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Supporting Appendix 

 

Here we give a detailed description of our model and result. The sections are organized 

as follows: (1) formal definitions of graphs, circuits, and task; (2) formal theorem, 

according to which internal conflict exists in the boundedly optimal circuit; (3) a high 

level plan of proof, giving the proof idea mainly in verbal form; (4) formal proof for 

fanout-free circuits; (5) extension of the proof to limited-sharing circuits; (6) concluding 

remarks.   

 

1. Definitions 

1.1 Graphs. Let a directed graph G = (VG, EG) be a set VG of nodes and a set 

EG GG VV ×⊆  of directed edges (ordered pairs of nodes).  

A graph is strongly connected if there exists a path from any origin to any target 

node consisting of a sequence of appropriately directed edges.  

A graph is reflexive if each node has a loop, i.e., an edge directed from that node 

to itself.  

Consider iG  graphs where },...,1{ ai ∈ . Let Gi’s nodes be Vi and edges be 

viVvi WvE
i ,}{ ×= ∈� , where Wi,v is the set of nodes that have incoming edges from v in Gi. 

The product graph aGGG ××= �1'  has nodes aVVV ××= �1  and edges:  
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We will call aGG ,,1 �  the factor graphs of '.G  

We will consider graphs in which the number of nodes is an integral power of 2. 

Within each graph, each node will be labeled with a unique sequence of Boolean values. 

Furthermore, a node in a product graph 'G  will be labeled by a concatenation of the 

labels of its constituents in the factor graphs of '.G  Namely, if the nodes avv ,,1 �  taken 

from the factor graphs aGG ,,1 � , respectively, are labeled by the Boolean sequences 

all ,,1 � , respectively, then their corresponding node in the product graph 'G will be 

labeled by the Boolean sequence l1l2l3… la. 

1.2 Circuits. We consider here acyclic interconnections of input terminals, 

gates, and output terminals by means of wires. Each gate computes a function of the 
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signals on the wires directed into it from input terminals or other gates and places the 

result on each of the wires directed out of it to other gates or output terminals. As a 

result, signals are produced on the output terminals, which represent the circuit’s 

response to its inputs. An example of a very simple circuit is given in Figure 1a. 

 We consider circuits in which the gates compute functions that are drawn from a 

finite set (basis) � that is complete (meaning that every Boolean function can be 

computed by some circuit whose gates compute functions from �) and closed (meaning 

that the result of substituting either Boolean constant for any argument of any function 

in � is another function in �). We let wires carry Boolean (two-valued) signals and let 

gates compute Boolean functions, although generalization to k-valued signals and 

functions is straightforward. We consider both fanout-free circuits (also called 

formulas), where only one wire comes out of each gate (although any number of wires 

may be connected to any input terminal), as well as limited-sharing circuits, where the 

number of wires coming out of each gate is unlimited, but the extent of merging and 

diverging of paths (sequences of interconnected gates) is limited (see section 5 for more 

detail).  

We assume that there is a function � that assigns a cost �(b) to each function 

∈b ��. The cost of a gate is then defined to be the cost of the function computed by that 

gate. We also assume that the cost of a function that results from substituting a constant 

for an argument of a function ∈b �  is strictly less than �(b). This reflects the physical 

basis of computation, i.e., a function of fewer variables is easier to implement. We 

define the cost (equivalently, computational complexity) )(�L  of a circuit �� to be the 

sum of �(�) over all gates � in ��. If �  is a set of Boolean functions, we denote by 

)(�L  the minimum possible cost of a fanout-free circuit (respectively, limited-sharing 

circuit) computing all of the functions in ��.�

1.3 Task.   We intend to build a circuit for finding shortest-paths on graph G 

(the task environment). The circuit will serve as a brain for the robot described in the 

main text of this article. At any time step, the circuit will be presented with a pair of 

current and target node-labels as a sequence of Boolean input values on its input 

terminals and will be required to produce in response the label of the next node to step 

onto as a sequence of Boolean output values on its output terminals.  
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Formally, let ),( dcS t =  be the state of the world at the beginning of time 

interval t, where c is the robot’s current location and d is the target (on graph G). The 

robot will be tested for each pair of origin and target nodes. Every test begins with t = 0, 

c = origin, and d = target. Let )( tt SgI =  be the inputs into the circuit at the beginning 

of time interval t and )(ˆ tt IFO = be the outputs of the circuit at the end of that time 

interval. Here tt SSg =)( , although later we will use tt
i SSg ≠)( . Finally, 

( )ttt OShS ˆ,1 =+ , where 
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That is, the robot moves to the next node named by the circuit, unless there is no edge 

connecting to that next node from the current location, in which case the robot stays put. 

1.4 Performance.   Given a reflexive and strongly connected graph � whose 

mp 2=  nodes are labeled with binary strings of length m and a circuit �  with m2   

inputs and m outputs, let the score ),( ��P  of �  in � be the number of origin-target 

node-pairs ),( yx  in � such that the circuit � , when receiving the labels of ),( yx  at its 

inputs, produces at its outputs the label of a node z that immediately follows x on some 

shortest path from x to y in � (or produces the label of x if x = y). (We do not assume 

that shortest paths in � are unique.) We have 2),(0 pP ≤≤ �� . We say that � �is 

perfect for � if 2),( pP =�� . We observe that if � has unique shortest paths, then all 

circuits that are perfect for � compute the same set of functions. 

