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Air Transportation Network Properties

We use data provided by the International Air Transport Association (IATA, www.iata.org)

containing the world list of airport pairs connected by direct flights and the number of available

seats on any given connection for the year 2002. More precisely, each given weightwj` in the

airport network is the number of available seats on direct flight connections between the airports

j and`. The resulting air-transportation graph comprisesV = 3, 880 vertices denoting airports

andE = 18, 810 edges accounting for the presence of a direct flight connection. The average

degree of the network is〈k〉 = 2E/V = 9.70, while the maximal degree is318. Numerical

simulations consider the3, 100 airports with highest trafficT , which are complemented by pop-

ulation data of the corresponding urban area obtained using different census (publicly available

sources on the Web, such as www.census.gov and unstats.un.org). This fraction corresponds to

80% of the total number of airports and carries> 99% of the total traffic.

The degree probability distributionP (k) = n(k)/V , wheren(k) is the number of airports

with k connections (of degreek), is broadly distributed, with a degree range covering almost

two decades, over which it can be approximated (1) by a power-law with exponent close to2.

Moreover, weights and traffic display a strong heterogeneity revealed by very broad distribu-

tions P (w) andP (T ) spanning more than5 orders of magnitude. It is clear that such large

heterogeneities will have a strong impact on the propagation of any dynamical process on the

considered network.

The traffic of a nodej is defined as the sum of the weights of the links starting fromj

Tj =
∑

`∈V(j)

wj` , (1)

whereV(j) denotes the set of neighbors of nodej. We can average this quantity over all nodes



having the same degree and obtain the average trafficT (k) for a given degree classk

T (k) =
1

n(k)

∑
j|kj=k

Tj . (2)

The plot of this quantityT (k) versusk reveals a power law behaviorT (k) ∼ kβ with β ' 1.5

(2), thus pointing to very strong correlations between topology and traffic, and meaning that the

weight per linkfor each node is not constant but increases with the degree of the node.

We associate to each airport a city whose populationN displays a broad probability distri-

bution. Moreover, a nonlinear relationship between population and airport traffic is obtained, of

the formN ∼ Tα with α ' 0.5.

Numerical Integration Procedure, Noise

The epidemic evolution in each city is the result of a stochastic process of contact and contam-

ination between individuals. The elementary processes are the contamination of a susceptible

by an infected, at rateβ

S + I
β−→ 2I (3)

and the spontaneous recovery of infected individuals, at rateµ:

I
µ−→ R . (4)

In the limit of large populations, the master equations describing the evolution of the probabil-

ities to find given numbers of susceptible, infected and recovered lead to a description in terms

of stochastic Langevin equations (3) of the form

dSj

dt
= −β

IjSj

Nj

+

√
β

IjSj

Nj

ηj,1(t) (5)

dIj

dt
= +β

IjSj

Nj

− µIj −
√

β
IjSj

Nj

ηj,1(t) +
√

µIj ηj,2(t) (6)

dRj

dt
= +µIj −

√
µIj ηj,2(t) , (7)



whereηj,1 andηj,2 are independent Gaussian white noises. The most standard numerical inte-

gration procedure (4) for solving this type of equations is to consider a small time step∆t and

to rewrite these evolution equations in discretized time:

Sj(t + ∆t)− Sj(t) = −β
IjSj

Nj

∆t +

√
β

IjSj

Nj

∆t ηj,1(t) (8)

Ij(t + ∆t)− Ij(t) = +β
IjSj

Nj

∆t− µIj∆t−
√

β
IjSj

Nj

∆t ηj,1(t) +
√

µIj∆t ηj,2(t) (9)

Rj(t + ∆t)−Rj(t) = +µIj∆t−
√

µIj∆t ηj,2(t) . (10)

A well known problem appears within this scheme especially at the beginning of the spreading,

whenIj is small: sinceSj is of orderNj, the deterministic terms in Eq.9 are of orderIj∆t

while the absolute value of the noise term is of order
√

Ij∆t and could thus be such thatIj

becomes negative, an unphysical event. Various possibilities exist to avoid this. A first naive

approach would consist in settingIj to exactly zero whenever the numerical integration yields

Ij(t+∆t) ≤ 0. This, however, corresponds to an asymmetric truncation of the noise which may

introduce uncontrolled biases. An interesting alternative has been put forward by Dickman (4).

