Supporting Text

Stereospecific Assignment of the Cys-8%-protons. The stereospecific assignment of
the Cys-893-protons was made on the basis of NOEs and the NMR solutioctate of
reducedA.v. plastocyanin (see Table 3). The assignment obtained her&\foplastocyanin

is in agreement with the assignment obtained previouslysfonach plastocyanin (1), i.e.
Cys-89 H' has a chemical shift of 3.33 ppm in the reduced protein andsgav saturation
transfer at~700 ppm, while Cys-89 B has a chemical shift of 2.89 ppm in the reduced
protein and gives a saturation transfera40 ppm.

Structure Calculation. The structure calculations included distance geometry)(BiGulated
annealing (SA), and restrained energy minimization. Thampagnetic restraints were included
only in the SA, and the restrained energy calculations (REMjile the applied NOE and
dihedral angle restraints were included in all parts of @lewdations.

A total of 100 structures were calculated. Only the backbotmegen, carbon, and hydrogen
atoms, and the¢g and~ carbons were included in the initial DG calculations of subgures
using the protocol dguhembed (2). In the following SA calculations, the structufele
apo-protein was fixed in the first step while the copper(lf) was positioned roughly in the
catalytic site by the relaxation restraints, assuming that= r in Eq. 1. The restraints were
included using a flat-bottomed squared potential with ag@anstant of 10 kcah 2.

Subsequently, the structures were run through 200 cyclesstrained Powell energy min-
imization (REM) followed by 9 ps of restrained molecular M¢rdynamics at a temperature
of 3,000 K in time steps of 3 fs. The paramagnetic relaxat@siraints were included with
the square potential and a force constant of 100-cal and the paramagnetic relaxation en-
hancements were calculated in the point dipole approxonathat isr.s = r in Eq.1. The
high-temperature dynamics was followed by 6 ps of coolinfj@0 K in time steps of 3 fs and
subsequently by 200 cycles of REM.

Finally, the structures were refined using the simulatectalimg refine protocol (2). At
this stage the unpaired electron spin distribution wasualyl changed from a point dipole at
the copper atom to the final spin distribution described inld2. The structures were initially
heated to 3,000 K and hereafter cooled to 100 K over 20 ps ia $iteps of 2 fs. The unpaired
electron spin was described by a two-center model with 70%eatopper 3d orbital and 30% at
the Cys S orbital for temperatures between 3,000 and 800 K. From 8Q0@K the full elec-
tron spin distribution shown in Table 2 was used. Finally) 29cles of REM calculations were



applied. The force constanﬂﬁlx, of the paramagnetic relaxation restraints were 500 &cdl

and 500 kcal, respectively. In general, the contributiaihétotal energy from the paramagnetic
relaxation restraints was0.3%, which indicates a good agreement between the paramagnetic
relaxation restraints and the conventional inter-protistadices and dihedral angle restraints.

The van der Waals energy function was represented by a smyéfunction in the SA cal-
culations. The van der Waals interactions were increasedtyyng the force constant of the re-
pel function from 0.003 to 4 kcahol~'-A~%. During all calculations the force constant used for
the NOE and the dihedral angle restraints were 50-kuat!-A -2 and 200 kcamol~!-rad2,
respectively. Finally, the 10 structures with lowest t@tiaérgy were selected for further analy-
Sis.

It should be noted that the protein structure beyond thelrbetand residues is unaffected
by the inclusion of the paramagnetic restraints in the stimeccalculations and is defined
entirely by the conventional NOEs and dihedral restraisedun the structure determination.
Thus, the root mean square deviation (RMSD) of the backbtomsaof the 10 structures
with the lowest energies (the metal sites structures of vare shown in Fig. 1) was 0.6%,
whereas the RMSD of the 10 structures with lowest energieeatk from conventional
diamagnetic restraints alone was 0&33). In both cases the N- and C-terminal residues
were excluded in the RMSD calculations. Finally, the RMSDtte# two average structures,
that is, the average of the 10 structures here and the avefdlge 20 previous structures (3),
was 0.59A2, excluding the N- and C-terminals and the ligand residuesally, it should be
noted that the use in the structure determination of NOHs ireduced plastocyanin together
with paramagnetic restraints from oxidized plastocyasijustified by the fact that Cuand
Cu?™ plastocyanin have nearly identical structures with onlynanidifferences in the first
coodination sphere (4-7). Also, as mentioned in the maihttexNOEs between side chain
atoms of the ligand residues (His-39, Cys-89, His-92 and-®Tgtwere excluded, to allow the
metal site to be defined exclusively by the paramagneticaiess.