The score is a tool for finding desirable circuits; i.e., a circuit perfect for G 

always finds the shortest path from any origin to any target on G when placed inside the 

robot described above. For such a circuit, 

 

( )( )( ) ttt
O

t StOShgUO t ,,,maxargˆ ∀= ,    [A.2] 
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where the utility function ( )( )dcU ,  is the negative of the distance (i.e. the number of 

edges on the shortest path) between c and d on G (or any positive affine transformation 

of it).  

),( ��P provides a natural scale of desirability also under a computational 

limitation, even though the errors that may exist then may also be “priced” differently, 

with other scores. Given a computational limitation, we say that a circuit that maximizes 

),( ��P subject to the computational limitation is a boundedly optimal circuit.  

 

2. Theorem – Internal Conflict in Boundedly Optimal Circuits 

 

Theorem: There exist graphs G and complexity bounds l such that, if C is the fanout-free 

circuit that maximizes the score P(C, G) subject to the complexity constraint lCL ≤)( , 

then: (i) C decomposes into subcircuits aCC ,,1 �  with inputs ( )t
i

t
i SgI =  and outputs 

( )t
ii

t
i IFO =ˆ  for { }ai ,...,1∈ . If iΦ  is the set of all input values t

iI , and iΩ  is the set of all 

output values ,t
iO  then a

tI Φ××Φ∈ �1  and .1 a
tO Ω××Ω∈ �  (ii) There exist graphs 

aGG ,,1 � such that the behavior of each subcircuit Ci is described most parsimoniously as: 

( )( ) tt
i

t
iiO

t
i StOSUO t

i
,,,maxargˆ ∀= λ , where ( ) ( )( )t

i
t

ii
t
i

t
i OSghOS ,, =λ , and hi and Ui refer 

to Gi in the same way that h and U refer to G. (iii) In the task environment, there is conflict 

between the subcircuits, i.e.: ( )( ) ( )( ) ,,,~,,~,ˆ,ˆ,ˆ, ijiOStOOSUOOSU t
j

tt
j

t
j

t
ii

t
j

t
j

t
ii ≠∀∃< −− λλ  

where ( ) ( )( ).,, tt
i

tt
i OShgOS =λ  [(ii) and (iii) correspond to the definition of conflict in the 

main text (Eqs. 2 & 3.)]  

 

3. Plan of Proof 

3.1 Overview.   There are three important graph constructs in the proof. First, a 

set of a strongly connected reflexive graphs (henceforth “factor graphs”), each with q 

nodes. Second, their graph product 'G . And third, a graph G that is obtained by 

removing a certain edge, e, from 'G . G is the task environment, the graph on which our 

circuit will be required to find shortest paths. 

We focus on a certain circuit, 'C . This circuit is made of a subcircuits, each 

perfect for one of the a factor graphs. The subcircuits are wired to 'C ’s terminals such 
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that 'C  is perfect for 'G . When an input vector representing both the current location 

and target of a robot on graph 'G  is fed into 'C , it is broken into a input vectors, each 

of which represents both a current location and target on one of the factor graphs. These 

smaller input vectors are fed by wires into their corresponding subcircuits, whose output 

vectors are then fed into their appropriate locations on 'C ’s output terminals. 

We can now see that, when we apply 'C  to the task environment G (rather than 

'G ), it will do well but not perfectly. Most of the time it will take the correct step, 

because G is similar to 'G . However, it will err whenever it attempts to cross the edge 

e, which exists in 'G  but not in G; where by “error” we mean a production of an output 

that is not consistent with any shortest path from origin to target.  

The proof now proceeds in two phases. The first phase shows that there exists a 

computational limitation under which a circuit identical in its behavior to 'C  is a 

boundedly optimal circuit for G. This limitation is in fact the one which allows no more 

computational complexity than is necessary for the construction of a circuit identical in 

its behavior to 'C . The bounded optimality of such a circuit is obtained from an 

interaction of the graph structures and computational limitations. The second phase 

shows that, based on information theoretic considerations, this boundedly optimal 

behavior manifests internal conflict. We will now outline these issues in turn. 

3.2 Graph structures.   The graph structure considerations can be divided into 

three parts. First, we construct the factor graphs such that the upper bound on the 

number of errors made by 'C  on graph G is aq )1( −≤ , where q is the number of nodes 

on each factor graph. One method of achieving this is based on a graph-structural 

element that we will refer to as a “tooth” and will describe in detail in the formal proof 

section. Second, we consider scenarios where each subcircuit j � i of 'C  receives as an 

input identical origin and target on its corresponding factor graph. The significance of 

these scenarios is that in them, subcircuit i is given no leeway, no matter where it is with 

respect to its own target on its own graph. Had it made an error with respect to its task 

of finding a shortest path on its own factor graph, 'C  would have also made an error 

with respect to its task of finding a shortest path on G. We will show that there are at 

least 1−aq  such scenarios for each subcircuit i. Third, we observe that, for a large enough 

a, 1)1( −<− aa qq . 
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From the above three elements, a central piece of the proof follows. If we wish 

to build a circuit that would do at least as well as a circuit identical in its behavior to 'C , 

then it must make no more mistakes than 'C , and hence the number of mistakes it 

makes, Q, must satisfy 1)1( −<−≤ aa qqQ . Without needing to know on what occasions 

these errors will be made, we know from this inequality that for each block of this 

circuit’s outputs that corresponds to a block controlled by one of the subcircuits of 'C , 

there is at least one scenario where that block must imitate the behavior of that 

subcircuit of 'C . This central piece, in combination with the computational limitations, 

will be used to prove the bounded optimality of a circuit identical in its behavior to 'C .  

