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Materials and Methods

Preparation. Briefly, preparations were made from the first three turns of the mature

guinea-pig cochlea. Animals (pigmented) weighed 250-500 g, had a positive Preyer’s

reflex, and were killed by rapid cervical dislocation under CO2 anesthesia. Immediately

after removal of the bulla (≈1 min postmortem), the sample was placed in ice-cooled

Hanks’ balanced salt solution (Sigma; supplemented with 4.1 mM NaHCO3 and 10 mM

Hepes buffer, adjusted with glucose to 320 mOsm for the first cochlear turn and 300

mOsm for the other turns; pH 7.35). The solution warmed up to room temperature (20-

22°C, controlled) within the preparation time (≈15 min). The preparation was fixed to a

custom-made support within the experimental chamber by using plasticine; the fluid

volume was 27 ml.

Further requirements for a viable preparation were: (i) orderly arrangement of cells, (ii)

cylindrically shaped OHCs, and (iii) RL aligned along its entire length with the focal

plane of the microscope. OHCs began to swell, as detected optically with a total

magnification of 400, at ≈60 min postmortem in the first cochlear turn, and ≈90 min

postmortem in the other two turns. Swelling meant that conditions i and ii were no longer

satisfied; the experiment was then terminated. Condition iii was always satisfied.

Intracochlear Electrical Stimulation. Electrical stimulation of the cochlea with a

multitone signal was by two platinum electrodes (diameter: 0.3 mm) placed in scala

vestibuli and a gold electrode in scala tympani (width: 1.1 mm), as illustrated in Fig. 1A.

The gold electrode also served as a mirror for intracochlear illumination, via a light

source guided with a glass fiber (diameter: 1 mm). The electric field strength per spectral

point between scalae vestibuli and tympani was typically 37 V/m at low frequencies,

decreasing to ≈24 V/m at high frequencies. We estimate (Estimation of Maximum

Transmembrane Potential Change) a maximum transmembrane potential change of



0.6 mV for the shortest (30 µm) and 1.7 mV for the longest (90 µm) OHCs. Using two

electrodes in scala vestibuli enabled the extracellular electric field to be larger in the

direction parallel to the principal axis of the OHC than in the orthogonal direction along

the cochlea, by a factor of 9. Because of the small radial distance between OHCs

compared with the distance between the electrodes, the stimulus can be assumed to be

equal for all three rows of OHCs. That the electrically induced motion of the sample was

not caused by either electrophoretic fluid drag or surface charges was checked by

measuring the velocity of: (i) a Kleenex tissue fiber (8-µm diameter placed across the

width of the cochlea in the absence of the organ of Corti) or (ii) a cotton fiber (40-µm

diameter held 3 mm from one end in extracellular solution). Amplitudes were,

respectively, at least 20 dB below that for the cochlear structures or less than the

background noise level. Pharmacological experiments led to the same conclusion (see

Results in text).

Velocity Measurement. The LDV was composed of a laser system (OFV-302,

wavelength 633 nm, power 1 mW), equipped with a demodulator (OFV-3000, bandwidth

100 kHz), both from Polytec (Waldbronn, Germany). The laser beam was focused on the

object by coupling it into the optical path of an upright microscope (Axioskop 2FS,

Zeiss) via a beam splitter (AHF Analysentechnik, Tübingen, Germany), which was

highly reflective only > 590 nm, but transparent for shorter wavelengths. The microscope

objective was a water-immersion objective with magnification ×40, numerical aperture

0.8, and working distance 3.61 mm (Zeiss Achroplan). The laser spot had approximately

a Gaussian profile, with full-width at 1/e2 of maximum power of 0.63 µm (quantified

with a knife-edge method). The velocity spectrum was corrected for the measured

transfer function of the LDV. Phase is positive for motion toward the microscope

objective, which corresponds to motion toward scala vestibuli. The noise floor, expressed

as displacement but measured as velocity, decreased from 100 pm at 480 Hz to 1 pm at

67 kHz (effective averaging time: 25 s).

The best assurance of negligible contribution of reflected light from outside the focal

plane was that the standard deviation of the vibration phase of different points at



approximately the same anatomical location was less than ≈5°. A systematic error was

unlikely because the relative interferometric reflection phase of an unwanted

contribution, from an optically rough surface, is equally distributed over 2π and would

induce an error with standard deviation related to the amplitude of the unwanted

contribution (1).

Stimulus Signal. Maximum displacement amplitudes (at low frequencies) were of the

order of 1 nm, so that a linear relationship between stimulus and response could be safely

assumed, which was also verified experimentally (second and third harmonics were

>30 dB below the fundamental). Therefore, a multitone signal could be safely used as the

command voltage. It contained 81 frequency components between 480 Hz and 67 kHz,

with equal amplitude but random phase, uniformly distributed on the interval [0,2π].

Frequency spacing was almost logarithmic with a ratio of ≈1.07 between adjacent

frequencies. To reduce harmonic distortion products in the measured velocity, care was

taken that no frequency was within 1% of the first four harmonics of a lower frequency.

