H-4, J = 8.4 Hz), 9.28 (d, 1 H, H-10, J = 8.4 Hz), 9.41 (s, 1 H, H-12). Anal. (C₂₁H₂₃N₃O₃H₂O) Calcd: C, 69.02; H, 6.34; N, 11.50; Found : C, 69.15; H, 6.32; N, 11.33.

Compound **3**: (2-[2-(Dibenzo[c,h][1,5]naphthyridin-6-ylamino)-ethylamino]-ethanol)

6-Chloro-dibenzo[*c*,*h*][1,5]naphthyridine (500 mg, 2 mmol) was heated in 2-(2-amino-ethylamino)-ethanol (10 mL) at reflux for 3 h. Excess of diamine was evaporated to dryness under reduced pressure and the residue was extracted (CH₂Cl₂/H₂O). The combined organic layers were dried over MgSO₄, concentrated and the residue was neutral alumina (7% water) column chromatographed (EtOH-CH₂Cl₂, 0 to 10% gradient; then CH₂Cl₂/EtOH/NEt₃, 90/10/0.5). Compound **3** was obtained as a beige powder (65 mg, 10%), mp 100°C (softens): 1H NMR (CDCl₃) & 2.86 (t, 2 H, CH₂CH₂OH, J = 5.1 Hz), 3.12 (t, 2 H, CH₂CH₂NHAr, J = 5.7 Hz), 3.67 (t, 2 H, CH₂NHAr, J = 5.0 Hz), 3.98 (m, 2 H, CH₂OH), 7.62 (m, 2 H, H-2 + H-3), 7.78 (m, 2 H, H-8 + H-9), 7.88 (d, 1 H, H-1, J = 8.1 Hz), 7.99 (d, 1 H, H-7, J = 8.1 Hz), 9.02 (d, 1 H, H-4, J = 8.0 Hz), 9.12 (m, 2 H, H-10 + H-12). Anal (C₂₀H₂₀N₄O 0.33 H₂O) Calcd: C, 71.00; H, 6.11 ; Found : C, 71.34; H, 6.33.

Compounds 8, 9, 10, 11 and 14 (6- Dimethylaminoalkylamino- and 6,12-bis-[dimethylaminoalkylamino]dibenzo[c,h][1,5]naphthyridines). General procedure: The requisite chlorointermediate [6-chloro-2methoxy-12-methyldibenzo[c,h][1,5]naphthyridine (for 8); 6,12-dichloro-2-methoxydibenzo[c,h] [1,5]naphthyridine (for 9 and 10); 6,12-dichloro-2,8-dimethoxydibenzo[c,h][1,5]naphthyridine (26) (for 11 and 14)] was heated at reflux in a large excess of either N,N-dimethylethane-1,2-diamine or N,Ndimethylpropane-1,3-diamine till disappearance of the starting chloro compound (12-48 h). The mixture was then concentrated under reduced pressure, taken up in water and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, concentrated and the residue was neutral alumina (7% water) column chromatographed (EtOH-CH₂Cl₂; 0 to 1% gradient) giving the expected 6,12-diamino substituted dibenzonaphthyridine.

Compound **8** (yellow powder, 33% yield): mp 139°C; ¹H NMR (CDCl₃) δ 1.94 (m, 2 H, CH₂- β), 2.36 (s, 6 H, N(CH₃)₂), 2.57 (t, 2 H, CH₂- γ), 3.00 (s, 3 H, 12-CH₃), 3.88 (m, 2 H, CH₂- α), 3.95 (s, 3 H, OCH₃), 7.36 (m, 2 H, H-1 + H-3), 7.52 (m, 1 H, H-8), 7.74 (m, 3 H, H-7 + H-9 +N-H), 9.00 (d, 1 H, H-4, J = 8.9 Hz), 9.09 (d, 1 H, H-10, J = 8.2 Hz). Anal. (C₂₃H₂₆N₄O) Calcd: C, 73.77; H, 7.00; N, 14.96; Found : C, 73.28; H, 6.92; N, 14.56.