The method of graph construction provided here is simple and has been chosen 

for a pedagogical purpose. Although it requires the use of a large a, a slightly more 

elaborate structural requirement on the factor graphs completes the proof with a = 2 for 

arbitrarily large q. 

3.3 Computational limitations.   In deriving the consequences of the 

computational limitations we will use the following concept of “reducibility”. Let ���be 

a circuit, with input and output terminals partitioned into blocks a�� ,,1 �  and 

a�� ,,1 �  respectively. Let a��� ���1=  be a partitioned set of Boolean functions 

of a partitioned set of arguments a��� ���1= , such that, for 1 � i � a, the functions 

in block i� depend only on the arguments in block i� . We say that �  is reducible to �� 

if, for every 1 � i � a, one can substitute constants at the inputs of �� in the blocks ��j 

for all j � i so that the resulting circuit produces at the outputs in block i�  the values of 

the functions i�  on the arguments i�  received at the inputs i� .  

Now, let circuit �  compute the set of functions 	 , where 	  �� . Our proof 

method requires that if �  is reducible to �  then  )()( 	� LL < . To show this, it 

suffices to show that if �  is reducible to �  then one can simplify some gates in �� and 

thereby make it compute �.  This can be shown in fanout-free circuits. Since the cost of 

a function that results from substituting a constant for an argument of a function ∈b �  

is strictly less than the cost of b, the gates receiving signals from blocks ��j for all j � i 

and influencing block i� , for all i, can be simplified.  
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The requirement above is also satisfied by limited sharing circuits, as will be 

explained in section 5; and, in general, the proof method provided here will work for 

any other computational model satisfying this requirement.  

3.4. Synthesis.   Section 3.2 shows that each block of the boundedly optimal 

circuit’s outputs that corresponds to a block controlled by one of the subcircuits of 'C  

must imitate the behavior of that subcircuit of 'C  in at least one of the scenarios 

described in section 3.1. More precisely, there is an assignment of constants to the 

boundedly optimal circuit’s input terminals which correspond to the input terminals of 

all other subcircuits of 'C , such that the boundedly optimal circuit’s output block in 

question imitates its counterpart in 'C . According to section 3.3, this shows that the 

boundedly optimal circuit is reducible to a circuit identical in its behavior to 'C . Hence, 

if it behaved any differently than 'C , it would have been more complex than 'C , but 

this is disallowed by the complexity limitation. It follows that the boundedly optimal 

circuit is the smallest circuit identical in its behavior to 'C .   

3.5 Inference of internal conflict.   The boundedly optimal circuit can be 

decomposed into agents. The inputs and outputs of each agent correspond to the inputs 

and outputs of each subcircuit in 'C , and the “body” of each agent is either a fanout-free 

subcircuit or, in the case of limited-sharing circuits, a network of gates.  

Based on the behavior of each agent, we can build a truth table for that agent, 

which lists each possible input vector along with the output vector that the agent 

produces in response to it. We find that the behavior of the agent, or equivalently its 

truth table, can be most parsimoniously described by assuming that the agent attempts to 

reach targets on a certain graph (one of the a factor graphs); in other words, the agent 

maximizes a utility function defined as proximity to a given target on a certain graph.  

Conflict between the agents emerge when the boundedly optimal circuit attempts 

to cross the removed edge, e. In this case, if any agent had taken any other step than it 

actually did, a move would have been carried out, bringing all other agents closer to 

their targets and increasing their utilities. This state of affairs satisfies the definition of 

mutual conflict. The latter part of the next section will carry out the inference of utilities 

and conflict more formally. 

Remark: Since agents are functional units made of simpler elements, they 

satisfy the biological definition of modules (1,2). Thus, the result also demonstrates the 
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emergence of modules from first principles. However, more importantly here, it shows 

that modules emerge that are in conflict with one another, even in a system designed for 

a single purpose. 

 

4. Formal Proof for Fanout-Free Circuits 

 

We begin by constructing a directed graphs. Each of these graphs has nq 2=  nodes so 

that its nodes can be labeled with binary strings of length n. The parameters a and q will 

be chosen to satisfy the inequality 

 

.)1( 1−<− aa qq      [A.3] 

 

If q � 4 is chosen arbitrarily, this inequality will be satisfied for all sufficiently large a. 

 The construction that follows requires only that each of the a graphs be a 

reflexive and strongly connected graph with unique shortest paths in which there is an 

edge ),( wv and an additional node u such that the only nonloop directed into u is the 

edge ),( uv and the only nonloop directed out of u is the edge ),( wu . We describe these 

three edges as forming a tooth (Fig. 3). Any set of a strongly connected reflexive graphs 

each having at least one tooth may be used. However, for definiteness, let each of the a 

graphs be a labeled version of a common graph 0G  in which every edge is a part of such 

a tooth.  

