Mathematical Appendix

In this part, for the model described in the main text, we obtain analytically the average density of sequences
with & mutant loci, fi, and the average rate of accumulation of deleterious mutations (or fixation of advantageous
mutations), dkay/dt. We restrict our attention to the case qul, < s < pL. In the next three sections, we will make
use of six approximations (numbered 1 - 6), whose validity will be verified analytically in a separate section.

Discrete semideterministic approach

The deterministic equation for fi(f) has a form (1)
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where k is the number of uncompensated mutant loci, ¢ is time (the generation number), p is the mutation rate
per locus, s is the selection coefficient at each locus, L is the total number of loci, and ¢ — 1/L is the frequency
of compensating loci per deleterious variant at a locus. The sum over the numbers of forward, 7, and back or
compensating, j, mutations is limited by the condition 0 < k 4+ j —i < L. The term e s*+i=i=kav) ig fitness of a
sequence with & + j — 4 uncompensated mutant loci relative to the average fitness defined as e %% = >k foe sk,
The distribution f3 () is normalized according to >, fr(t) = 1.

As we show below, when the population size is not too large, N < (1/s) In(1/pLgk,y), we can neglect terms with
i+ 7 > 1 in the right-hand side of Eq. 1, which correspond to multiple mutations in one sequence in one generation
step (Approximation 1). In the same interval of IV, we replace the fitness term in Eq. 1 with its linear expansion in
k (Approximation 2). Under these approximations, and assuming pl < 1, Eq. 1 takes a form

Je(@+1) = fu(®) = pL(1 = (k = 1)q) fr—1() — [l + s(k — kav)] fr + pL(k + 1)qfr+1, (2)
k=1,2,...,[—1.

For k =0 and k = L, the first and, respectively, third terms in the right-hand side of Eq. 2 are absent.

The treatment presented so far is purely deterministic. To introduce the effect of random genetic drift into the
model and obtain dependence of the results on the population size IV, we will treat the first nonempty group at the
left edge of the distribution, denoted k = kg, stochastically, using a one-locus-type diffusion equation
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where p(fk,,t) is the probability density, S and M are the effective selection coefficient and the mutation rate,
respectively, for the equivalent one-locus model. The term —[Sfi, — M(t)] under the first derivative in Eq. 3
represents the average change in the frequency fi, per generation, as given by Eq. 2. Multiplying both sides of Eq.
3, first, by fi, and, second, by f,?o and integrating in fi, by parts, for the averages of fi, and f,?o, we obtain

d?ko/dt =M - kaoa (6)
dfZ /dt = fy (1/N +2M) — 282, (7)

respectively. Multiplying Eq. 6 by 2?[60 and subtracting it from Eq. 7, for the variance Vi, = f_lfo — (Tko)z, we get

AV, /dt = TkO/N — 25V, (8)

According to the Main Approximation, we treat the remaining groups, k > ko + 1, deterministically, as given by Eq.
2. (This approach, at this point, is analogous to that used in refs. (2-4) in the case of ¢ = 0 and large N, when the
accumulation rate is very small.) We declare the edge group kg to be lost due to random drift and start treating
stochastically the next group to the right, ko + 1, with the initial condition V.11 = 0, if the following conditions are
met

Tko =0: dio/dt < 07 Vko > (Tk())z 3 (9)

which corresponds to Muller’s ratchet. Conversely, we declare group ko to become “deterministic” and start treating
stochastically the next group to the left, ko — 1, with the initial conditions f; | = Vi, 1 =0, if



frodeterministic : dfko/dt >0, Vi, < <7k0)2 , (10)

which corresponds to overall fixation of advantageous mutations. In the present work, we use the discrete equation,
FEq. 2, and the cutoff conditions given by Eqgs. 6, 8-10 for numeric computation of the time-dependent density fx(t)
(see examples in Fig. 1).

