
Supporting Materials and Methods

Tools for the Generation and Analysis of Folded Protein Structures. To generate the

ensemble of compact homopolypeptide conformations, a protein model, protein force

field, and conformational search scheme are required. Then, given an ensemble of

structures, we require clustering algorithms to select representatives from a diverse set of

conformations. Finally, we need a sensitive algorithm to identify the structural analogs of

the computer-generated conformations from a representative set of structures in the PDB

and vice versa. In what follows, we describe the tools that address these issues.

Protein Models, Force Fields, and Conformational Search Protocols. Since there does

not yet exist a perfect force field capable of folding an arbitrary protein to its native

structure, it is important to assess the sensitivity of the results to the particular force field

and protein representation used. If the results are insensitive to protein representation

(i.e., whether or not a continuous space, detailed atomic model, or a Cα plus Cβ, CAS,

lattice-based model is used), the particular force field, and the conformational search

scheme, then this result is suggestive that the resulting conclusions are robust. If, on the

contrary, qualitatively different results emerge depending on the details of how the

models are constructed, then one would have to be cautious in interpreting how well the

simulations mimic the completeness of protein structural space. In what follows, we

present an overview of the two models, their associated force fields, and conformational

search protocols.

Detailed Atomic Model, Force Field, and Conformational Search Scheme. The first

model employs a detailed atomic representation of the protein and accounts for all heavy

atoms (1, 2). The backbone atoms are typed as peptide N, Cα, carbonyl C, and O. We

consider a homopolypeptide where each side chain has a Cβ atom. Atomic radii were

calibrated to achieve realistic Ramachandran plots. Bond lengths, chain connectivity, and

excluded volume are always maintained. The potential contains two components:

pairwise interactions and hydrogen-bonding (H-bonding). Two-body interactions are



represented by a square well, contact potential that does not require the knowledge of

native structure (if any) of the protein to be simulated. Atoms A and B, with hard-sphere

radii rA and rB, separated by a distance D are in contact if 0.75(rA + rB) < D < 1.8(rA + rB)

and interact with a potential EAB. In addition to the pair potential, a backbone H-bonding,

EHB, function is used to ensure proper secondary structure formation. The relative

strength of H-bonding and pairwise interaction is controlled by α, which balances

polymer elongation and collapse.

As shown in Fig. 5, a H-bond is counted when the four atom pairs associated with donor

nitrogen and hydrogen and acceptor carbonyl oxygen and carbonyl carbon are within a

square well, eliminating the need for angle calculations and increasing computational

efficiency. The indicated distances are as follows: d1 is the distance between the donor

nitrogen and acceptor oxygen; d2 is the distance between the donor nitrogen and acceptor

carbonyl carbon; d3 is the distance between the donor hydrogen and acceptor oxygen;

and d4 is the distance between the donor hydrogen and acceptor carbonyl carbon. In this

particular variant, interactions are only allowed between residues i and residues i + 2, i +

3, and i + 4. Thus, H-bonds using this potential are essentially limited to helical

conformations. The H-bond energy, EHB (in dimensionless units), for specific distance

parameters is given in the accompanying H-bond potential file tabulated in the format d1,

d2, d3, d4, and E.

The total energy of a given conformation, Etotal, is given by

Etotal = αEHB + (1−α )EAB . (1)

Based on previous work, we set α = 0.9. For a test set of seven proteins, in the native

state the ratio of EAB to EHB is ≈3:1, even though the strength of an average atom-atom

contact is only 1/10 that of the energy of a H-bond.

The dihedral move set (1, 2) satisfies detailed balance (1, 3), with the amplitudes of

moves drawn from a Gaussian distribution with zero mean and 2° variance for the



backbone and 10° variance for the side-chain χ  angles. Conformations are searched

using replica exchange Monte Carlo (4).

CAS Reduced Protein Model, Force Field, and Conformational Search Scheme. The

conformation of a protein in the CAS model is described by its Cα atoms and the side-

chain centers of mass (SG), taken here to be a Cβ (5). The force field used in this study is

a subset of the full TASSER force field (a protein structure prediction algorithm) (5) and

consists of: (i) Uniform hydrophobic interactions between side-chain residues for the

purpose of generating compact conformations; (ii) H-bonding described in further detail

below; (iii) excluded volume; and (iv) an energetic bias to a preassigned secondary

structure. For helices this is an energetic bias toward loosely defined helical

conformations, whereas for β-strands this is a weak bias toward extended conformations.

The secondary structures regions are assigned in the following way: Each secondary

structure fragment (helix or strands) is followed by a short loop. The sizes of the

secondary structures and loops are randomly taken from a distribution derived according

to PDB statistics (Fig. 6). For αβ proteins, the helices and strands are randomly ordered,

each with 50% probability of assignment.

