SUPPLEMENTARY SECTION

Treatment of the ultracentrifugation data

In the program Sedfit, a large number of discrete, independent species, for which a relationship between mass and sedimentation (s) and diffusion (D) coefficients is assumed, is considered to represent a continuous distribution [37]. It should be mentioned that an inadequate relationship between s and D only decreases the resolution of the distribution. Sedfit also takes advantage of a radial and time-independent noise subtraction procedure [37].

The normalized sedimentation coefficients $s_{20, w}^{0}$ were calculated from s with:

$$s_{20, w}^{0} = s \left[(1 - \rho_{20, w}^{0} \, \overline{v}_{PDC}) / (1 - (1 - \rho \, \overline{v}_{PDC}) \, \overline{v}_{PDC}) \right] (\eta / \eta_{20, w}^{0})$$
(Equation 1)

The density and viscosity of water at 20 °C are $\rho_{20,w}^0 = 0.99828$ g/ml and $\eta_{20,w}^0 = 1.002$ cP, respectively. The partial specific volume of the complex, \bar{v}_{PDC} , used for the calculation of $s_{20,w}^0$ is:

$$\overline{\mathbf{v}}_{PDC} = (\overline{\mathbf{v}}_P + \delta_D \ \overline{\mathbf{v}}_D + \delta_L \ \overline{\mathbf{v}}_L + \delta_w \ \overline{\mathbf{v}}_w) / (1 + \delta_D + \delta_L + \delta_w)$$
(Equation 2)

 δ_D , δ_L and δ_w , are the amounts in gram of detergent, lipids and water hydration, respectively, per gram of protein, and \overline{v}_P , \overline{v}_D , \overline{v}_L and \overline{v}_w are the partial specific volumes of the constituents. δ_D and δ_L have been determined experimentally; δ_w is assumed to be 0.3 g/g.

The Svedberg equation relates the experimental s value to the buoyant molar mass of the complex, M_{bPDC} , and its Stoke radius R_s :

$$M_{bPDC} = s N_A 6 \pi \eta R_S$$
 (Equation 3)

where N_A is Avogadro's number.

The value of the buoyant molar mass depends on the solvent density but can also be expressed as a function of the molecular mass, $M_{P_{i}}$ of the protein in the BmrA-detergent complex, the quantity of bound detergent (δ_{D}), lipids (δ_{L}) and solvent (δ_{W}), and of \overline{v}_{P} , \overline{v}_{D} , \overline{v}_{L} and \overline{v}_{w} :

$$M_{bPDC} = M_{P} \left[(1 - \rho \,\overline{v}_{P}) + \delta_{D} \left(1 - \rho \,\overline{v}_{D} \right) + \delta_{L} \left(1 - \rho \,\overline{v}_{L} \right) + \delta_{w} \left(1 - \rho \,\overline{v}_{w} \right) \right]$$
(Equation 4)
The medan mass of PDC. More is given with each hadron in the destination.

The molar mass of PDC, M_{PDC} , is given without hydration:

$$M_{PDC} = M_P (1 + \delta_D + \delta_L)$$
 (Equation 5)

The frictional ratio f/f° relates the Stokes radius R_S to the minimum radius R° of the non-hydrated particle:

$$R_{S} = f/f^{\circ} R^{\circ}$$
(Equation 6)
$$R^{\circ} = \left[(3M_{P}(\overline{v}_{P} + \delta_{D} \ \overline{v}_{D} + \delta_{L} \overline{v}_{L})) / (4\pi N_{A}) \right]^{1/3}$$
(Equation 7)