
Supporting Text

Stereospecific Assignment of the Cys-89β-protons. The stereospecific assignment of

the Cys-89β-protons was made on the basis of NOEs and the NMR solution structure of

reducedA.v. plastocyanin (see Table 3). The assignment obtained here for A.v. plastocyanin

is in agreement with the assignment obtained previously forspinach plastocyanin (1), i.e.

Cys-89 Hβ1 has a chemical shift of 3.33 ppm in the reduced protein and gives a saturation

transfer at≈700 ppm, while Cys-89 Hβ2 has a chemical shift of 2.89 ppm in the reduced

protein and gives a saturation transfer at≈440 ppm.

Structure Calculation. The structure calculations included distance geometry (DG), simulated

annealing (SA), and restrained energy minimization. The paramagnetic restraints were included

only in the SA, and the restrained energy calculations (REM), while the applied NOE and

dihedral angle restraints were included in all parts of the calculations.

A total of 100 structures were calculated. Only the backbonenitrogen, carbon, and hydrogen

atoms, and theβ andγ carbons were included in the initial DG calculations of substructures

using the protocol dgsub embed (2). In the following SA calculations, the structure of the

apo-protein was fixed in the first step while the copper(II) ion was positioned roughly in the

catalytic site by the relaxation restraints, assuming thatreff = r in Eq. 1. The restraints were

included using a flat-bottomed squared potential with a force constant of 10 kcal·Å−2.

Subsequently, the structures were run through 200 cycles ofrestrained Powell energy min-

imization (REM) followed by 9 ps of restrained molecular Verlet dynamics at a temperature

of 3,000 K in time steps of 3 fs. The paramagnetic relaxation restraints were included with

the square potential and a force constant of 100 kcal·Å−2, and the paramagnetic relaxation en-

hancements were calculated in the point dipole approximation, that isreff = r in Eq. 1. The

high-temperature dynamics was followed by 6 ps of cooling to100 K in time steps of 3 fs and

subsequently by 200 cycles of REM.

Finally, the structures were refined using the simulated annealing refine protocol (2). At

this stage the unpaired electron spin distribution was gradually changed from a point dipole at

the copper atom to the final spin distribution described in Table 2. The structures were initially

heated to 3,000 K and hereafter cooled to 100 K over 20 ps in time steps of 2 fs. The unpaired

electron spin was described by a two-center model with 70% atthe copper 3d orbital and 30% at

the Cys Sγ orbital for temperatures between 3,000 and 800 K. From 800 to100 K the full elec-

tron spin distribution shown in Table 2 was used. Finally, 200 cycles of REM calculations were



applied. The force constants,k±prlx, of the paramagnetic relaxation restraints were 500 kcal·Å−2

and 500 kcal, respectively. In general, the contribution tothe total energy from the paramagnetic

relaxation restraints was≈0.3%, which indicates a good agreement between the paramagnetic

relaxation restraints and the conventional inter-proton distances and dihedral angle restraints.

The van der Waals energy function was represented by a simplerepel function in the SA cal-

culations. The van der Waals interactions were increased byvarying the force constant of the re-

pel function from 0.003 to 4 kcal·mol−1·Å−4. During all calculations the force constant used for

the NOE and the dihedral angle restraints were 50 kcal·mol−1·Å−2 and 200 kcal·mol−1·rad−2,

respectively. Finally, the 10 structures with lowest totalenergy were selected for further analy-

sis.

It should be noted that the protein structure beyond the metal bound residues is unaffected

by the inclusion of the paramagnetic restraints in the structure calculations and is defined

entirely by the conventional NOEs and dihedral restraints used in the structure determination.

Thus, the root mean square deviation (RMSD) of the backbone atoms of the 10 structures

with the lowest energies (the metal sites structures of which are shown in Fig. 1) was 0.67̊A,

whereas the RMSD of the 10 structures with lowest energies derived from conventional

diamagnetic restraints alone was 0.73Å (3). In both cases the N- and C-terminal residues

were excluded in the RMSD calculations. Finally, the RMSD ofthe two average structures,

that is, the average of the 10 structures here and the averageof the 20 previous structures (3),

was 0.59Å2, excluding the N- and C-terminals and the ligand residues. Finally, it should be

noted that the use in the structure determination of NOEs from reduced plastocyanin together

with paramagnetic restraints from oxidized plastocyanin is justified by the fact that Cu+ and

Cu2+ plastocyanin have nearly identical structures with only minor differences in the first

coodination sphere (4–7). Also, as mentioned in the main text the NOEs between side chain

atoms of the ligand residues (His-39, Cys-89, His-92 and Met-97) were excluded, to allow the

metal site to be defined exclusively by the paramagnetic restraints.

