Materials

Amino acids, amino acid derivatives, and resins were from Novabiochem. Gel filtration chromatography was performed with Sephadex G-50 resin from Sigma.

Instrumentation

Analytical HPLC was performed with an Aligent C8 column or a Varian Dynamax C18 column with linear gradients. Mass spectrometry was performed with an Applied Biosystems Voyager DE-Pro MALDI–TOF mass spectrometer with sinapinic acid (Fluka) as the matrix at the University of Wisconsin Biophysics Instrumentation Facility (www.biochem.wisc.edu/bif). Ultraviolet/visible spectra were recorded with either a Cary 50 Bio or a Cary 3 spectrometer.

Strand and Fragment Synthesis

Synthesis of (Pro-Pro-Gly)₈-Cys(StBu)-Gly, Pro- α 1(StBu). Fluorenylmethoxycarbonyl (Fmoc)-ProProGly-OH was synthesized as described (1). Pro- α 1-*tert*-butylthio (StBu) was then synthesized on Fmoc-Gly-polyethyleneglycol-polystyrene copolymer (PEG-PS) resin (Applied Biosystems): 1 × Fmoc-Cys(StBu)-OH, 8 × Fmoc-ProProGly-OH, cleaved from the resin with 95:2.5:2.5 trifluoroacetic acid (TFA)/H₂O/isopropyl (iPr)₃SiH (8 ml, 2 h) and precipitated from *tert*-butylmethyl ether: 58% yield; MS (MALDI–TOF) [M+H]⁺ calculated for C₁₀₅H₁₅₅N₂₆O₂₇S₂ 2277.6, found 2277.6; HPLC *t*_R 17.79 min [Aligent C8 column, 85:15–15:85 H₂O/CH₃CN containing TFA (0.1% vol/vol) over 50 min].

Synthesis of (Pro-Hyp-Gly)₈-Cys(StBu)-Gly, Hyp- α 1(StBu). FmocProHypGly was synthesized as described (1), but with Hyp in the Yaa position (no *tert*-butyl protection was necessary). Hyp- α 1(StBu) was then synthesized on Fmoc-Gly-PEG-PS resin: 1 × Fmoc-Cys(StBu)-OH, 8 × Fmoc-ProHypGly-OH, cleaved from the resin with 95:2.5:2.5 TFA/H₂O/iPr₃SiH (8 ml, 2 h) and precipitated from *tert*-butylmethyl ether: 64% yield; MS (MALDI–TOF) [M+H]⁺ calculated for C₁₀₅H₁₅₅N₂₆O₃₅S₂ 2405.6, found 2406.2; HPLC *t*_R 14.89 min [Aligent C8 column, 85:15–15:85 H₂O/CH₃CN containing TFA (0.1% vol/vol) over 50 min]. The sample was heated at 80°C for 5 min prior to injection onto the column; otherwise a peak for folded trimers ($t_R \sim 22 \text{ min}$) was observed.

Attachment of Fmoc-Gly-OH to 4-Hydroxymethylphenoxyacetyl-Polyethyleneglycol-Polyacrylamide Copolymer (HMPA–PEGA) Resin, Fmoc-Gly-PEGA. HMPA–PEGA resin was obtained from Novabiochem already preswollen in MeOH with an approximate wet loading of 0.072 mmol/g. Preswollen HMPA–PEGA resin (1.545 g, 0.111 mmol) was washed with CH_2Cl_2 (3 × 5 ml) and dried under high vacuum for 1 h to remove all MeOH. The resin was then swollen in *N*,*N*-dimethylformamide (DMF) for Fmoc-Gly-OH attachment.

In a flame-dried flask under Ar(g) atmosphere, Fmoc-Gly-OH (331 mg, 1.11 mmol) was dissolved in CH₂Cl₂ (10 ml) and DMF (0.5 ml). The clear solution was cooled to 0°C, diisopropylcarbodiimide (87 ml, 0.56 mmol) was added, and the mixture was stirred at 0°C for 30 min to generate the symmetrical anhydride. The solution was concentrated to remove CH₂Cl₂, DMF (3 ml) was added, and the anhydride solution was filtered through cotton (to remove the insoluble urea) into the swelled resin suspension. A solution of dimethylaminopyridine (1.4 mg, 0.11 mmol) in DMF (0.1 ml) was added, the vessel was purged with Ar(g), and the suspension was agitated gently for 1.5 h. The resin was then drained, washed with DMF (7 × 10 ml) and CH₂Cl₂ (7 × 10 ml), and dried under high vacuum to give Fmoc-Gly-PEGA. Resin-loading was measured by ultraviolet spectroscopy to be 0.25 mmol/g.