Continuous semideterministic approach and the traveling wave solution

The derivation that follows, unlike the discrete approach in the previous section, applies in a much broader interval
of N,In(N/N*) < (1/s)?In?(1/suLc), because it allows for multiple mutations per sequence per generation and does
not rely on expanding fitness in k& (Approximations 1 and 2 are not used). We divide both sides of Eq. 1 by fi(t). As
we show in Validity of Approxzimations, at s < pL, the relative change in In fi(t) between k and k 4 1 and between ¢
and t+1 is small, so we can replace In[fr1;_:(t)/ fx(t)] with its linear expansion, (j —1)0In fi(¢)/8k (Approximation
3) and In[fi (t+ 1)/ fr(®)] with Oln fi(t)/0t (Approximation 4). We emphasize that fi;(t), unlike its logarithm, cannot
be expanded in a Taylor series in k, because, as we show below, in an important region of k, we have |fr — fr—1| ~ f&.
Further, at k,, > In N/ In(o/q), the characteristic width of fi in k is much less than k,, (Approximation 5). Hence,
we can replace (k +j —i)g in Eq. 1 with o = gk,y and the upper limit of the sum in ¢ and j in Eq. 1 with infinity.
Under these simplifications, the sum in ¢ and j can be evaluated exactly, and Eq. 1 becomes

Oln fk
or

where 7 = plit, o = s/(ul) < 1, and we used the inequality s < 1. A partial solution of equation 11 is a traveling
solitary wave

= (L— a)e 2 IOk 4 qed M FR/OF ok — k) — 1, (11)

In fi (t) = ¢(k — Kav (7)) (12)

where © =k — k4, (7), and [ dx e?@® = 1. Substituting Eq. 12 into Eq. 11, we get an equation for ¢(z)
ox=(1—a)e ¥® £ ae? @ Log'(z) — 1. (13)

where v = 0kg,, /OT is the “velocity” of the wave in units of gL, which can be either positive or negative. Note that,
because o = gkqg, and v depend on time, ¢(z), strictly speaking, depends on time as well. When deriving Fq. 13,
we assumed |0¢/07| < |vg'(x)], i.e., that the change in the distribution with time occurs mostly due to its shift as a
whole rather than to the change of its shape (Approximation 6).

At small z,|¢/| is also small, and we can replace the exponentials in Eq. 13 with their linear expansion in ¢'.
Integrating the resulting equation with respect to ¢(x) yields

/ o ox?
¢(x) =1n T T— — 30 —2a—0)’ || < (1 — 200 — v) /0. (14)

where the first term is found from the normalization condition for ¢(z). The normalization integral in x converges, if
v < 1 — 2a, which determines the maximum wave velocity. Using Eq. 14, we can express the wave velocity in terms
of the standard deviation in z or k, as given by

o(stdg)? +2a+v = 1. (15)

Thus, at a given a, a wave moving to the left (v < 0, overall fixation of advantageous mutations) is broader than a
wave moving to the right (v > 0, Muller’s ratchet). (Note, that the integral fe’s‘r+¢(m)da: calculated with ¢ from
Eq. 14 is not exactly equal to 1, as it should, according to the definition of k,y, but has a correction on the order of
5 stdy which is small within the validity range of Approximation 4.)

The wave solution defined implicitly by Eq. 13 exists at any value of v < 1 — 2a. In order to specify the value of v,
we have to use the cutoff conditions at the left edge (Egs. 8-10). Near the edge, the Gaussian formula, Eq. 14, does
not apply, and we must use the more general Eq. 13. We can express v in terms of N, and ¢ without finding the
explicit form of ¢(x). Let us consider ¢’ the independent variable and x the function. At v < 1 —2a and « < 1, from
Eq. 13, we have z(¢') — +00 at ¢’ — +o0o. The divergence of x at negative ¢’ implies an asymptotic decay of the
distribution f = e®®) on its right slope,  — co. At ¢’ > 0, the function £(¢') has an absolute minimum at ¢’ = Inu,
where u is given by

u= % [—v + /0?2 +4a(l — oz)} . (16)



The existence of the minimum implies that, at = < 0, the distribution f = ¢?®) ends at the point
2o = x(lnu) = —(1/0)(—20u —viInu + 1 —v). (17)

At smaller x < zg, we have f(x) =0.
We consider now the difference

0 0
$(0) — (o) = / ¢ = —wolnu — /1 (¢)dg. (18)

The value of ¢(xg) in this equation can be estimated (see next paragraph) from the cut-off conditions, Egs. 8-10, as
given by