Evaluation of the Dipole Integral. To calculate the paramagnetic relaxation enhancements

and the effective distance in Eq.6 for the protons close to the paramagnetic metal site, we want

to solve the dipole integral

Dν(ψ;R) =

∫

V

dr ψn′l′m′(r) F̂ν
2 (r′) ψn′l′m′(r)∗. [S1]

The integral describes the dipole interaction between the magnetic moment of a nucleus, N, and

an unpaired electron described by the wave functionψ(r). The orbital of the unpaired electron,

ψ(r), is described by a Slater type hydrogen-like atomic orbitalin the coordinate systemO. The



dipole operatorF̂ν
2 (r′) = ‖r′‖−3Y ν

2 (r′/‖r′‖) is described in the coordinate systemO′, which

has the nucleus, N, at the origin. Here,Y ν
ρ (r/‖r‖) is the solid spherical harmonic. Furthermore,

the coordinates of the nucleus are described by the translation vectorR in the coordinate system

O, i.e.,r′ = r −R. Finally, an asterisk denotes complex conjugation.

The operatorF̂ν
2 (r′) can be described in the coordinate systemO by a translation of the

irregular solid spherical harmonics (8–11):

F̂ν
2 (r′) =

∞∑

l=2

l∑

m=−l

(−1)ν+mξ(2, ν, l,m)Fm
l (R)Υν−m

l−2 (r) for ‖r‖ < ‖R‖, [S2]

F̂ν
2 (r′) =

∞∑

l=2

l∑

m=−l

(−1)ν+mξ(2, ν, l,m)Fm
l (r)Υν−m

l−2 (R) for ‖r‖ > ‖R‖, [S3]

where

ξ(ρ, ν, l,m) =

{
4π(2ρ+ 1)

(2l − 2ρ+ 1)(2l + 1)
[S4]

(l −m)!(l +m)!

(ρ− ν)!(ρ+ ν)!(l − ρ−m+ ν)!(l − ρ+m− ν)!

}1/2

,

andΥm
l andFm

l are the regular solid spherical harmonics and irregular spherical harmonics,

respectively. That is:

Υm
l (r) = ‖r‖l Y m

l (r/‖r‖), [S5]

Fm
l (r) = ‖r‖−(l+1) Y m

l (r/‖r‖). [S6]

For ‖r‖ → ‖R‖ the operatorF̂ν
2 (r′) approaches a Dirac delta function. That is, even though

the volume of integration of the shell‖r‖ = ‖R‖ is zero the integral may still have a nonzero

contribution to the total integral in Eq.S1(10, 12)

F̂ν
2 (r′) = −4π

3
Y ν

2 (R/‖R‖) δ(r− R) for ‖r‖ = ‖R‖. [S7]

The hydrogen-like atomic orbitals can be separated in an angular part and a radial part:

ψn′l′m′(r) = Rn′l′(Zeff , ‖r‖) Y m′

l′ (r/‖r‖), [S8]

whereRn′l′(Zeff , ‖r‖) andY m′

l′ (r/‖r‖) are the normalized radial and solid spherical harmonic

function, respectively. Furthermore,Zeff is the effective charge of the nucleus at which the

hydrogen-like atomic orbital is centered. According to theequations for the translated dipole

operator, Eqs.S2, S3, andS7, the dipole integral, Eq.S1, splits into three parts:

Dν(ψ;R) =
<

Dν(ψ;R)︸ ︷︷ ︸
‖r‖<‖R‖

+
>

Dν(ψ;R)︸ ︷︷ ︸
‖r‖>‖R‖

+
=

Dν(ψ;R)︸ ︷︷ ︸
‖r‖=‖R‖

. [S9]

Below, the three cases:‖r‖ < ‖R‖, ‖r‖ = ‖R‖, and‖r‖ > ‖R‖ will be described separately.