 Let 0G  be a reflexive graph comprising a directed cycle of 12 −n nodes and, for 

each directed edge ),( wv on this cycle, an additional node u, and two additional edges 

),( uv and ),( wu  (Fig. 4). This gives a total of nq 2=  nodes and 2/5q  edges ( 2/q in 

the cycle, another q additional edges, and q loops). Due to rotational symmetry, the 

nodes of this graph can be labeled with binary strings of length n in 

)!1(2)2//(! −= qqq  ways. Let aGG ,,1 �  denote a labeled versions of 0G . We form the 

product graph aGGG ××= �1' . The labellings of aGG ,,1 �  give rise to ( )( )aq !12 −  

labellings of the product graph 'G . 
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 The graph 0G  is clearly strongly connected and, in fact, has unique shortest 

paths between all origins and targets. Furthermore, each edge ),( wu  from a node u 

outside the cycle to a node w on the cycle belongs only to shortest paths originating at u 

and having targets distinct from u. Therefore, each such edge belongs to at most q – 1 

shortest paths. For ai ≤≤1 , let ),( iii wue = be such an edge in Gi. Let G be the graph 

obtained from 'G  by deleting the edge ( ) ( )( )aa wwuue ,,,,, 11 ��= . The edges ie  can 

be chosen in aq )2/(  ways, giving a total of ( )( ) ( ) aaa qqq !2/!12 =−  labeled graphs G. 

 (While the above construction requires Eq. A.3 and a large a, a slightly more 

elaborate construction of the graphs iG  dispenses with these requirements and complete 

the proof with a = 2 for arbitrarily large q, as said.) 

 Let 'F  be the set of functions computed by circuit 'C  that is a perfect circuit for 

graph 'G  and that has minimum cost )'()'( FLCL = . Let C be a fanout-free circuit that 

maximizes ),( GCP  subject to complexity constraint ).'()( FLCL ≤  We will show that 

C computes the same functions 'F  as 'C .  

 The input terminals of 'C  can be partitioned into blocks aMM ',,'1 �  such that 

in each block aiM ≤≤1' , half of the terminals receive the part of the origin (or current 

location) on 'G  that corresponds to iG , and the other half receive the part of the target 

on 'G  that corresponds to iG  (recall that aGGG ××= �1' ). The output terminals of 'C  

can be partitioned into blocks aNN ',,'1 �   such that in each block aiN ≤≤1' , the terminals 

produce the part of the next node to step onto on 'G  that corresponds to iG . Let us also 

partition the input and output terminals of C into blocks aMM ,,1 � and aNN ,,1 �  

respectively, such that blocks iM  and iN  of C correspond to blocks iM 'and iN 'of 'C . 

We will now show that the circuit C is reducible to 'F . 

 Since C is chosen to maximize ),( GCP  subject to ),'()'()( CLFLCL =≤  we 

must have 

     ),'(),( GCPGCP ≥ .    [A.4] 
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For convenience, let Q ( )�� , � 2p – P ( )�� , . That is, Q ( )�� ,  represents the number 

of errors of �  in ��. Thus Eq. A.4 can be rewritten as: 

 

     ).,'(),( GCQGCQ ≤     [A.5] 

 

 Since G is a subgraph of 'G , any shortest path in G is at least as long as the 

unique corresponding shortest path in 'G . Thus 'C  fails to find a shortest path in G only 

when the shortest path in 'G  involves the deleted edge ( ) ( )( )aa wwuue ,,,,, 11 ��= , and 

this happens only when, for each 1 � i � a, the shortest path in iG  involves the edge 

),( ii wu . Since the only nonloop edge directed into iu  is directed out of iv , and because 

iG  contains an edge ),( ii wv , the shortest path in iG  for an origin-target pair involves 

the edge ),( ii wu  only when the origin is the node iu  and the target is distinct from iu . 

Since there are just q – 1 such origin-target pairs in iG , there are just aq )1( −  origin-

target pairs in G for which 'C  fails to find a shortest path. Thus, ,)1(),'( aqGCQ −=  

and eqs. A.5 and A.3 imply 

 

.),( 1−< aqGCQ     [A.6] 

 

We say that an assignment of constants to the inputs in blocks jM  for all ij ≠  

is diagonal if the origin equals the target in each of these a – 1 blocks. Thus, there are 
1−aq  diagonal assignments for each i. We say that a diagonal assignment is bad if the 

resulting circuit does not compute at the outputs in iN  the functions 'iF  on the 

arguments iI  at the inputs iM . Each bad diagonal assignment increases ),( GCQ  by at 

least 1 (i.e., contributes at least one mistake to ),( GCQ ). Therefore Eq. A.6 implies 

that, for each i, there is at least one diagonal assignment that is not bad. These 

assignments show that C is reducible to 'F . 