Evaluation of the Dipole Integral. To calculate the paramagnetic relaxation enhancements
and the effective distance in E@for the protons close to the paramagnetic metal site, we want
to solve the dipole integral

D,(:R) = /V Ar Yy (r) F2 (') Wi (1) [S1]

The integral describes the dipole interaction between thgmetic moment of a nucleus, N, and
an unpaired electron described by the wave funcfiar. The orbital of the unpaired electron,
Y(r), is described by a Slater type hydrogen-like atomic orlnitétie coordinate systefl. The



dipole operatotF?(r') = ||'||3Y(r'/||r’||) is described in the coordinate syst€d which
has the nucleus, N, at the origin. He¥&;(r/||r[|) is the solid spherical harmonic. Furthermore,
the coordinates of the nucleus are described by the traorslagctorR. in the coordinate system
O, i.e.,r' = r — R. Finally, an asterisk denotes complex conjugation.

The operatoﬂ?z”(r/) can be described in the coordinate syst@niy a translation of the
irregular solid spherical harmonics (8—11):

Fy) =3 > (=)@l m) F" )T (x) for x| <R[,  [S2]
=2 m=-1
e l

F)y =3 > ()" lm) (0T (R) for vl > [R],  [S3]
=2 m=—

where

Ar(2p+1)

) = {(2[—2p+1)(2l+1) [S4]

(I —m)!( +m)! 1/2

(p=v)p+)ll—=p—m+v)l—p+m— V)!} ’

andY;" and F;™ are the regular solid spherical harmonics and irregulaespil harmonics,
respectively. That is:

() = el Y /], [S5]
EM(r) = |~y /|| [S6]
For|r| — |R| the operatotF?(r') approaches a Dirac delta function. That is, even though
the volume of integration of the shellt|| = ||R|| is zero the integral may still have a nonzero
contribution to the total integral in E&1(10, 12)
Fy(r') = —%ﬁ Yy (R/[R[)) 6(r =R) for |r]| = [R]. [S7]
The hydrogen-like atomic orbitals can be separated in aolangart and a radial part:

Yt (1) = R (Zeg, [[e]) Yo (/] [S8]
whereR,.;1(Zeg, |[r]|) and Y™ (r/||r||) are the normalized radial and solid spherical harmonic
function, respectively. Furthermore, g is the effective charge of the nucleus at which the
hydrogen-like atomic orbital is centered. According to gggiations for the translated dipole
operator, EqsS2 S3 andS7, the dipole integral, E¢S1, splits into three parts:

D,(5R) = D,(45R) + D,(5R) + D,(4R). [S9]
Iel|I<IR] Iel|> IR IelI=IR

Below, the three casegr|| < |[|R||, ||r|| = ||R|, and||r| > ||R|| will be described separately.




[r]l < [[R]

Since the hydrogen-like atomic orbitals, ,,»(r), can be separate in an angular part and a

<
radial part, the integra®, (¢; R) can according to Ed52be calculated as:

o) l

D, R) = 3 ST (“)" (2, 1m) (5 R, D) T, (v Rim, ), [S10]

=2 m=-—1

Whereéy(w; R;m, 1) andiy(w; R;m, ) are the angular part and radial part, respectively.

Angular part. From Eq.S2it is seen that the angular part is given by:
a, (v Rym, ) = V"(R/|| R / dQ Y, (Y (@) ()], [S11]
whereQ is the solid spherical angl€2 = r/||r||, and
/ dQ = / 221¢ / A0 sin g, [S12]
Angular integrals of the type in Eqillcanobe sol(i/ed using the Clebsch-Gordan series (13):

Jaavr@yryre) -

(20, + 1) (205 + 1

Here, the Clebsch-Gordan coupling coefficiefit$,m,ms|l1l2l3m3) vanish, unless:

1/2
) } <l1l200|l1l2l30> (l1l2m1m2|l1l2l3m3). [813]

& M1+ My = Mg

o |l =l <3 <li+1y

Therefore, the sum in E@2only has a finite number of nonvanishing terms. The nonvamish
Clebsch-Gordan coupling coefficients are tabulated indstathtables or can be calculated using
angular momentum theory. For the angular integral inEdLthe nonvanishing conditions are:

ev—m+m=m & v=m
o |[—2-0U|<U<I+1I -2

Radial part. The radial part of the dipole integreﬁy(w; m, 1), is given by:

IR
iy(qp;R;m,Z): HRH—U“)/ dr 7272 | Ry p (Zeg, ) |2, [S14]
0

wherer = ||r||. For the hydrogen-like atomic orbitals the radial part isegiby the well-known
associated Laguerre polynomials (13), that is, the radtabral can be evaluated analytically.



[x]l > [[R]

>
The integraf®, (¢; R) can according to Eq&3andS10be calculated as:

o) l

D, R) = S S (<1 (2, v, 1 m) @ (45 Rs m, 1) %, (65 Ry m, 1), [S15]

=2 m=-—1

whereﬁu(w; R;m,I) and?u(w; R;m,[) are the angular part and radial part, respectively.