Estimation of Maximum Transmembrane Potential Change. The maximum

transmembrane voltage change Utm was estimated from the extracellular voltage gradient

along the OHC by assuming the cell to be a voltage divider with a ratio of 1:1 between its

apical and basal halves. The maximum electric field gradient between the stimulus

electrodes in scalae vestibuli and tympani was 37 V/m per frequency point. Therefore, for

an OHC of length LOHC (in units of µm), we have Utm = 18.5 LOHC, in units of µV. The

amplitude values given in the text are relative to the voltage difference between the

stimulus electrodes in scalae vestibuli and tympani. However, because Utm is estimated to

be ≈1 mV (the range is from 0.6 mV for a 30-µm cell to 1.7 mV for a 90-µm cell), the

1-mV reference potential can be understood to be approximately equal to the voltage

drop across the OHC basolateral wall.

The influence of the electrical impedance of the RL on the current path was neglected in

this calculation because (i) the organ was small compared with the cross-sectional area

through which the current passed (1 cm2), and (ii) current could flow around the RL.



Moreover, we had no means of monitoring the extracellular potential within the organ of

Corti up to the high experimental frequencies. However, the true voltage gradient in the

chamber can only be smaller than our estimate, so that the estimate provides an upper

bound.

Results

In-Phase Motion of TM and IHC Above CF. Examination of the high-frequency phase

responses in the second and third turns (Fig. 2 B and D) indicates that in-phase motion of

TM and IHC is not a salient feature of the first turn; the phase difference asymptotes to

360° (i.e., 0° modulo 360°) at high frequencies in all turns. Indeed at 24 kHz, the CF for

the first-turn recording site, the IHC phase relative to the TM phase was 298 ± 47° (n =

23) and 271 ± 44° (n = 16) for the second and third turns, respectively. The asymptotic

phase difference of 360° derives from the additional 180° phase roll-off of the TM

relative to its underlying IHC, which in turn presents a total phase roll-off of only 180°

(Fig. 2 B and D). Expressed in terms of a filter function, the additional asymptotic phase

roll-off of 180° for the TM implicates a second-order, apparently nonresonant, low-pass

filter. For the second and third cochlear turns, the 90° frequency for this filter was

located, on average, at 19.4 kHz (n = 38). The most parsimonious explanation for this

high-frequency in-phase motion of IHC and overlying TM is that as frequency increases

the impedances of the RL and TM tend to that of the fluid, so that the system acts as a

highly coupled composite structure moving in unison. [Both the real and imaginary

components of the RL impedance are known to decrease with increasing frequency (2)].

Moreover, it is expected that the pulsating mode will also vanish for excessive slip at the

TM and RL, as found originally by Lloyd and Redwood (3) for the case of a narrow fluid

layer between elastic plates. This interpretation concurs, of course, with the customary

notion that TM and RL cannot move independently at high frequencies because of

viscous coupling between their surfaces (4-6).

Discussion



Size of the Displacement at Low Frequencies. The vibration amplitudes of the OHC

RL at low frequencies, typically 1-4 nm/mV with the larger values at the more apical

positions, are consistent with values predicted from the following three parameters: (i)

the small signal gain of the electromotility of isolated OHCs [4 nm/mV for a 30-µm long

cell from the first cochlear turn (7-9)], (ii) the axial mechanical impedance of isolated

OHCs [0.017 N/m for a 30-µm long cell from the first cochlear turn (7)], and (iii) the

stiffness of the organ of Corti [0.112 N/m for the first cochlear turn (2)]. The values in

parentheses yield an amplitude of 0.5 nm/mV for the first cochlear turn, if it is assumed

that only the OHC at the measurement point is responsible for the motion. Clearly, the

motion is correspondingly larger if a group of OHCs contribute to motion at a point.

Moreover, these amplitudes are of the same order as those observed on the in vivo BM, as

calibrated by the OHC ac receptor potential. In other words, if at neural threshold the in

vivo iso-output tuning curves of the OHC ac receptor potential [40 µV (10, 11)] and BM

displacement [0.35 nm (5)] approximately superimpose (12), then assuming linearity at

low SPL (10, 11, 13), a 1-mV transmembrane potential change is associated with a BM

displacement of 9 nm.

Estimation of IHC Stereocilia Deflection for Counterphasic Motion of the TM and

RL. We chose the coordinate axes, x and z, respectively, parallel and orthogonal to the

plate surface, with the z-origin midway between the plates (Fig. 3B). The TM and RL are

located, respectively, at z = δ, and z = -δ, where 2δ is the depth of the subtectorial space.

We assume linearity because the measured displacements were of the order of a

nanometer, and these are much smaller than the effective thickness of the plates and their

separation, which in turn are of the order of micrometers.

We neglect plate inertia because point impedance measurements on the organ of Corti

suggest that it is negligible in the frequency range (<3 kHz) where counterphasic motion

was observed (2).



We assume that the plates are isotropic and homogeneous, with equal flexural rigidity, D,

and are without tension. The value of D for the RL in the IHC region can be readily

derived from the impedance measurements of Scherer and Gummer (2); it is 0.04 nN m

and 0.1 nN m for the second and third cochlear turns, respectively. Also, it will be shown

that the wavenumber for fluid motion is inversely proportional to D1/6, so that small

differences in the true D values will have negligible effect on the assessment of fluid

motion.