 That C in fact computes 'F  now follows from the proposition below. 
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Proposition A.1: Let �  be a fanout-free circuit, with inputs and outputs partitioned into 

blocks a�� ,,1 �  and a�� ,,1 � , respectively. Let a��� ���1=  be a partitioned 

set of Boolean functions of a partitioned set of arguments a��� ���1= ,  such that, 

for 1 � i � a, the functions in block i� depend only on the arguments in block i� . If no 

function in �  is constant, �  is reducible to �, and )()( �� LL ≤ , then �� computes ��. 

 

Proof: For 1 � i � a, let i�  be the fanout-free subcircuit of �� computing the outputs in 

block i� . Then,�

   � �
≤≤ ≤≤

≤=≤=
ai ai

ii LLLLL
1 1

).()()()()( �����   [A.7] 

 

Here the equalities reflect the additivity of cost for fanout-free circuits, the inequalities 

)()( ii LL �� ≤  reflect the reducibility of �� to�, and the last inequality holds by 

hypothesis. Suppose, to obtain a contradiction, that �  at outputs i� does not compute 

the functions i� of inputs i� . Then there is a path in i� from some input in a block ��j 

with j � i to some output in block i� . This path must contain at least one gate, since no 

function in i�  is constant. If constants are substituted for inputs in block ��j, at least the 

first gate on this path can be replaced by a gate with a strictly smaller cost. Thus we 

have )()( ii LL �� < , and the first inequality in Eq. A.7 can be strengthened to strict 

inequality, resulting in a contradiction [ )()( ii LL �� < for some i, )()( ii LL �� ≤  for all 

other i, and )()( �� LL ≤ ]. � 

 

 We have now shown that if C maximizes ),( GCP  subject to ),'()( FLCL ≤  then 

C computes the same functions 'F  as 'C . This behavior of C satisfies the requirements 

for conflict as follows. We know that the graph G specifies a set of computationally-

unlimited “best behaviors” B (produced by circuits BC ) that maximize the score on G 

equally well, and that each such set of best behaviors specifies the graph G. The former 

is obvious, and the latter follows from the fact that we can construct G from any B by 

inferring that G has an edge from node c to node d � c if and only if the output of some 
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circuit in BC  is d for the input ),( dc . It follows that there is a one-to-one 

correspondence between graphs G and sets of best behaviours, in other words, between 

graphs G and tasks. Information theory shows that, because of this one-to-one 

correspondence, describing G and the objective of finding shortest-paths on it provides 

a description of the task that is, for any descriptive formalism, asymptotically in aq , a 

most parsimonious description.  

More specifically, by a “most parsimonious description” we mean a description 

by a bit string using the minimum possible number of bits (3). For the graph G we may 

consider a description comprising (a) a description of the general scheme of 

construction (such as is presented in prose in the third through fourth paragraphs of this 

section, using a fixed number O(1) of bits), (b) a description of the values of q and a 

[using  O(log q) + O(log a) bits], and (c) a description of the labeling of the nodes and 

the choice of the edge to be deleted [using )(log)!(log 22 aqOqaqq a += bits]. The total 

length of this description is )(log2 aqOqaq + bits. Such a description is asymptotically 

most parsimonious, since a description of one of aq!  different labeled graphs cannot, on 

the average, use fewer than )(log2 aqOqaq + bits. 

A similar argument applies to the description of the behavior of each subcircuit. 

In this case, though, we wish to describe for each subcircuit the exact behavior that it 

exhibits (whereas the description of the collective’s task specified a set of equally-

desirable behaviors). Here we use the fact that each graph iG  has unique shortest paths. 

We know that the structure of a graph with unique shortest paths is determined by the 

behavior of a circuit that finds shortest paths in it, and vice versa. Therefore, describing 

iG  and the objective of finding shortest-paths on it is a most parsimonious description 

of the behavior of iC  (for any descriptive formalism, asymptotically in q). In other 

words, the utility function iU  provides a most parsimonious description of the behavior 

of iC . (While there may be other equally parsimonious descriptions, there are none that 

are more parsimonious, which gives us license to use iU  as our description of interest.)  

Compare, for instance, the utility-based description of a subcircuit with a 

description that lists an output sequence for each input sequence (i.e., a description 

consisting of the truth-table itself). For the former, we need to describe the structure of 
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the graph. According to a calculation similar to the one above, this can be done in 

)log( 2 qqO bits of information. For the latter, )log( 2
2 qqO  bits are needed, since for 

each of 2q  pairs of origin and target nodes we need to list an output node which can be 

specified with q2log bits of information. In other words, specifying the principle of 

operation is much more efficient than listing all possible responses 

)loglog( 2 qqqq << .  

Finally, in the task environment, iU  gives conflict as stated in the theorem. 

