
 - 1 -

Supplementary Materials

DOI: 005-1145

Software implementation
MouseTRACS was written mainly in Perl which
connects via DBI to a MySQL database. MySQL
is open source, fast, easy to manage, and stable.
We used a Perl object library to abstract common
database functions to centralize and maintain
referential integrity. The Web applications run on
Unix-based systems such as Linux and Mac OSX
and use the Apache Web server and Perl CGI
module (Stein 2005).

The various functions of MouseTRACS are
divided into several components. The data viewer
visualizes the test data using the Data::Table Perl
module (Zhou 2004). Using the open source Java
jPost applet, changes are sent immediately to the
database upon changing a form (Sun 2000).
Instant database updating increases responsiveness
on very large forms. Only data from modified
forms are submitted instead of the whole form
which avoids transferring megabytes of data when
only a few form elements are updated. The
browser uses javascript to relay changes to the
jPost applet which executes the database
commands via a Perl script.

The mouse colony functionality is
similarly implemented using Perl, Data::Table,
Javascript, and Java jPost. Here, many mouse
characteristics are updated as they are filled in and
some menus are dynamically generated based on
the contents of other fields.

Pedigree rendering is implemented
through a system call to a modified version of the
open source Madeline v0.933 pedigree drawing
program (Trager 2001). The program source is
modified to consolidate the rendering for special
breeding cases such as intercrossed siblings and
parental backcrosses. In addition, the pedigree size
limit is increased to accommodate very large
pedigrees and pedigree printing is spread over
more pages for greater legibility. Colors for
affected traits are also modified to reflect just high
and low values (red and blue) instead of a separate
color for each trait. A Perl script creates a script
and data file for Madeline to render the pedigree in
postscript. The postscript output is converted to
PDF using ghostscript and opened in a new
window.

Cage cards are printed by calling a Perl
cgi that retrieves the cage information from the
database and sends them to a Java applet that
renders and prints the cards. New layouts can be
generated by extending the cage card class.

The Perl cgi graphing component called
Graph IT dumps data to the open source R project

for statistical computing platform (http://www.r-
project.org/). Depending on the graph type chosen,
Graph IT will dynamically create an R script that
generates a postscript graph which is converted to
PDF via ghostscript and returned to the user.

Configuration
Multiple versions of MouseTRACS can be run
from the same code base. Depending on the
incoming URL, a configuration file then
determines the functionality and to what database
MouseTRACS connects. Thus, an arbitrary
number of MouseTRACS-type applications can be
run on a single server yet be serviced by a unified
code base. For example, our current configuration
supports one mouse colony for the pharmacology
program and a different mouse colony for the
ENU program. The databases are separate
although the code base is the same. Bug fixes on
one system therefore are immediately deployed to
all other systems and code reconciliation is
minimized.

Database schema
The mouseTRACS schema contains 32 tables that
model mice, cages, requests, and test data and
provide logs, genotype information, breeding
limits, or allele management information. The
schema was designed to add additional screens
easily by inserting rows to the assay and test
tables. No modification of the schema is
necessary. This is a key feature because over 20+
assays comprising 300 tests have been added over
the past four years. Software maintenance is
simplified since display, graphing, statistics,
flagging, confirming, and retesting scripts need
little if any modification to accommodate the new
assays. The disadvantage, however, is that
complex experiments involving time courses,
various treatments with various compounds and
temperature changes, and multiple samples cannot
be neatly modeled because a separate test has to be
created for each combination of factors. We have
created an adjunct database for these secondary
screening followup experiments that is linked but
not part of the main system. The schema for the
SNP database contains tables that model SNPs,
genomic locations, and DNA preparation plates
that are used for genotyping.

Security
MouseTRACS calls a function to determine
whether a user has access to the system. This
function can be overridden, but it currently
authenticates versus GNF security for a valid login
status. Fine-grain permissions are recorded within
the database and determine whether the user can
access the system and read or write to the colony

For Online Only

 - 2 -

management system or the data viewer.
Administrators can edit user permissions by using
a separate Web application.