For the fluid we assume: (i) incompressible and viscous flow, (ii) zero radial velocity at

both plates, (iii) the transverse velocities at the plates are equal and opposite, and (iv)

wave propagation only in the positive x-direction; that is, in the direction of the inner

sulcus. This latter assumption appears justified because the mechanical impedance in the

opposite direction, laterally along the narrow subtectorial space, is expected to be larger

than in the medial direction, which opens up into the relatively large inner sulcus.

For small amplitude displacements in an incompressible fluid, the velocity components vx

and vz are defined by gradients of two scalar field potentials, φ and ψ  (14):
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where φ  satisfies Laplace’s equation:
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ψ  satisfies the heat equation:
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and fluid pressure, p, is given as:
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The coupling of the elastic motion of the TM plate into fluid motion is defined by the

boundary condition:
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where η(x,δ,t) is the (transverse) displacement of the TM.

For transverse velocity at the TM given as vz(x,δ,t) = V exp(j(kx – ωt)), where V is the

velocity amplitude and k is the (complex-valued) wavenumber for traveling-wave

propagation in the x-direction, solution by separation of variables gives:
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and k, which is derived from the boundary condition Eq. 7, is related to ω according to

the transcendental equation:
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Experimentally, we found that 1<<δk . Then, according to Eq. 10, an upper bound for δl ,

is 0.27 in the first turn (evaluated at 3 kHz and δ = 2 µm), and 0.28 in the third turn

(evaluated at 0.8 kHz and δ = 4 µm). Therefore, to a first-order approximation, we can

approximate the hyperbolic functions in Eqs. 8 and 9 by the first two terms of their

Taylor series expansion. Then, the velocities simplify to:
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Notice that the depth dependence of the radial velocity is parabolic, whereas that of the

transverse velocity is cubic. Most importantly, because we found experimentally

that 1<<δk , Eq. 12 means that the radial fluid velocity is amplified relative to transverse

TM (and RL) velocity throughout most of the subtectorial space. (Clearly, radial velocity

is zero near the TM and RL, because of the nonslip boundary condition.)

Likewise, approximating the tanh functions in Eq. 11 with the first two Taylor series

terms, we obtain:
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The term j1/6 has six complex-valued roots, but only two yield a wave traveling in the

positive x-direction, whose amplitude does not increase with x; namely,  j1/6 = 0.97 +

j0.26, and  j1/6 = 0.26 +  j0.97. However, the second of these roots yields a wave that

decays to 1/e within ≈1.5 cell diameters and is therefore not a viable solution. This

completes the derivation of Eq. 1. Notice that because k is complex-valued, radial fluid

velocity does not lead transverse TM velocity by 90°, as it does for inertial fluid flow, but

rather by 75°.

To obtain the deflection of the tip of the IHC stereocilia, we applied the analysis of

Billone and Raynor (15), who derived the viscous drag on a stereocilium for Couette

fluid motion in the subtectorial space. In their analysis, the velocity field is derived from

the relative radial motion between the TM and RL. In our analysis, the velocity field is

generated by the counterphasic motion of the TM and RL. As presented above (Eqs. 12

and 13), counterphasic motion results in a radial component that is much larger than the

transverse component. Thus, the present analysis differs from ref. 15 only in the form of

the velocity field: here, the velocity field is a parabolic function of vertical position in the

subtectorial space (Eq. 12). Assuming as in ref. 15 that the stereocilium acts as an ideal,

frictionless and massless, clamped cylindrical beam of uniform cross section and

modulus of elasticity, one can readily show that the displacement of the tip of the IHC

stereocilium is given by:
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where ξm is the amplitude of the radial fluid displacement, and rs  and rφ  denote,

respectively, the amplitude and phase of the function:
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where the argument of the trigonometric and hyperbolic functions is
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where L and DS are, respectively, the length and flexural rigidity of a stereocilium; c is a

constant depending on the ratio of stereocilium radius to distance between the centers of

adjacent stereocilia, which for the IHC stereocilia is c ≈ 4 (15). For calculations, we used

DS = 9 × 10-21 Nm2 (derived from ref. 16).

To relate the phase of tip displacement to radial fluid displacement, integrate Eq. 12 with

respect to time; for a given kx, one obtains a phase of (–ωt + π – π/6), where π/6 is the

phase of k. For the transverse fluid displacement, the phase is (–ωt + π/2). Then, the

phase of the tip displacement is rφ + π/12 relative to radial fluid displacement, or rφ  +

π/2 relative TM displacement.
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LqLjsr , meaning that rφ  tends to -π/2

and rs  decreases with a slope of 6 dB/oct. This asymptotic low-frequency phase value

means that the tip displacement is in-phase with TM displacement at low frequencies. As

frequency is increased, rφ tends to zero, the stereocilia becoming “softer” with the



stereocilia just following the radial fluid motion, so that the phase of stereocilia

displacement leads TM displacement by π/2.
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