Whenever ( )auu ,,1 �  is the current location and ( )aww ,,1 �  is the next node on the 

shortest path to the target in 'G , each iC  produces iw  as its output. The output of the 

collective is then ( )aww ,,1 � , which is illegal on G, and therefore no step is taken. In 

this situation, if any subcircuit had taken any other step than it actually did, the move 

could have been carried out. Then all other subcircuits would have been one step closer 

to their targets and would have increased their utilities. Thus, the subcircuits prevent 

each other from maximizing their respective utilities and, by definition, all subcircuits 

are in mutual conflict. This completes the proof of theorem. � 

 

Remark: We observe that a situation similar to that of “Buridan’s ass” occurs as a 

special case of this result. If we take q = 4 (Fig. 5) and a = 5, then there are 3022 =−a  

paths of length 2 between the endpoints of the deleted edge 

( ) ( )( )aa wwuue ,,,,, 11 ��= . The circuit C, given origin ( )auu ,,1 �  and target 

( )aww ,,1 � , is unable to choose among these alternatives, attempts to follow the deleted 

edge e (i.e., produces the illegal move) and remains frozen at ( )auu ,,1 � . With a change 

of interpretation of the nodes of the graph, where nodes represent behavioral states 

rather than spatial locations (as described in the main text), the illegal move represents 

an attempt to enter behavioral states that cannot be entered simultaneously, such as 

approach and avoidance (Fig. 2).  
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5. Extending the proof to limited-sharing circuits 

 

The most important assumption in the foregoing result is the restriction to 

fanout-free circuits. This assumption can be weakened as follows. Say that a circuit � 

(whose outputs are partitioned into blocks a�� ,,1 � ) is nonsharing if for every gate � 

in �  there is at most one 1 � i � a  for which there exists a path from � to some output 

in i� . Clearly, every fan-out free circuit is a nonsharing circuit, but the converse is 

false (in particular, when a = 1, a nonsharing circuit is not restricted at all). Even this 

weaker assumption can dramatically affect the number of gates needed to compute 

various sets of functions. This is illustrated by the result (4) that, for almost all Boolean 

functions f of n Boolean arguments, the number of gates needed to compute two copies 

of f on disjoint sets of arguments is asymptotic to the number needed to compute f once 

(whereas, for nonsharing circuits, computing two copies of f requires exactly twice as 

many gates).  

The restriction to nonsharing circuits can be weakened still further. Let us define 

a notion of limited-sharing circuits in such a way that every nonsharing circuit is a 

limited-sharing circuit, but the converse is false. The definition of a limited-sharing 

circuit assumes that the inputs are partitioned into blocks a�� ,,1 � , and the outputs 

are partitioned into blocks a�� ,,1 � . Let �� be such a circuit. Assign to every wire w in 

�� the set },...,1{ aJw ⊆  of indices i such that w lies on some path from some input in 

i�  to some output in i� . Let � be a gate in �, and let tww ,,1 �  be the wires fed by �. 

We say that � is a limited-sharing gate if 

 

    1)(#)1(#
11

−≤−
≤≤≤≤

� �
ts

w
ts

w ss
JJ .    [A.8] 

 

Finally, we say that �  is a limited-sharing circuit if every gate in �  is a limited-sharing 

gate.  

Let a path in a circuit be a sequence of interconnected gates. Because of the 

unlimited fanout, paths can merge and diverge. One can think of limited-sharing as a 

limitation on the extent of repeated merging and diverging of paths, each of which ends 
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at the same block where it started (there is no limitation on merging and diverging of 

other, interblock paths).   

 The restriction to limited-sharing circuits will only be useful in the presence of 

certain additional assumptions concerning the gates used to build circuits, the way in 

which the complexity of circuits is assessed, and the functions computed by circuits. We 

assume that all circuits are built from gates in a set � of allowable gates. Assume 

furthermore that:  

(1) If � is a gate in �  depending on k � 1 arguments, then the result of substituting a 

constant (0 or 1) for some argument of � is a gate also in ��and depending on k – 

1 arguments. 

(2) If � is a gate in �, then result of complementing an argument of �, or the result 

of complementing the value of �, is a gate also in �. 

We say that a set ���of Boolean functions is nondegenerate if no function in � is 

the complement of another function in � , no function in � is the complement of one of 

its arguments, and no function in � is a constant function. 

 

Lemma A.2: All gates depending on at most one argument can be eliminated from a 

circuit computing a nondegenerate set of functions without increasing its cost.  

 

Proof: We begin by eliminating constant gates. Such a gate cannot feed an output, since 

the functions produced at the outputs are nondegenerate. If such a gate feeds another 

gate �, then � can be simplified by assumption (1). By repetition of this procedure, all 

constant gates can be eliminated.  

 We finish by eliminating complement gates. If such a gate feeds another gate �, 

then it can be eliminated by modifying � according to assumption (2). If such a gate 

feeds an output, then it cannot be fed by an input, since the functions produced at the 

outputs are nondegenerate. Thus it must be fed by another gate �. This gate � cannot 

feed an output, since a nondegenerate set of functions cannot contain two 

complementary functions. Thus the complement gate can be eliminated by 

complementing the value of the gate � according to assumption (2), and complementing 
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the appropriate arguments of any gates fed by �, again according to assumption (2). By 

repetition of this procedure, all complement gates can be eliminated. � 

 

In what follows, we assume that the cost )(�L  of a limited-sharing circuit �  is the 

sum of the costs of the gates in ��. From assumptions (1) and (2), it follows that the cost 

of a gate depending on no arguments (a constant gate) or one argument (a complement 

gate) is irrelevant, because such a gate can be removed. Finally, we assume that the cost 

of a gate depending on k � 2 arguments is k – 1. If � is a partitioned set of Boolean 

functions of a partitioned set of arguments, we let )(�L denote the minimum possible 

cost of a limited-sharing circuit computing the functions in � . 