Synthesis of (Pro-Pro-Gly)₃-Gly-Cys(Acm)-Cys(StBu)-Gly-(Pro-Pro-Gly)₅-(HMPA– PEGA), Pro-a2(Acm,StBu)-PEGA. Pro-a2(Acm,StBu)-PEGA (Acm = acetamidomethyl) was synthesized by starting with Fmoc-Gly-(HMPA–PEGA) resin (0.33 g, 80 µmol): 2 × Fmoc-Pro-OH, 4 × Fmoc-ProProGly-OH, 1 × Fmoc-Gly-OH, 1 × Fmoc-Cys(StBu)-OH, 1 × Fmoc-Cys(Acm)-OH, 1 × Fmoc-Gly-OH, 3 × Fmoc-ProProGly-OH. A small amount of peptide was cleaved from the resin with 95:2.5:2.5 TFA/H₂O/iPr₃SiH for analysis: MS (MALDI–TOF) [M+H]⁺ calculated for C₁₁₃H₁₆₈N₂₉O₃₀S₃ 2507.2, found 2508.0.

Synthesis of (Pro-Hyp-Gly)₃-Gly-Cys(Acm)-Cys(StBu)-Gly-(Pro-Hyp-Gly)₅-(HMPA– PEGA), Hyp- α 2(Acm,StBu)-PEGA. Hyp- α 2(Acm,StBu)-PEGA was synthesized by starting with Fmoc-Gly-(HMPA–PEGA) resin (0.25 g, 61 µmol): 1 × Fmoc-Hyp(tBu)-OH, 1 × FmocPro-OH, 4 × Fmoc-ProHypGly-OH, 1 × Fmoc-Gly-OH, 1 × Fmoc-Cys(StBu)-OH, 1 × Fmoc-Cys(Acm)-OH, 1 × Fmoc-Gly-OH, 3 × Fmoc-ProHypGly-OH. A small amount of peptide was cleaved from the resin with 95:2.5:2.5 TFA/H₂O/iPr₃SiH for analysis: MS (MALDI–TOF) $[M+H]^+$ calculated for C₁₁₃H₁₆₈N₂₉O₃₈S₃ 2635.1, found 2635.6.

Disulfide Bond Formation

Pro-a2(p-Npys,Acm)-PEGA. Pro-a2(Acm,StBu)-PEGA (7.7 μ mol) was swollen in 95:5 TFE/H₂O (1 ml, 5 min), Bu₃P (38 μ l, 150 μ mol) was added, and the suspension was agitated gently for 2 h. The resin was drained, washed with trifluoroethanol (3 × 1 ml), DMF (8 × 1 ml) and CH₂Cl₂ (8 × 1 ml), and dried under high vacuum for 30 min. The resin was then swollen in CH₂Cl₂ (0.6 ml, 5 min). A solution of *p*-Npys₂ (2,2'-dithiobis(5-nitropyridine), 24 mg, 77 μ mol) in CH₂Cl₂ (0.4 ml) was added to the swelled resin, the vessel was purged with Ar(g) and the suspension was agitated gently for 2 h. The resin was drained, washed with CH₂Cl₂ (3 × 1 ml), DMF (20 × 1 ml), and CH₂Cl₂ (8 × 1 ml), and dried under high vacuum. A small amount of peptide was cleaved from the resin with 95:2.5:2.5 TFA/H₂O/iPr₃SiH for analysis: MS (MALDI–TOF) [M+H]⁺ calculated for C₁₁₄H₁₆₂N₃₁O₃₂S₃ 2573.1, found 2573.6.

Pro-a1. A solution of Pro- α 1(StBu) (28 mg, 12 µmol) and Bu₃P (61 µl, 250 µmol) in 95:5 TFE/H₂O (1 ml) was agitated gently for 2 h. The peptide was precipitated from *tert*-butylmethyl ether (15 ml) to give Pro- α 1: MS (MALDI–TOF) [M+H]⁺ calculated for C₁₀₁H₁₄₇N₂₆O₂₇S 2188.1, found 2188.8.