H-Bond Interactions in the CAS Model. Since H-bonding is essential to the results, we

present the explicit details of the H-bond scheme. The strength and occurrence of H-

bonds in the CAS model are defined by the contact order (CO, residue distance along

sequence) and relative orientation and geometry of donor and receptor residues. As

shown in Fig. 7, if we define i jcc=c c⋅
uv uv

, i jbb=b b⋅
uv uuv

, i jpp=p p⋅
uv uuv

, i jqq=q q⋅
uv uuv

, ibri=| b r |ε −
uv v

,

jbrj=| b r |ε −
uuv v

, and r=|r|
v

, the H-bonding energy in the CAS model can be calculated by the

following automated procedure:

For a hydrogen bond between residues that are located in an α-helix,

If ss ≠ β and CO = 3 and bb>bbα, then



If cc>ccα and r < rα and pp> ppα and qq>qqα, then

EHB = λα(1-|cc-ccα0|)(1-|bb-bbα0|)/[(1+|bri-brα0|)(1+|brj-brα0|)]

For a hydrogen bond between residues that are located in antiparallel β-strands,

If ss ≠ α and CO >4 and bb<-bbβ, then

If cc>ccβ and r < rβ and pp<-ppβ and qq<-qqβ, then

EHB = λβ|bb|cc/[(1+bri/2)(1+brj/2)].

For a hydrogen bond between residues that are located in parallel β-strands,

If ss ≠ α and CO >20 and bb>bbβ, then

If cc>ccβ and r < rβ and pp>ppβ and qq>qqβ, then

EHB = λβbb*cc/[(1+bri/2)(1+brj/2)]. (2)

Here ss ≠ α(β) means neither putative donor nor receptor residues are assigned as an α-

helix (β-strand). λα(β) = 1 if both donor and receptor residues are each assigned as an α-

helix (β-strand); otherwise λα(β) = 0.5. ε = 5.0 Å for α-helix and 4.6 Å for β-sheet. All

other parameters are calculated from the statistics of 100 high-resolution structures in

PDB (50 in α-proteins and 50 in β-proteins according to DSSP assignments), and are

summarized in Table 2.

This H-bond scheme is mainly designed for the backbone atoms inside α-helices and

between β-strands. But rarely some backbone atoms in the loop or tail regions also may



form a H-bond with other backbone atoms if their relative geometry satisfies any of the

above conditions.

Starting Conformations, Move Sets, and Sampling. The protein chain is confined to a

high-coordination number lattice (5), and the only input for the 150 chains is the

secondary structure assignments. All conformations start from a random, extended coil.

Unlike the full TASSER algorithm (5), no fragments are excised from the PDB, nor are

idealized secondary structural elements used. Parallel Hyperbolic Monte Carlo sampling

(6), an improved variant of Replica Exchange Monte Carlo(4), is used to explore

conformational space. Conformational updates consist of two to six bond movements and

multibond sequence shifts (5).

The SPICKER Clustering Algorithm. To select representative structures from the

trajectories of either the atomic or CAS protein models, we employ the structure

clustering algorithm, SPICKER (7). SPICKER is a greedy algorithm where members of

each cluster are selected as follows: For a given pairwise rmsd cutoff, Rcut, the first

cluster contains the structure with the most neighbors (that comprise the “cluster center

structure”), as well as the structures of all its neighbors. The second cluster contains the

structure with the second largest number of neighbors, excluding all members of the first

cluster, as well as the structures of all its neighbors, etc. As shown elsewhere, SPICKER

(7) has been extensively benchmarked (5, 8-10) and found to show improvement over

previous clustering algorithms (11) in selecting representative lowest free energy

structures.

TM-ALIGN: A New Structural Alignment Algorithm. Since our goal is to compare

the computer-generated compact structures with protein structures found in the PDB, a

tool to generate structural alignments between them is needed. Structural alignments

assess the structural similarity between a pair of structures, where the set of equivalent

residues required for the comparison is not a priori given. Therefore, an optimal

alignment needs to be identified; this is in principle NP-hard (12). Various different

heuristic approaches have been proposed to search for this “best” structure alignment



given a metric of structural similarity. These differ mainly in the metric used to assess the

alignments and the search algorithm that identifies the putative best alignment.