Compound **9** (yellow powder, 18% yield): mp 169°C; ¹H NMR (DMSO-d₆) δ 2.29 (2*s, 2*6 H, 2*N(CH₃)₂), 2.67 (m, 4 H, 2*CH₂- β), 3.78 (m, 4 H, 2*CH₂- α), 3.96 (s, 3 H, OCH₃), 7.22 (m, 2 H, H-8 + H-9), 7.44 (dd, 1 H, H-3, J = 2.0 & 8.9 Hz), 7.60 (t, 1 H, N-H), 7.70 (d, 1 H, H-1, J = 2.0 Hz), 7.78 (t, 1 H, N-H), 8.24 (d, 1 H, H-7, J = 8.2 Hz), 8.82 (d, 1 H, H-4, J = 8.9 Hz), 8.88 (d, 1 H, H-10, J = 8.2 Hz). Anal. (C₂₅H₃₂N₆O'0.5 H₂O) Calcd: C, 68.00; H, 7.53; Found : C, 68.39; H, 7.37.

Compound **10** (yellow powder, 50% yield): mp 155°C; ¹H NMR (DMSO-d₆) δ 1.96 (m, 4 H, 2*CH₂- β), 2.24 (2*s, 2*6 H, 2*N(CH₃)₂), 2.46 (m, 4 H, 2*CH₂- γ), 3.74 (m, 4 H, 2*CH₂- α), 3.99 (s, 3 H, OCH₃), 7.44 (m, 3 H, H-3 + H-8 + H-9), 7.63 (t, 1 H, N-H), 7.71 (d, 1 H, H-1, J = 2.0 Hz), 7.81 (t, 1 H, N-H), 8.29 (d, 1 H, H-7, J = 8.2 Hz), 8.86 (d, 1 H, H-4, J = 8.9 Hz), 8.95 (d, 1 H, H-10, J = 8.0 Hz). Anal. (C₂₇H₃₆N₆O) Calcd: C, 70.40; H, 7.88; Found : C, 70.03; H, 7.66.

Compound **11** (yellow powder, 70% yield): mp 216°C; ¹H NMR (DMSO d-₆) δ 1.97 (m, 4 H, 2*CH₂- β), 2.25 (s, 12 H, 2*N(CH₃)₂), 2.45 (t, 4 H, 2*CH₂- γ), 3.73 (m, 4 H, 2*CH₂- α), 3.98 (s, 6 H, 2*OCH₃), 7.37 (t, 2 H, 2*N-H), 7.45 (dd, 2 H, H-3 + H-9, J = 9.0 & 2.2 Hz), 7.69 (d, 2 H, H-1 + H-7, J = 2.2 Hz), 8.83 (d, 2 H, H-4 + H-10, J = 9.0 Hz). Anal. (C₂₈H₃₈N₆O₂) Calcd: C, 68.54; H, 7.81; N, 17.13; Found : C, 68.35; H, 7.67; N, 17.07.

Compound **14** (yellow powder, 16% yield): mp 209°C; ¹H NMR (CDCl₃) δ 2.31 (s, 12 H, 2*N(CH₃)₂, 2.73 (t, 4 H, 2*CH₂- β), 3.84 (m, 4 H, 2*CH₂- α), 3.93 (s, 6 H, 2*OCH₃), 5.81 (br s, 2 H, 2*N-H), 7.20 (d, 2 H, H-1 + H-7, J = 2.3 Hz), 7.33 (dd, 2 H, H-3 + H-9, J = 9.0 & 2.3 Hz), 8.90 (d, 2 H, H-4 + H-10, J = 9.0 Hz). Anal. (C₂₆H₃₄N₆O₂·H₂O) Calcd: C, 64.98; H, 7.55; Found : C, 64.43; H, 7.41.

Stability of BENA435: When stored in the dark in anhydrous DMSO at -25°C BENA435 is stable for periods up to 3 years (LC-MS). When stored in DMSO at 4°C in the dark, BENA435 is stable for at least one year. At ambient temperature BENA435 was found to be stable in DMSO solution for at least 48 hours when stored in the dark.

Solubility of BENA435: In DMSO BENA435 (free base) is soluble until saturation at ~7 mM. As much as 1 volume of 7 mM BENA435 in DMSO mixed with 7 volumes of H_2O forms a turbid solution (0.875 mM BENA435 in ~ 12% DMSO). Upon sonication for 1 min this solution becomes limpid and can be further dissolved in aqueous solutions.

Decontamination of BENA435: 2 ml of aqueous solution of BENA435 at 75 mM were incubated for 5 min at RT with 100 mg of activated charcoal. After filtration BENA435 is undetectable by spectrometry.