1, o~ vl ~1
P(xo) = —In[uLNE(a,v)], &(a,v) ~ < vin(e/v), a=0,0<v<1l . (19)
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The right-hand side of Eq. 18 can be derived using FEq. 13, integrating in ¢’ and then using Egs. 13 and 16. Finally,
substituting ¢(0) from Eq. 14 into Eq. 18, we arrive at the relation between v, o, and N

oln(N/N*)=1—-2a—v— (v/2)In*u—vinu—20ulnu, v<1-—2aq, (20)
N* = V2mstdy,/ [nLé(a, v)], (21)

where u and std are given by Egs. 16 and 15, respectively. Graphic representation of this result is given on Fig. 2a
and b. According to definitions of o and v, we have

o _ quLv(a), (22)

dt

which determines, together with Eq. 20, the time dependence of a. Calculated trajectories a(t) are shown on Fig. 2¢
for different fixed values of o In(/N/N*). (Because we assume ¢ < 1, the dependence of N* on « and v, Eq. 21, has
a small effect on the trajectories.) The dependence of the characteristic wave width (standard deviation of k) on «
derived from Eqgs. 15 and 20 is shown on Fig. 2d. Comparison of the ratchet rate at @ = 0 and of the fixation rate
with the results of Monte-Carlo simulation is presented in Fig. 2e and f. Fig. 2e also shows earlier results for the
ratchet rate obtained in the limits of small and large N (4, 5).

Cutoff condition, Fq. 19. In the case of Muller’s ratchet at o = 0, we chose the initial moment ¢ = 0, so that the
value of f0(0) is much higher than the stochastic threshold, implying Vi, (0) = 0. Setting M = 0 in Egs. 6 and 8, we
obtain

Tko (t) = fko (0)67St7
Tk sr osty f@
Vko(t) = N—S(e — € ) ~ N—S (23)
From Eqgs. 23 and 9, we obtain that the stochastic threshold is reached at Tko ~ 1/(NS). Using Eqgs. 4, 17, and 16 at

a — 0, we arrive at the second estimate in Eq. 19. In the case of fixation, we choose t = 0 at the time of appearance
of new stochastic group ko. Solving Eqgs. 6 and 8 with initial conditions f; (0) = Vi,(0) = 0 yields

t
Tko(t) — 67St/ dt’eSt/M(t’),
0

1 k =
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where S and M (t) are given by Egs. 4 and 5. For the traveling wave solution, at small times ¢, the time dependence
of fro+1(t) can be approximated by

Jror1(D) = fror1(0)™, 8= —pLvg'(xo)t = (—pLvlnu)t, (25)

where u is given by Eq. 16. Substituting Eq. 25 into Eq. 5 and the latter into Eqs. 24, we get
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The wave moves one notch in time t ~ 1/pL|v|. On this time scale, the right-hand sides of Eqgs. 26 can be estimated
as

b
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where we used Egs. 4, 25, 17, and 16 and assumed |v| > /&. From the cutoff condition 10 and Eq. 27, we obtain
the third estimate in Eq. 19. Technically, this derivation based on Fgs. 6 and 8 applies in the case In(N/N*) <
(1/s) In(1/pLa), when we can neglect with multiple mutations and expand fitness in k& (Approximations 1 and 2).
Still, Eq. 19 can be used, as a rough estimate, at larger NV as well, because the inaccuracy affects only the argument
of a very large logarithm in the right-hand side of Eq. 20.

Particular cases

Three asymptotic limits of Eq. 20 are worth writing down separately. The first case is when back/compensating
mutations are almost absent, i.e., a is small. Keeping the linear correction in «, from Egs. 16, 17, and 20, we obtain

x9=—(1/0) [1—v+v1nv—a(1—v2)/v], (28)
cIn(N/Nig)=1—v[iIn®v —Inv+1] + 22[1 — ¢ 4 (1 +v) Inv], (29)

a < v?In?v.

At o =0, Eq. 29 corresponds to the fat line in Fig. 2a. Note that, in this case, v is always positive, because fixation
requires the presence of back/compensating mutations. The Muller’s ratchet rate v vanishes at the point in N such
that o In(N/N*) =1 (see a comment in Approximation 3 below).

The second case is the steady state. Setting v = 0 in Eqgs. 16, 17, and 20, we obtain xg and the equilibrium position
of the distribution center, k., = a/q, as given by

2o = —(1/0) [1 — 2/ all = a)] , (30)
ocln(N/N!_y) =1—2a— \/a(l —a)ln I?TO‘, v=0. (31)

Relation 31 is shown as the fat line in Fig. 2b. Steady state is possible at o < 1/2 only.