Representative approaches include DALI (13), CE (14), STRUCTAL (15), and SAL (16). For

example, STRUCTAL (15) and SAL (16) use the interstructural residue-residue distance

based Levitt-Gerstein, LG, score matrix and maximize the cumulative LG-score (15) or

relative rms distance (rmsd) (17), by a heuristic iterative Needleman-Wunsch dynamic

programming approach (18). During the iterations, both algorithms use a rotation matrix

that is constructed to minimize the rmsd between a pair of structures. However, the

average rmsd of randomly related proteins depends on the length of compared structures,

which renders its absolute magnitude meaningless (17).

The recently proposed TM-score (19) overcame this issue, where the TM-score is defined

as
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Here, LTarget is the length of target protein that the other structure is aligned to; Lali is the

number of aligned residues; di is the distance between the ith pair of aligned residues.

  
d0(LTarget ) = 1.24 LTarget −153 −1.8 is a distance parameter that normalizes the distance so

that the average TM-score is independent of protein size for a random structure pair. The

TM-score {whose range is (0,1]} has an average value of 0.17 for a pair of randomly

related structures (19) and a value of 1.0 for two identical protein structures.

Our recently developed structural alignment algorithm TM-ALIGN (20) exploits these

insights and extends the approaches of STRUCTAL (15) and SAL (16), by using the TM-

score rotation matrix to speed up the identification of the best structure alignments. When

the best structural alignments between a pair of randomly related structures are



considered, the average TM-score is 0.30, and the standard deviation (SD) is 0.01. We

examine this issue further in Fig. 8, where we show the histogram of the TM-score of the

best structural alignment of 158 distinct, compact conformations of 200 residue freely

jointed chains, FJC, to the representative PDB template library of 6,967 proteins that

cover the PDB at a 50% sequence identity cutoff. Interestingly, the average TM-score of

0.30 is independent of the particular set of unrelated structures that are compared. It is the

same average value for structural alignments of FJC to PDB structures or for structural

alignments of unrelated single domain proteins in the PDB. Of course, we have to remove

the set of related protein structures in the PDB to calculate the SD for randomly related

structure pairs; this is why the FJC are used to obtain this value.

The TM-ALIGN algorithm is ≈4 times faster than CE (14) and 20 times faster than DALI (13)

and SAL. On average, the resulting structure alignments have higher accuracy and

coverage than those provided by these most often-used methods. Here, this approach is

used to identify the optimal structural alignments between the computer-generated

conformations and PDB structures. Besides the rmsd and the alignment coverage, TM-

ALIGN also reports the TM-score. The TM-ALIGN program is available from the authors

upon request.

TASSER Modeling Starting from Compact Homopolypeptide Templates. We selected

the 10 proteins in the PDB150 set that have the worst structural matches to our 15,000-

member library of compact, homopolypeptide models, based on their TM-score, which is

available from the authors upon request (see Table 1). We then used TASSER to build full-

length models for these 10 proteins starting from the TM-ALIGN structural alignments,

where the spatial contact and distance restraints are taken from the selected compact,

homopolypeptide templates to guide the TASSER simulation. The results are summarized

in Table 1. Although the TM-score of the structural alignments is modest (≈0.37), the

alignments provide the correct topology for ≈2/3 of the core-region residues. Among the

reasons for the modest TM-score is the presence of long tails in a number of the

templates. One of the tasks of TASSER is to connect the continuous fragments by building

appropriate loops. The average global rmsd from the corresponding PDB structure of the



first TASSER model is 5.11 Å. Most targets have a rmsd <6.5 Å, except for 1fjgl that has a

long, unfolded tail in the N terminus (see Fig. 9). If we cut the tail (from PRO1 to

SER18), then the global rmsd is 5.8 Å.

TASSER also considerably improves the topology of the structurally aligned regions. The

average rmsd to native of the compact homopolypeptide templates and the refined TASSER

models is 4.79 and 4.15 Å, respectively, from the PDB structure for the same aligned

residues (see Table 1). Fig. 10 shows a representative example, 1at0_, which

demonstrates a significant improvement due to TASSER’s ability to readjust the protein’s

core. There is only one target, 1nkws, where the rmsd of the TASSER model is higher than

that of the TM-ALIGN structural alignments. In this example (see Fig. 11), TASSER places

the N-terminal in the wrong direction, a known problem of TASSER in modeling the

orientation of long tails as well as mutual orientation of protein domains.