‖r‖ < ‖R‖

Since the hydrogen-like atomic orbitals,ψn′l′,m′(r), can be separate in an angular part and a

radial part, the integral
<

Dν(ψ;R) can according to Eq.S2be calculated as:

<

Dν(ψ;R) =
∞∑

l=2

l∑

m=−l

(−1)ν+mξ(2, ν, l,m)
<
aν(ψ;R;m, l)

<
rν(ψ;R;m, l), [S10]

where
<
aν(ψ;R;m, l) and

<
rν(ψ;R;m, l) are the angular part and radial part, respectively.

Angular part. From Eq.S2 it is seen that the angular part is given by:

<
aν(ψ;R;m, l) = Y m

l (R/‖R‖)
∫

dΩ Y ν−m
l−2 (Ω)Y m′

l′ (Ω)[Y m′

l′ (Ω)]∗, [S11]

whereΩ is the solid spherical angle:Ω = r/‖r‖, and
∫

dΩ =

∫ 2π

0

dφ

∫ π

0

dθ sin θ. [S12]

Angular integrals of the type in Eq.S11can be solved using the Clebsch-Gordan series (13):
∫

dΩ Y m1

l1
(Ω)Y m2

l2
(Ω)[Y m3

l3
(Ω)]∗ =

{
(2l1 + 1)(2l2 + 1)

4π(2l3 + 1)

}1/2

〈l1l200|l1l2l30〉〈l1l2m1m2|l1l2l3m3〉. [S13]

Here, the Clebsch-Gordan coupling coefficients〈l1l2m1m2|l1l2l3m3〉 vanish, unless:

• m1 +m2 = m3

• |l1 − l2| ≤ l3 ≤ l1 + l2

Therefore, the sum in Eq.S2only has a finite number of nonvanishing terms. The nonvanishing

Clebsch-Gordan coupling coefficients are tabulated in standard tables or can be calculated using

angular momentum theory. For the angular integral in Eq.S11the nonvanishing conditions are:

• ν −m+m′ = m′ ⇔ ν = m

• |l − 2 − l′| ≤ l′ ≤ l + l′ − 2

Radial part. The radial part of the dipole integral,
<
rν(ψ;m, l), is given by:

<
rν(ψ;R;m, l) = ‖R‖−(l+1)

∫ ‖R‖

0

dr r2rl−2 |Rn′,l′(Zeff , r)|2, [S14]

wherer = ‖r‖. For the hydrogen-like atomic orbitals the radial part is given by the well-known

associated Laguerre polynomials (13), that is, the radial integral can be evaluated analytically.



‖r‖ > ‖R‖

The integral
>

Dν(ψ;R) can according to Eqs.S3andS10be calculated as:

>

Dν(ψ;R) =

∞∑

l=2

l∑

m=−l

(−1)ν+mξ(2, ν, l,m)
>
aν(ψ;R;m, l)

>
rν(ψ;R;m, l), [S15]

where
>
aν(ψ;R;m, l) and

>
rν(ψ;R;m, l) are the angular part and radial part, respectively.

Angular part. From Eq.S3and the above-mentioned properties, it is seen that the angular part,
>
aν(ψ;R;m, l), is given by:

>
aν(ψ;R;m, l) = Y ν−m

l−2 (R/‖R‖)
∫

dΩ Y m
l (Ω)Y m′

l′ (Ω)[Y m′

l′ (Ω)]∗, [S16]

which can be evaluated using the Clebsch-Gordan series as shown above. The nonvanishing

conditions are:

• m+m′ = m′ ⇔ m = 0

• |l − l′| ≤ l′ ≤ l + l′

Radial part. The radial part,
>
rν(ψ;R;m, l), of the dipole integral

>

Dν(ψ;R), is given by:

>
rν(ψ;R;m, l) = ‖R‖l−2

∫ ∞

‖R‖

dr r2r−(l+1) |Rn′,l′(Zeff , r)|2. [S17]

‖r‖ = ‖R‖

The contribution;
=

Dν(ψ;R) is trivially calculated from the operator described in Eq.S7and the

wave function:
=

Dν(ψ;R) = −4π

3
Y ν

2 (R/‖R‖) |ψn′l′m′(R)|2. [S18]

Real Hydrogen-Like Atomic Orbitals. Most often the orbital involved in the dipole integral

Eq. S1 is not a pure hydrogen-like atomic orbital, that is, an eigenfunction of the operator̂Lz.