Angular part. From Eq.S3and the above-mentioned properties, it is seen that thdamoart,
Eu(@b; R;m, 1), is given by:

> v—m m m’ m’ *

a,(V;Rim, 1) =Y, (R/HR!D/dQYz (@)Y (@) [V ()], [S16]
which can be evaluated using the Clebsch-Gordan seriesoasisibove. The nonvanishing
conditions are:

em+m=m & m=0
o |-V <+

Radial part. The radial partfy(w; R;m, 1), of the dipole integragy(zp; R), is given by:

iu(w; R; m, l) = ||R||l_2/ dr TZT_(H_I) |Rn’,l’(Zeff7 ’I“)|2- [817]
IRl

[r]l = [[R]

The contribution;‘i(w; R) is trivially calculated from the operator described in E@and the
wave function: A

= s

Du(;R) = —5 YY(R/|R])) [ (R)]. [S18]

Real Hydrogen-Like Atomic Orbitals. Most often the orbital involved in the dipole integral
Eq.Slis not a pure hydrogen-like atomic orbital, that is, an efgeation of the operatofz.
As an example, the 2pand 2p orbitals are linear combinations of the hydrogen-like dtom
orbitalsys;, (r) andyy; 1 (r). However, the radial functio®,,.;(Z., ||r||) is independent of
the quantization along theaxis.



We now consider the following atomic orbital:

b(r) = R(e, 5,7) Ypim (), [S19]

whereR is the rotational operator angd (3, and~y are the three Euler angles of rotation. Since
the set of spherical harmonic$Y,"}_,<,,<; forms a basis in th¢2! + 1)—-dimensional irre-
ducible rotation group, the angular part of the wave functigr) in Eq. S19is entirely given

by a linear combination of the spherical harmonics in thésbgls™} _;<,,.<;. That is:

Y0, ¢) = Rla,B.7)Y"™(0,9) [S20]

l
= > Y"(0,6) DY) (@, 8,7), [S21]
=—1

WhereDfQ,,m(oz, 3, ) denotes the elements of the representation matrix of taéoo{ o, 3, 7),
if the 21 + 1 complex spherical harmonids,"} _,<,.<; form the basis for this representation.
TheDfQ,,m(oz, 3, ~) matrix elements are given by:

D) (e 8.7) = (Im'[R(a, 3, 7)|m) [s22]
— (Im'| exp(—iaL,) exp(—iBL,) exp(—ivL.)|lm) [S23]
— e—iam’dg/7m(ﬁ)e—i’ym’ [824]

where|im) = Y,"(0, ¢) andfy andL, are the Cartesian components of the angular momentum
operator. Furthermore (11),

) .(8) = (| exp(—iBLy)[Im) [S25]
= {{+m) = m)!(l +m)( = m)P? %

Z (_1)j+m+m’ Cos2l+m—m’—2j (6/2) Sinm’—m+2j (6/2)
= =Dl +m—=)G+m —m)!

[S26]

J

Here, the summation indey, runs over all values for which the factorials exist, i.be tactorial
arguments are greater than or equal to zero.

As an example, consider that we want to calculate the dipdégial, EQS1, wheny is a

2p, orbital. The 2p orbital can be described as a rotation of the @ital with the following
Euler anglesa = 7/2, 3 = n/2andy = 0, i.e.,

2p, (r) = R(7/2,7/2,0) Yo r). [S27]
From the equations above, the representation mBExik(w /2, 7/2,0) can be calculated:

i/2  i/V2 )2
DY =1 -1/v2 0 1/V2 ) .
—i/2  i/V2 —i)2

[S28]



Thus,
_

2p,(r) = NG (Y21-1(r) + Yani (1)) - [S29]

The dipole integral in EgS1can now be written as:
1 o / * v *
D.(2py;R) = 5{/dr Yo1-1(r) F (r') Y11 (r)" + /dl" Ua1-1(r) F5 (r') Yana (r)
\% 4

+ / dr by (1) FY (') a1 (r)* + / dr 4y, (r) Fy (') w211<r>*}. [S30]
1% 1%

Again, each integral in ES30can be calculated by the method described above. The same
strategy can be applied when other real hydrogen-like atarbitals are considered in the
dipole integral, EqS], e.g., 3d2_,2, 3d,,, . ... Also, arbitrary rotations of these atomic orbitals
can be evaluated by the methodology described above. Atieety, since the sq@"g }oo<u<o
forms a spherical tensor operator, the operé?fprcan be rotated by the second order repre-
sentation of the rotation matriD® (a, 3,v), instead of a rotation of the orbitals. This last
approach does not require the evaluation of extra integrals

In conclusion, the solution of the dipole integral, 51, makes it feasible to take the delo-
calization of the unpaired electron spin into account irracstiral refinement procedure.
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