Pro-α1α2(Acm)-PEGA. Pro-α2(Acm,*p*-Npys)-PEGA (7.7 µmol) was swollen in buffer (0.4 ml, 5 min). A solution of Pro-α1 (12 µmol) in buffer (1 ml) was added to the swelled resin, the vessel was purged with Ar(g), and the suspension was agitated gently for 12 h [buffer: 50 mM NH₄OAc, 2 mM EDTA, pH 5.4, degassed and sparged with Ar(g)]. The resin was drained, washed with H₂O (7 × 1 ml), DMF (7 × 1 ml), and CH₂Cl₂ (7 × 1 ml), and dried under high vacuum. A small amount of peptide was cleaved from the resin with 95:2.5:2.5 TFA/H₂O/iPr₃SiH for analysis: MS (MALDI–TOF) [M+H]⁺ (average) calculated for C₂₁₀H₃₀₄N₅₅O₅₇S₃ 4607.2, found 4607.9.

Pro-a1a2(o-Npys)-PEGA. Pro-a1a2(Acm)-PEGA was swollen in DMF (0.4 ml, 5 min), a solution of *o*-Npys-Cl (3-nitro-2-pyridinesulfenyl chloride, 2.9 mg, 15 µmol) in DMF (0.6 ml) was added to the swelled resin, and the suspension was agitated gently for 2 h. The resin was drained, washed with DMF (8 × 1 ml) and CH₂Cl₂ (8 × 1 ml) and dried under high vacuum. A small amount of peptide was cleaved from the resin with 95:2.5:2.5 TFA/H₂O/iPr₃SiH for analysis: MS (MALDI–TOF) [M+H]⁺ (average) calculated for C₂₁₂H₃₀₁N₅₆O₅₈S₄ 4690.2, found 4688.9.

Fragment 1 (Pro-\alpha 1 \alpha 2 \alpha 1'). Pro- $\alpha 1 \alpha 2(o$ -Npys)-PEGA (7.7 µmol) was swollen in buffer (0.4 ml, 5 min). A solution of Pro- $\alpha 1$ (12 µmol) in buffer (1 ml) was added to the swelled resin, the vessel was purged with Ar(g), and the suspension was agitated gently for 12 h [buffer: 50 mM NH₄OAc, 2 mM EDTA, pH 5.4, degassed and sparged with Ar(g)]. The resin was drained, washed with H₂O (7 × 1 ml), DMF (7 × 1 ml), and CH₂Cl₂ (7 × 1 ml), and dried under high vacuum. The fragment was then cleaved from the resin with 95:2.5:2.5 TFA/H₂O/iPr₃SiH (8 ml, 2 h) and precipitated from *tert*-butylmethyl. Crude **1** was dissolved in 20 mM NH₄CO₃ (pH 6.0, 1 ml), introduced onto a Sephadex G-50 column (21 cm × 2.5 cm) and eluted with the same 20 mM NH₄CO₃ buffer to give **1** (6.4 mg, 12% overall): MS (MALDI–TOF) [M+H]⁺ (average) calculated for C₃₀₈H₄₄₃N₈₀O₈₃S₄ 6722.6, found 6723.3; HPLC *t*_R 18.75 min [Aligent C8 column, 90:10–10:90 H₂O/CH₃CN containing TFA (0.1% vol/vol) over 60 min].

Hyp-α2(*p*-N**pys,Acm**)-**PEGA.** Hyp-α2(*p*-Npys,Acm)-PEGA was prepared as described for Proα2(*p*-Npys,Acm)-PEGA starting with Hyp-α2(Acm,StBu)-PEGA (8.3 µmol): MS (MALDI– TOF) $[M+H]^+$ calculated for C₁₁₄H₁₆₂N₃₁O₄₀S₃ 2701.1, found 2701.1.

Hyp-a1. Hyp-a1 was prepared as described for Pro-a1 starting with Hyp-a1(StBu) (32 mg, 13 μ mol): MS (MALDI–TOF) [M+H]⁺ calculated for C₁₀₁H₁₄₇N₂₆O₃₅S 2316.0, found 2316.3.