The third case is a very large population, In N > 1/0. In this interval, Muller’s ratchet does not operate, and a
steady state is always at o &~ 0 (fat line in Fig. 2b). (More precisely, as explained below, steady state is at the value
a = q/o <« 1 predicted by the one-locus model.) The value of v determined by Eq. 20 is negative (fixation), and its
absolute value is much larger than 1. Fqgs. 17 and 20, in this interval of IV, can be replaced by approximate formulae
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oIn(N/N") = In? N = V27| /o (33)

ln]]\y* >>%1né, k>>1nN*/1n%.

We can also find the half-time of reversion of k mutant loci, {1 /2, defined as the time in which the wave center, kg,
travels from & to k/2

2{sIlnN
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(34)

The right-hand side of Eq. 34 differs from an estimate obtained by Maynard Smith, ¢;,5 ~ (k/s)In(s/pqLk)
(Egs. 7 and 11 in ref. (6); in our notation, uql is the effective back mutation rate per locus) by a factor inversely



proportional to In N. Due to this additional factor, at In N ~ kln(c/q), the right-hand side of Eq. 34 crosses over
to the well-known result of the deterministic one-locus model, ¢;,2 = (1/5)In(0/q). At this point in In N, the left
edge of the wave reaches the “wall” at k = 0, |xg| ~ kqv (Eq. 32), i.e., Approximation 5 ceases to apply. Beyond
this point, the existence of a cutoff at the left edge is not important, because fr—o > 1/(uLLN), and all the results
become almost independent on N. Also, the quasilinear accumulation of advantageous mutations predicted by the
moving wave ansatz is replaced by the exponential time dependence characteristic for a single locus, Eq. 49. The
transition to the one-locus theory is intuitively expected: in the limit of large N, every genetic variant pre-exists in
a population, and frequent mutations break down linkage disequilibrium. In agreement with this, models assuming
infinite population size, generally, do not find any advantage of recombination for progressive evolution (7, 8). To
obtain his estimate of the fixation time, Maynard Smith chose a scenario describing how an emerging subpopulation
containing advantageous mutations passes through stochastic bottleneck (“becomes established”) and how it spreads,
due to selection, to the entire population. In particular, he assumed that clones that are established consecutively
differ by one advantageous mutation and did not take into account a distribution over k. Our analysis shows that the
distribution is broad, within the interval ~ |zg| (Eq. 32).

At N <« 1/pqL, the one-locus fixation time is &1, ~ 1/puqLNs (9). Assuming o = 0.01 — 0.1 and using results
for 1 — 2a — v plotted in Fig. 2d, we obtain that the one-locus time is much shorter than the multilocus estimate,
tisg ~ k/pLlv|, if N > 1/s, at any «. Thus linkage delays fixation (and, therefore, recombination confers advantage
to population) in a broad interval of population sizes, given by

In(1/s) < In N <« kln(c/q). (35)

Validity of approximations

In this section, we show analytically that Approximations 1 and 2 used in the discrete approach, Eq. 2, are valid if
In(N/N*) < (1/s)In(1/pLa. We also show that Approximations 3 - 6 used in the continuous approach are valid in a
broader range of N, In(N/N*) < (1/s)? In?(1/suLa), and at sufficiently large values of kay, kay > In(N/N*)/In(c/q).
For the parameter range typical for RNA viruses (main text), even at the maximum value of k,y, kay = 1/(29), the
second inequality is more restrictive with respect to /N than the first one.

Approzimation 1: Neglecting multiple mutations. The numbers of forward and back/compensating mutations i, j
contributing most to the sum in Eq. 1 can be estimated as

i ~ max(1, uLe 2f%/%%y " j ~ max(1, pLae??</ %), (36)
Here 0f/0k = ¢'(x) can be estimated from Eq. 13 in several representative intervals of x, as given by

, u, T = I
e @, || K or~(1—2a—0v)/0 (37)
1/(ow), @3 (1/o) max(fo Inf], 1)

From Eq. 16, we estimate

1/ max(|v], o), v >0
“ { max(|v|, V&) /e, v <0 (38)

Because pl and o are less than 1, from Eqs. 36, 37, and 38, we obtain j ~ 1, i.e., multiple back/compensating
mutations are negligible, unless x &~ z¢ and v is large negative, |v| > 1/uL. In the latter case, which corresponds
to In(N/N*) > (1/s)In*(1/pLa) (Eq. 33), the most contributing j is given by j ~ p1L|v|. We can neglect mutliple
forward mutations, except in the far-right tail of the distribution, = >> 1/s, in which region i = sz.