 

Proposition A.3: Let �  be a limited-sharing circuit, with inputs and outputs partitioned 

into blocks a�� ,,1 �  and a�� ,,1 � , respectively. Let a��� ���1=  be a 

partitioned set of Boolean functions of a partitioned set of arguments �  =��1� ….� �a, 

such that, for 1 � i � a, the functions in block i�  depend only on the arguments in block 

i� . If � �is nondegenerate, �  is reducible to � , and )()( �� LL ≤ , then �  computes �.  

 

Proof: Since �  is reducible to a nondegenerate set of functions, it must itself compute a 

set of nondegenerate functions, so we may assume by lemma A.2 that every gate in �  

depends on at least two arguments. 

 Let us construct from �  a circuit '�  that computes the functions ��. We will 

show that if �  itself did not compute � , then we would have the strict inequality 

)()'( �� LL < , which would yield the contradiction: 

  

).()()'()( ���� LLLL ≤<≤    [A.9] 

 

 (The leftmost inequality holds because '�  computes � , and the rightmost holds by 

hypothesis.) 
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 The circuit '�  will be obtained from �� by replacing each wire w in �� by a “ cable”  

wΓ  that contains a wire iw for each index i in wJ . The wire iw  will carry that Boolean 

function of the inputs in block i�  that is carried by w when the inputs in blocks ��j� for 

ij ≠  are set to the constants that, by the definition of reducibility, cause �� to compute the 

functions i� . The circuit '�  will also contain a “ module”  gM  for every gate g in ��. If 

kvv ,,1 �  are the wires feeding g and tww ,,1 �  are the wires fed by g, then gM will 

compute the signals on the wires in { }
sw

i
sts Jiw ∈≤≤ :1�  from those on the wires in 

{ }
hv

i
hkh Jiv ∈≤≤ :1� . 

 If a wire w in �� is fed by an input in block i� , then wJ  is either φ  or {i}, so 

the only possible wire in the cable wΓ  is iw , and this wire can be fed by the 

corresponding input in '� . If a wire w in �� feeds an output in block i� , then wJ  = {i}, 

so the corresponding output in '�  can be fed by the wire iw in the cable wΓ . 

 Suppose now that g is a gate in �’  fed by wires kvv ,,1 �  and feeding wires 

tww ,,1 � . For each i in 
swts J≤≤1� , the module gM will contain a gate ig  computing the 

signals on the wires i
sw  in the cables 

swΓ for those s for which 
swJi ∈ . The gate ig  will 

be fed by the wires i
hv  in the cables 

hvΓ  for those h for which 
hvJi ∈ . For those h for 

which 
hvJi ∉ , ig  will be fed by the constants carried by the wires hv  in �  when the 

inputs in blocks ��j  for j � i are set to the constants that, by the definition of 

reducibility, cause �� to compute the functions i� . 

 Without any assumptions about the functions that �  computes, we now show 

that in the conversion of �� to '� , no additional cost need be paid, and therefore, 

)()'( �� LL ≤ . For this purpose, we invent a virtual currency that can be obtained by 

selling gates in �� and can be used to buy gates in '� , and can be transferred along the 

wires of a circuit. We show that the conversion can be carried out for free, so that 

)()'( �� LL ≤ . 

 Let the “ balance of payments”  at each locality be the amount of payment 

flowing in, minus the amount of payment flowing out, minus any cost (or negative cost) 
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used in the conversion of that locality. That is, the balance of payments is the amount of 

currency remaining in the locality after the conversion. At each input, the balance of 

payments is simply zero minus the sum of payments flowing out of that input (outflow). 

(Zero represents the fact that no external investment is made). At each output, the 

balance of payments is the sum of payments flowing into that output (inflow). At each 

gate g in ��, the balance is inflow minus outflow, minus the cost of all the gates in the 

module gM  in '� , plus the cost of the gate g in �� (because g is replaced by gM , we 

save the cost of g). 

Assume that a payment of # wJ  – 1 units flows along each wire w, from the input 

or gate feeding w to the gate or output fed by w. If wJ  = φ , a payment of 1 unit is given 

to the input or gate feeding w.  

Notice that, under this assumption, the balance of payments at each input is 

nonnegative, even though no external investment is made. This is because a wire w fed 

by an input in block i�  has wJ  equal to φ  or {i}. Furthermore, since a wire w feeding 

an output in block i�  has wJ = {i}, the balance of payments at an output is 0.  

We now consider the balance of payments at a gate g in �, fed by wires kvv �,1  

and feeding wires tww ,,1 � . We define .1 swts JU ≤≤= �  Note that, by the definition of J,  

.1 UJ
hvkh =≤≤�  We know that: 

(a) The inflow at g is ( )� ≤≤
−

kh vh
J

1
1# . 

(b) The outflow at g is ( )� ≤≤
−

ts ws
J

1
1# .  Since C is a limited-sharing circuit 

(every gate satisfies (A.8)), the outflow is .1# −≤ U  

(c) Since the cost )( fΛ  of gate f is k – 1 by definition, the cost of the module 

gM , namely � ∈
Λ

gMf
f ),(  equals the total number of wires entering the 

module minus the number of gates in the module:  

 

( )� �∈ ≤≤
−=Λ

g hMf kh v UJf .##)(
1

 

 

(d) The cost of gate g (to be saved) is �(g) = k – 1. 

