Table 3. Distances and NOEs from the Cys-89 β -protons to other protons in the vicinity

Nucleus	Cys-89 H $^{\beta_1}$, Å*	Cys-89 H $^{\beta_2}$, Å †
His-39 H^{α}	4.5 (Medium)	5.4 (None)
Asn-40 H^{N}	3.8 (Medium)	4.6 (None)
Cys-89 H^{N}	3.4 (Medium)	2.4 (Very strong)
Cys-89 H^{α}	2.8 (Strong)	2.9 (Medium)
Glu-90 H^{N}	3.3 (Medium)	4.3 (None)
Met-97 H^{γ_1}	4.8 (Weak)	4.1 (Medium)

The distances are obtained from the NMR solution structure of reduced *A.v.* plastocyanin [PDB ID 1FA4 (1)]. The relative strength of the observed NOEs are given in brackets.

1. Ma, L., Jørgensen, A.-M. M., Sørensen, G. O., Ulstrup, J. & Led, J. J. (2000) J. Am. Chem. Soc. 122, 9473–9485.

^{*} The chemical shift of Cys-89 H^{β_1} is 3.33 ppm in the reduced form and \approx 700 ppm in the oxidized form.

[†] The chemical shift of Cys-89 H $^{\beta_2}$ is 2.89 ppm in the reduced form and \approx 440 ppm in the oxidized form.