Approzimation 2: Linear selection term. Replacing exp[—s(k — kay)] in Eq. 1 with its linear expansion is justified,
if s|zg] < 1. At v > 0, from Eqgs. 17, 28, and 30, we find s|z| to be less or on the order of p1L, so the condition is
met. At large negative v, from Egs. 32 and 33, we obtain pL|v|In(jv|/a) < 1, or In N < (1/s) In(1/puLa).

Approzimation 3: Continuity in k. Expanding the difference In fiy;—;(¢t) — In fi(¢) in Eq. 1 linearly in j — 1 is
justified, if |(i — j)26? fi/Ok?| < |(i — j)Ofx/Ok|. In terms of the traveling wave solution, Eq. 12, this condition can
be expressed as

[i— ] < . (39)

, dx
iy

Using Eqgs. 13, 14, 16, and 17, we can estimate the right-hand side of Ineq. 39 in different intervals of z, as given by
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Based on Eq. 40 and the estimates for ¢,j obtained when verifying Aproximation 1, we obtain that the condition,
Eq. 39, is met due to o < 1, unless & & x¢ and either v and « are small, v ~ /a ~ o, or v is large negative,
[v] > (1/suL)In*(Jv|/). In the latter case, which corresponds to (Eq. 33) In(N/N*) > (1/5%) In*(1/asul), the
relevant value of j is large. The authors (2-4) who studied the ratchet for N > exp(1/0), o = 0, obtained a finite,
albeit small ratchet speed, v ~ g, at N ~ exp(1/0). The reason for the difference between this earlier result and our
result, v = 0 at oln(N/N*) > 1, is that the continuous approximation employed here is not valid, when both v and
« are very small.

Note that, at & x¢ and large negative v, we have j¢' >> 1. A more accurate condition for neglecting ¢ in this
case would be j2|¢""| < 1, which yields In N < (1/5)*/3 1n2(|v|/a) (Egs. 37 and 40). However, even at larger IV, the
error from neglecting ¢’ corresponds to a factor multiplying « in the second term in Eq. 20. Because « enters the
final expressions, Eqs. 32 and 33, only in the argument of a large logarithm, these expressions remain sufficiently
accurate in the interval of IV specified in the previous paragraph.

Approzimation 4: Continuity in time. Replacing the difference In fi(t + 1) — In fx(t) in Eq. 1 with the time
derivative is justified, if |62 f(t)/0t?| < |0fx(t)/0t], or, for the traveling wave solution, if uL|v| < |¢'(dz/d¢")|.
Using the estimates given by Egs. 40 and 38, we obtain that the condition is met due to o < 1, two cases except:

(1) |z| <« peL]v]. The upper limit on |z| is much less than the standard deviation in k or x, Eq. 15, and the restriction
on |z| is not important, unless |v| > 1/(spL), which corresponds to In(N/N*) > (1/s%) In*(1/aspl) (Eq. 33).

(i) |v| > 1/(sul) 1n2(|v|/a), ie., at In(N/N*) > (1/s?) In*(1/aspL) (Eq. 33). In this case, the Approximation is
violated at the left edge.

Approzimation 5: The distribution is far from the origin. To replace gk by gk, we assumed that the distribution
is narrow compared with its distance from the origin, |zo| < k. At v > 0 or v < 0, |v| ~ 1, as can be shown from Eqgs.
17, 28, 30, this condition always holds, as long as « > ¢g/0 (hence the restriction ¢ < o stated in the beginning). At
large negative v (Eqs. 32, 33), the condition |zo| < k is equivalent to In N < kln(o/q) (hence the inequality in Eq.
33).

Approzimation 6: Slow change of the shape. To obtain Eq. 13, we neglected d¢/0t, assuming it to be much less
than the time derivative due to the shift, ulLv¢’'(z). We verify this assumption at the most important point, the
distribution edge x = xg, where we have

_ (e 3F0 dxo
06/0t = ¢/ (w0)—> = pLqvInu—=, (41)

u, g, and v are given by Eqgs. 16, 17, and 20. From Eq. 41, the validity condition reads
|dzo/da| < 1/q. (42)