Hyp- $\alpha 1\alpha 2$ (Acm)-PEGA. Hyp- $\alpha 1\alpha 2$ (Acm)-PEGA was prepared as described for Pro- $\alpha 1\alpha 2$ (Acm)-PEGA starting with Hyp- $\alpha 2$ (*p*-Npys, Acm)-PEGA (8.3 µmol) and Hyp- $\alpha 1$

(13 μ mol): MS (MALDI–TOF) [M+H]⁺ (average) calculated for C₂₁₀H₃₀₄N₅₅O₇₃S₃ 4863.2, found 4864.6.

Hyp-a1a2(o-Npys)-PEGA. Hyp-a1a2(o-Npys)-PEGA was prepared as described for Proa1a2(o-Npys)-PEGA starting with Hyp-a1a2(Acm)-PEGA (8.3 μ mol): MS (MALDI-TOF) [M+H]⁺ (average) calculated for C₂₁₂H₃₀₁N₅₆O₇₄S₄ 4946.2, found 4948.6.

Fragment 2 (Hyp-\alpha 1\alpha 2\alpha 1'). Fragment **2** was prepared and purified as described for fragment **1**, starting with Hyp- $\alpha 1\alpha 2(o$ -Npys)-PEGA (8.3 µmol) and Hyp- $\alpha 1$ (13 µmol) to give **2** (16.5 mg, 28% overall): MS (MALDI–TOF) [M+H]⁺ (average) calculated for C₃₀₈H₄₄₃N₈₀O₁₀₇S₄ 7106.5, found 7109.0; HPLC t_R 13.88 min [Aligent C8 column, 90:10–10:90 H₂O/CH₃CN containing TFA (0.1% vol/vol) over 60 min].

Estimation of Assembly Length from R_h

The lengths of assemblies $(1)_n$ and $(2)_n$ were estimated from the R_h values measured with DLS by using the Broersma relations (Eq. 1) (2–4) and Tirado and Garcia de la Torre relations (Eq. 2) (5, 6), as described for collagen (7).

Broersma (2–4) relations:

$$0 = 2R_{h}[\delta - (1/2)(\gamma_{\parallel} + \gamma_{\parallel})] - L$$

$$\delta = \ln(2L/d)$$

$$\gamma_{\rm H} = 0.807 + 0.15/\delta + 13.5/\delta^{2} - 37/\delta^{3} + 22/\delta^{4}$$

$$\gamma_{\perp} = -0.193 + 0.15/\delta + 8.1/\delta^{2} - 18/\delta^{3} + 9/\delta^{4}.$$
[1]

Tirado and Garcia de la Torre (5, 6) relations:

$$0 = 2R_{h}[(\ln(p) + v)] - L$$

$$p = L/d$$

$$v = 0.312 + 0.565p^{-1} - 0.1000p^{-2}.$$
[2]

In Eqs. 1 and 2, *L* is the rod length and *d* is the rod diameter. After assuming that d = 1.36 nm for collagen (8, 9), Eqs. 1 and 2 were solved for *L* with the FINDROOTS algorithm of IGOR PRO (Wavemetrics).

References

- Jenkins, C. L., Vasbinder, M. M., Miller, S. J. & Raines, R. T. (2005) Org. Lett. 7, 2619– 2622.
- 2. Broersma, S. (1960) J. Chem. Phys. 32, 1626–1631.
- 3. Broersma, S. (1960) J. Chem. Phys. 32, 1632–1635.
- 4. Broersma, S. (1981) J. Chem. Phys. 74, 6989-6990.
- 5. Tirado, M. M. & Garcia de la Torre, J. (1979) J. Chem. Phys. 71, 2581–2587.
- 6. Tirado, M. M. & Garcia de la Torre, J. (1980) J. Chem. Phys. 73, 1986–1993.
- 7. Claire, K. & Pecora, R. (1997) J. Phys. Chem. B 101, 746-753.
- 8. Boedtker, H. & Doty, P. (1956) J. Am. Chem. Soc. 78, 4267-4280.
- Boudko, S., Frank, S., Kammerer, R. A., Stetefeld, J., Schulthess, T., Landwehr, R., Lustig, A., Bächinger, H. P. & Engel, J. (2002) *J. Mol. Biol.* 317, 459–470.