Three-Dimensional (3D) Active-Site Template Library. For the detection of

substructures whose geometry resembles enzyme active sites, we use an updated version

of our library of Automated Functional Templates (AFTs) (21). The AFTs are based on

the 3D arrangement of residues important for defining the molecular function of a given

enzyme. The procedure for building an AFT consists of three steps: (i) Retrieval of

functionally important substructures from all PDB structures associated with a specific

EC number; (ii) generation of tentative distance-based templates describing the active

site; and (iii) a specificity assessment of the AFTs. Previously, we defined an AFT as the

spatial arrangement of k functional building blocks (3 ≤ k ≤ 5), each composed of the Cα

atom of a functional residue, the two adjacent Cα atoms, and (for non-glycine residues)

one pseudoatom corresponding to the side-chain center of mass (SG). To better suit the

present analysis, since we focus on sticky homopolypeptides (whose only side chain

heavy atom is a Cβ), we use the Cβ rather than the SG pseudoatom. Also, to speed up the

calculations, we set k = 3. We now base the AFTs on functionally important substructures

where all involved residues are annotated with the ACT_SITE key name in the Swiss-

Prot (22) database (indicating a direct contribution to the enzyme’s activity). Finally, we

use a stricter definition for the restrictive cutoff to establish the significance of a match:



the maximum distance rmsd (drmsd) (the average rmsd between corresponding distances

in the compared substructures), observed between a true positive hit and the

corresponding AFT. The permissive cutoff is defined so that the expected number of false

positive matches is <0.005 per true negative structure. Following this procedure, a library

of 150 AFTs associated with 118 different EC numbers is obtained.

Scanning of Native Structures and Sticky Homopolypeptides with the AFT Library.

We used our AFT library to scan, in a sequence-independent manner, three sets of

structures: (i) The top five clustered structures generated by the simulation for each of the

one hundred fifty 200-residue homopolypeptides (750 structures); (ii) the same number

of native structures from the PDB; and (iii) the representative set of 3,500 compact

homopolypeptide structures used to assess the completeness of the compact fold library

with respect to the PDB. The 750 native structures are nonredundant (at the level of 40%

sequence identity), with lengths ranging from 163 to 230 residues and an average length

of 199.7 residues. To eliminate direct effects due to evolution, before scanning the set of

native structures with a given AFT, we remove those that correspond to enzymes whose

EC numbers share the first two components of the EC number of the AFT under analysis.

By way of illustration, we show in Fig. 11 the relative frequency distributions of

substructures of the top 10 AFTs that have the best match to one of the 750 sticky

homopolypeptide structures. Given that the sticky homopolypeptide structures are

generated at random with no knowledge of the AFT geometry, the results suggest active

site geometries at the level of Cα and Cβ atoms arise from the packing of compact

secondary structural elements and at the level of substructure geometry are not special.

We find that there is no relationship with the set of enzymes functions that have the best

match and ancient enzymes.

Structural Alignment Library. In the library of aligned structures, there are 913

representative PDB structures and three sets of computer-generated models for the

compact sticky, homopolypeptide models: (i) 100-residue chains by atomic off-lattice



modeling; (ii) 100-residue chains by reduced on-lattice modeling; and (iii) 200-residue

chains by reduced on-lattice modeling. The files are in the following directories:

⋅ 100_255: 255 models of 100 residue proteins (all are α-proteins) from the atomic, off

lattice model.

⋅ 100_150 × 14: 100 residues, 150 chains each with 14 clusters (i.e., Cluster-1, 2, 3, 4, 5,

10, 25, 50, 75, 100, 125, 150, 175, 200) from the reduced, on-lattice model. For the file

name, “a” stands for α-proteins; “b” for β-proteins; “ab” for αβ-proteins.

⋅ 200_150 × 14: 200 residues, 150 chains each with 14 clusters (i.e., Cluster-1, 2, 3, 4, 5,

10, 25, 50, 75, 100, 125, 150, 175, 200).

⋅ 200_15000: 200 residues, 150 chains each with the top-100 clusters.

⋅ 200_7000: 200 residues, 7000 models from clustering of the 200_15000 set.

⋅ 200_3500: 200 residues, 3500 models from clustering of the 200_7000 set.

⋅ 150_PDB: 913 compact PDB structures whose length is between 41 and 150 residues

with a pairwise sequence identity <30%.

o X.PDB: PDB structures (“X” stands for PDB IDs).

o X.ali_15000: TM-ALIGN structure alignment of X to the closest model from the

200_15000 set.

o X.ali_7000: TM-ALIGN structure alignment of X to the closest model from the 200_7000

set.



o X.ali_3500: TM-ALIGN structure alignment of X to the closest model from the 200_3500

set.

o Summary15000: Summary of TM-ALIGN results of the PDB150 set to the 200_15000

set.

o Summary7000: Summary of TM-ALIGN results of the PDB150 set to the 200_7000 set.

o Summary3500: Summary of TM-ALIGN results of the PDB150 set to the 200_3500 set.

o 10worst: Structural alignments of the 10 worst PDB150 proteins to the closest

homopolypeptide model in the 15,000 compact, homopolypeptide library.
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