The form of the derivative in « can be found by calculating dv/da from Eq. 20 at fixed 0 and N and then using Eq.
17 to find dzg/da. The general expression for dxg/da is rather complex; however, it can be estimated in particular
cases. In the case v > 0, and either v ~ 1 or & ~ 1, we get dzg/da ~ 1/o. If both ¢ < 1 and 0 < v < 1,
we have dzg/da ~ 1/ [0 max(y/a,vInv)] <€ 1/0. Because we assume g < o, the validity condition, Eq. 42, holds
everywhere in the plane (o, In N) except in a small vicinity of the point (0,1/0) where the ratchet is very slow (the
dots in Fig. 2a and b). Finally, at large negative v corresponding to the range of N, (1/0)In(l/a) < In N, we can
use asymptotic Egs. 32, 33 for z¢,v to calculate dzo/da; inequality 42 becomes g|v|/(ca) < 1. At the smallest o
allowed by Approximation 5, o ~ g|zg|, we obtain In(o/q) > 1 which holds marginally. At larger «, the condition
holds better.

Correction to the continuous-in-% approximation at a =0

At realistically small values of 0 = 0.1 — 0.01, corrections to the accumulation rate due to discreteness of k may be
noticeable, especially at small N. At « =0, we can efficiently correct for these effects solving the discrete Eq. 2 near
the left edge of the distribution in k. Suppose, at t = 0, fr_1(f) have reached the cut-off value given by Egs. 8 and 9
and vanished. From Eq. 2, we have

df./dT = —7 [
Afrri/dT = =Y frri + frorio1, 1=1,2,..., (43)

where 7= ulit,y =1+ z90 =vln(e/v) (Egs. 16 and 17). We can write down periodic conditions



fk+i(6) = karifl(O)a i= 1727' ce (44)

where § = 1/v is the interval of 7 in which the wave moves by one unit in k. Solving, e.g., the first five of Eqs. 43,
and using periodic conditions and the identity ¢’ = ed, we obtain

fu(m) = fr(8)6e T,
fea(r) = fu(®)de! 7 [(e — DI + 7],
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We compare the continuous result, Eq. 20, with the discrete solution, Eq. 45, at the time when the left end of
the continuous distribution is half-integer in k. The resulting correction to Fq. 20 is equivalent to the replacement
N* — N*Ncor, where N, is given by

In Neor = In [N f4:(6/2)] — (i - 1/2) In4. (46)

From Eqs. 45 and 46, within a 5% accuracy, we extrapolate Ngory = 1.6 + 2.0i — 0.6 + 2.0|zo|, where we used
i =|xg| — 1/2 and Eq. 28. The corrected expression for N* has a form

N* = (0.6 + 2.0|120)[(27/0) (1 — v))]"?/[uLv In(e/v)], a=0. (47)

Note that the correction to the Muller’s ratchet speed due to discreteness of k is contributed from the entire left slope
of the distribution, not just the left edge, and is therefore approximate. Still, the corrected formula 20 yields good
accuracy when compared with the results of Monte-Carlo simulation (Fig. 2e).

Fit of the one-locus model to vesicular stomatitis virus data

In this section, we write down some predictions of the one-locus model (which applies in the limit of very strong
recombination) to compare them with data on passaged vesicular stomatitis virus (10, 11) and with the corresponding
predictions of the multilocus model, as shown in Fig. 4. We will denote by w = exp[—s(kav — k1)] the average fitness
of a population with respect to a reference sequence having k; uncompensated deleterious mutations. (In Fig. 4, ky
is one of the three fitting parameters.)

In a steady-state population of a size N, the average relative fitness, w,,, is given by

Inwes =kys— L {u + (48)
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where the expression in brackets, at s > p, closely approximates the “mutation load” per locus (decrease in the log
fitness due to deleterious mutations) obtained by Kimura et al (12). We used notation g, = v/u for the average ratio
of the effective (including compensating mutations) back mutation rate to the forward mutation rate.
Suppose now we start from a very large monomorphic population (N > 1/u), comprised of the reference sequence.
The population will increase its average relative fitness with time ¢, as given by a deterministic expression

Inw(t) = k1s[l — fax ()] — (L — k1)Sfacc (D),

_ K L+ (p/s)(qL —2) _ K st
fﬁx(t) - g + 1+ (/L/S)(—l —O—QLeSt)’ facc(t) - g(l —¢ )a (49)

where [fux(f) and facc(t) are the frequencies of deleterious variants at loci that undergo fixation of advantageous
mutations and accumulation of deleterious mutations, respectively, depending on their initial state (9).
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