As an example, the 2px and 2py orbitals are linear combinations of the hydrogen-like atomic

orbitalsψ211(r) andψ21−1(r). However, the radial functionRn′l′(Zeff , ‖r‖) is independent of

the quantization along thez-axis.



We now consider the following atomic orbital:

ψ(r) = R̂(α, β, γ) ψnlm(r), [S19]

whereR̂ is the rotational operator andα, β, andγ are the three Euler angles of rotation. Since

the set of spherical harmonics:{Y m
l }−l≤m≤l forms a basis in the(2l + 1)–dimensional irre-

ducible rotation group, the angular part of the wave function ψ(r) in Eq. S19is entirely given

by a linear combination of the spherical harmonics in the basis {Y m
l }−l≤m≤l. That is:

Y m
l (θ′, φ′) = R̂(α, β, γ) Y m

l (θ, φ) [S20]

=
l∑

m′=−l

Y m′

l (θ, φ) D
(l)
m′,m(α, β, γ), [S21]

whereD(l)
m′,m(α, β, γ) denotes the elements of the representation matrix of the rotation(α, β, γ),

if the 2l + 1 complex spherical harmonics{Y m
l }−l≤m≤l form the basis for this representation.

TheD
(l)
m′,m(α, β, γ) matrix elements are given by:

D
(l)
m′,m(α, β, γ) = 〈lm′|R̂(α, β, γ)|lm〉 [S22]

= 〈lm′| exp(−iαL̂z) exp(−iβL̂y) exp(−iγL̂z)|lm〉 [S23]

= e−iαm′

d
(l)
m′,m(β)e−iγm, [S24]

where|lm〉 = Y m
l (θ, φ) andL̂y andL̂z are the Cartesian components of the angular momentum

operator. Furthermore (11),

d
(l)
m′,m(β) = 〈lm′| exp(−iβLy)|lm〉 [S25]

= {(l +m)!(l −m)!(l +m′)!(l −m′)!}1/2 ×
∑

j

(−1)j+m+m′

cos2l+m−m′−2j(β/2) sinm′−m+2j(β/2)

j!(l −m′ − j)!(l +m− j)!(j +m′ −m)!
. [S26]

Here, the summation index,j, runs over all values for which the factorials exist, i.e., the factorial

arguments are greater than or equal to zero.

As an example, consider that we want to calculate the dipole integral, Eq.S1, whenψ is a

2py orbital. The 2py orbital can be described as a rotation of the 2pz orbital with the following

Euler angles:α = π/2, β = π/2 andγ = 0, i.e.,

2py(r) = R̂(π/2, π/2, 0) ψ210(r). [S27]

From the equations above, the representation matrixD
(1)(π/2, π/2, 0) can be calculated:

D
(1) =




i/2 i/

√
2 i/2

−1/
√

2 0 1/
√

2

−i/2 i/
√

2 −i/2



 . [S28]



Thus,

2py(r) =
i√
2

(ψ21−1(r) + ψ211(r)) . [S29]

The dipole integral in Eq.S1can now be written as:

Dν(2py;R) =
1

2

{∫

V

dr ψ21−1(r) F̂ν
2 (r′) ψ21−1(r)

∗ +

∫

V

dr ψ21−1(r) F̂ν
2 (r′) ψ211(r)

∗

+

∫

V

dr ψ211(r) F̂ν
2 (r′) ψ21−1(r)

∗ +

∫

V

dr ψ211(r) F̂ν
2 (r′) ψ211(r)

∗

}
. [S30]

Again, each integral in Eq.S30can be calculated by the method described above. The same

strategy can be applied when other real hydrogen-like atomic orbitals are considered in the

dipole integral, Eq.S1, e.g., 3dx2−y2 , 3dxz, . . .. Also, arbitrary rotations of these atomic orbitals

can be evaluated by the methodology described above. Alternatively, since the set{F̂ν
2 }−2≤ν≤2

forms a spherical tensor operator, the operatorF̂ν
2 can be rotated by the second order repre-

sentation of the rotation matrix,D(2)(α, β, γ), instead of a rotation of the orbitals. This last

approach does not require the evaluation of extra integrals.

In conclusion, the solution of the dipole integral, Eq.S1, makes it feasible to take the delo-

calization of the unpaired electron spin into account in a structural refinement procedure.
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