It consists in decomposing the fieldXj into its integer part[Xj] and its noninteger part denoted

by X̃j

Xj(t) = [Xj](t) + X̃j(t) . (11)

For small time increments, the integer part is not varying and in addition we impose that[Xj] =

0 is an absorbing state (and notXj = 0) meaning that we impose the absorbing constraint on

the integer field which we consider as the physically relevant one. These assumptions lead to

the intermediary set of equations

S̃temp
j = S̃j(t)− β

[Ij][Sj]

[Nj]
∆t +

√√√√β
[Ij][Sj]

[Nj]
∆t ηj,1(t) (12)

Ĩ temp
j = Ĩj(t) + β

[Ij][Sj]

[Nj]
∆t− µ[Ij]∆t−

√√√√β
[Ij][Sj]

[Nj]
∆t ηj,1(t) +

√
µ[Ij]∆t ηj,2(t)(13)

R̃temp
j = R̃j(t) + µ[Ij]∆t−

√
µ[Ij]∆t ηj,2(t) . (14)



and the different parts of the decomposition are then updated according to

[Xj](t + ∆t) = [Xj](t) +
[
X̃ temp

j

]
(15)

X̃j(t + ∆t) = X̃ temp
j −

[
X̃ temp

j

]
(16)

[and the city sizes are updated toNj(t + ∆) = Sj(t + ∆) + Ij(t + ∆) + Rj(t + ∆)]. When∆t

is small enough, this procedure ensures thatXj always remain positive and integer, whilẽXj is

after each iteration between0 and1.

This treatment can be extended in order to include the transport term. The model is thus

represented by a compartmental system of3, 100× 3 differential equations, which describe the

evolution of the numbers of susceptible, infected, and recovered individuals in each city and

are coupled by the transport operatorΩ. The initial condition is given by the presence of one

infected individual in the cityj0 where the infection starts, while all other cities are populated

by susceptible individuals only.

Heterogeneity ParameterT/N

In order to gain some analytical understanding on the time evolution of the epidemics it is

convenient to consider the deterministic version of the stochastic equations that reads as

dSj

dt
= −β

IjSj

Nj

+ 〈Ωj({S})〉 (17)

dIj

dt
= +β

IjSj

Nj

− µIj + 〈Ωj({I})〉 (18)

dRj

dt
= +µIj + 〈Ωj({R})〉. (19)

These equations describes only the average behavior since they contain only the average ex-

pression of the transport operator. At the early stage of the epidemics, the number of infected

individuals is relatively small in all cities and it is possible to linearize the evolution equations

for the numberIj(t) of infected (Sj ' Nj) as

∂tIj = ΛjIj +
∑

`

w`j

N`

I` , (20)



whereΛj = β − µ− Tj/Nj. The solution of this partial differential equation can be written as

the solution of the following integral equation

Ij(t) = Ij(0)eΛjt +
∑

`

w`j

N`

∫ t

0
dτI`(τ)eΛj(t−τ) . (21)

This integral equation shows that the ratioTj/Nj is a relevant variable in the determination

of the time behavior ofIj and thus in the level of heterogeneity of the epidemics evolution

in different cities. The underlying network structure affects the epidemics evolution by the

heterogeneity of the connectivity pattern and the weight distribution through the second term

of the above equation. This term contains the sum over all the connections of the ratiosw`j/N`

and determines the number and the strength of the coupling with the infectionI` of city `.

A heterogeneous behavior for the infection behavior might therefore find its origin both in a

heterogeneous connectivity pattern as well as in a heterogeneous traffic flows distribution. This

is a striking evidence of the intricate nature of the interplay between the various heterogeneities

in the system, that contribute simultaneously to the dynamical behavior of the epidemic.

Heterogeneity and Parameter Values

We have investigated different values of the parametersβ andµ and different initial conditions

in order to test the reliability of the results obtained concerning the heterogeneity level of the

spreading pattern. In Fig. 6 we show the entropy profile for three epidemic diseases starting

in Hong Kong and characterized by three different values of the reproductive numberR0. We

consider low to moderate transmissibility, as estimated for the early epidemic stage of the Severe

Acute Respiratory Syndrome (SARS) outbreak in Hong Kong (5), with values in the range 2.2

to 3.7, 2.7 being the average value. For each value, the two null models (HOMN andHETN) and

the real case (WAN) are shown. Changes in the parameter values clearly lead to different time

scales for the global spread but do not affect the overall conclusions regarding the geographical

heterogeneity of the epidemic diffusion.



We have also studied the effect of different initial conditions, such as different initial in-

fected cities and several different initial fractions of susceptible population. This is motivated

by research studies about influenza epidemics that have estimated the initial fraction of suscep-

tibles to lie between 25 and 90%, depending on the disease strain and age group (the rest of

the population is initially immune, i.e., in the class R). Here we compare results obtained with

three different values of the initial percentage of susceptibles in each city, namely 100%, 80%,

and 60%. The propagation time scales are affected, but the entropy profiles display the same

features already discussed for the absence of initial immunity[S(t = 0) = N ]. In all cases,

HOMN displays a strong homogeneity and sharp transitions at the early and final stages of the

epidemics, whileHETN andWANprofiles are characterized by long tails and shorter homoge-

neous phases (H ≈ 1), thus confirming the overall results discussed in the article (Fig. 7).
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