It follows that the balance of payments at each gate is nonnegative, since: 
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( ) ( ) ( )( ) 01##1#1#
11

=−+−−−−− �� ≤≤≤≤
kUJUJ

kh vkh v hh
. 

 

We now suppose that �  does not compute � , and obtain a contradiction in the form of 

the strict inequality )()'( �� LL < . For this purpose, it suffices to show that at some 

input or gate, the balance of payments is strictly positive.  

 Assume that there is some wire v in �� with # vJ  � 2. The wire v cannot feed an 

output, since a wire w feeding an output in block i�  has wJ ={i}. It follows that v feeds 

a gate g. Furthermore, we can choose v such that g feeds no wire w with # wJ  � 2. This 

we obtain by starting with some wire v; then, if # wJ  � 2, we choose w to be our focal 

wire v, and so on. Now, let 11 ,, −kvv �  be the wires feeding g other than the wire v. We 

know that: 

(a) The inflow of g is:  .##
11

kJJ
kh

vv h
−�
�

�
�
	


+ �
−≤≤

 

(b) The outflow from g is nonpositive, since no wire w fed by g has # wJ  � 2. 

(c) The cost of Mg is: ,####)(
1111

�� �
−≤≤∈ −≤≤

≤−+�
�

�
�
	


=Λ
kh

v
Mf

v
kh

v h

g

h
JUJJf  since 

.UJv ⊆   

(d) The cost of the gate g in �  is:  �(g) = k – 1. 

Since ,01#1###
1111

>−=−+�
�

�
�
	


−−�
�

�
�
	


+ ��
−≤≤−≤≤

v
kh

v
kh

vv JkJkJJ
hh

 we find that the balance of 

payments at g is strictly positive.  

 Suppose next that no wire v in �� has # vJ  � 2, but that there is some wire w in �� 

with # wJ  =φ . If this wire is fed by a gate g for which some wire v feeding g has # vJ  

=φ , we choose v as our focal wire w, etc. Thus we may assume that w is either fed by 

an input, or fed by a gate that is not fed by any wire v with # vJ =φ . If w is fed by an 

input, then the balance of payments at that input is 1, and thus strictly positive. Suppose 

then that w is fed by a gate g fed by wires kvv ,,1 � . Then: 

(a) The inflow to g is zero, since every wire v feeding g has # vJ =1. 
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(b) The outflow from g is strictly negative, since no wire w fed by g has # wJ  � 

2, and at least one such wire has # wJ  =φ . 

(c) Since in the conversion of wires to cables, no cable receives more than one 

wire, the cost of gM  is �
∈

−=Λ
gMf

Ukf .#)(   

(d) The cost of the gate g in �  is:  �(g) = k – 1. 

Since #U  � 1, (d) � (c), and therefore (a) – (b) – (c) + (d) > 0. The balance of payments 

at g is again strictly positive. 

 It remains to examine the case where every wire w in �� has # wJ = 1. If �� does 

not compute � , but �� is reducible to ��, then there must exist some path 	 from some 

input in a block i�  to some output in a block i�  with j � i. The wire v of 	 fed by the 

input must have vJ = {i}, and the wire w of 	 feeding the output must have }{ jJ w = . 

Thus there must exist some gate g on 	 that has xJ = {i} for the wire x of 	 feeding g, 

but }{ jJ y = , with j � i, for the wire y of 	 fed by g. Now, 

(a) There is no inflow to g, since all wires have # wJ = 1. 

(b) For the same reason, there is no outflow from g. 

(c) The cost of gM  is �
∈

−=Λ
gMf

Ukf ,#)(  as in the previous case. 

(d) The cost of the gate g in �  is:  �(g) = k – 1. 

Now notice that #U � 2, since the distinct indices i and j � i both appear in U. Thus (c) < 

(d), and the balance of payments is again strictly positive.  

 Since the balance of payments is nonnegative at every input, output or gate in �, 

and since it is strictly positive in at least one input or gate if �  does not compute �, we 

may conclude that )()'( �� LL < . This contradiction shows that �  computes � . � 

 

 Proposition A.3 now extends the proof of conflict to limited-sharing circuits, 

since it is a limited-sharing version of proposition A.1 in section 4.  
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6. Concluding Remarks 

 

The proof outlined above accepts arbitrarily large circuits made of any kind/s of 

gates, including threshold gates, as long as the gates are simple relative to the circuit as 

a whole (and therefore many gates are needed for the circuit’ s construction). These facts 

reflect well the properties of neurons and brain. The two main limitations on the 

analogy between circuits and brains are: first, the limitation on the extent on merging 

and diverging of paths; and second, that circuits are acyclic, i.e., exclude loops. Thus, 

the model described raises interesting technical questions for future research, primarily, 

what further weakenings of the circuit structural requirements and the graph structural 

requirements are possible, questions that aim at the theoretical prevalence of conflict. 

Presently, we take the above as a proof of principle for internal conflict, and use the 

wealth of biological evidence as a guide for its prevalence.   
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