Mice IDs
Unified mouse tracking imposes a single mouse
identifier that is used to relate test data,
genotyping data, and mouse requests to a specific
animal. Data tracking on animals is critically
important because the right data with the wrong
animals can lead to conflicting results and errant
conclusions. By enforcing the use of a single
mouse identifier, data mixups as a result of
arbitrary numbering can be reduced. Furthermore,
the output from adjunct systems such as automated
sequencers and genotyping machines can be
related directly to the system if the common
mouse identifier is used to mark the data.

Screening data import
Data loading is a time-consuming, error-prone
process. Data files need to be in a specific format
in order to be loaded correctly. Often user-entered
data is incorrect, especially dates. These errors
often cannot be corrected machine side, since the
machines all vary and may not have a suitable
interface (e.g., flow cytometer). In order to address
these problems, we use the following workflow:
Data files of varying formats such as tab-separated
text, comma-separated text, binary, and machine
output are copied from the host instrument to
network storage accessible by a Web server. Users
then visit a Web page that lists the files placed in
the folder and validates the data file. The loading
script tries to identify the type of data file and calls
the appropriate parser to convert the file into a
common format for another script that validates
the data fields and then loads the data. The
validator script checks for valid dates, valid mouse
numbers, and valid data. It tries to see if the
incoming data matches the data range of existing
data of the same test type. Mouse ID numbers are
screened for common errors such as nonsequential
numbers in a sequential series, e.g., 10045, 10064,
10047, resulting from a transposition error. Errors
and warnings are reported to the user for
correction. This instant feedback prevents much
unproductive rapport between the data producer
and the data loader. Once the file passes the
validator script, it is moved into a loading folder
from which files are automatically loaded into the
database every hour.

Data flagging
Finding outliers is one of the main goals of
MouseTRACS. The manual screening of
thousands of data points and subsequent
requesting of retests is tedious and time-

consuming. MouseTRACS will automatically flag
the test outliers and reschedule the corresponding
mice for retesting in the appropriate assay. Or, if
the new data is retest data, then it will be
compared with previous data and marked as either
confirming or nonconfirming.

Upon loading new data, a script is called
to create test thresholds from which flagging
criteria will be drawn. Depending upon the
generation, background, and gender of the mice,
various methods are used to create the thresholds.
In the simplest case, data for a test from mice in
the initial G3 screen is gathered from a sliding
window of test dates such that at least 200
non-retest data points are used to adjust for
instrument drift, i.e., the tendency for baseline
values to trend up and down. The data values are
sorted and 1% of the values are removed from the
top and bottom of the distribution. Some tests with
non-normal data distributions are then log-
transformed. The mean and standard deviation are
calculated from this distribution. A high and a low
value are calculated from a multiple of the
standard deviations from the mean. The default
multiple is 2 standard deviations for low and high
thresholds but each can be configured
independently for each test. The thresholds are
stored in the stat table.

The second case occurs during
heritability testing where a small but deviant
population of mutants is mixed in with a majority
of nonmutant littermates. To identify the mutants,
successive rounds of data trimming attempt to
center the median value in the middle of the
nonmutant distribution. Briefly, the median and
standard deviation are calculated for the whole
distribution of mixed mice. Values outside of 2
standard deviations off the median are discarded.
This step can be repeated several times until a
single distribution is evident. The high and low
values are calculated from the last median and
standard deviation.

Because test values for many assays have
different distributions depending on gender and
background, separate statistics are calculated for
each different combination. For instance, males
have a slightly greater percentage of B cells than
females, while females have a greater percentage
of T cells. Failing to take sex into account can
obscure mutant identification. Scores are
normalized by recording the z-score, or number of
standard deviations off the mean or median
(depending upon the scheme), so that mutants can
be compared relative to the proper distribution.

Once test thresholds are calculated and stored
in the database, new test data is flagged if it falls
outside of the thresholds. If the flagged test is for
an initial screen, the mouse is automatically put on
the task list for retesting. If the flagged test is the

 - 3 -

retest result, it is compared with the initial test
result. If the flags match, i.e., they are both high or
both low, then the results are marked as
confirmed, otherwise they are marked as not
confirmed. If the retest did not flag, then the script
checks if the retest result falls within 5% of the
difference between the high and low thresholds
from the nearest threshold. For example if a test
has a low threshold of 1 and a high threshold of
100 but the test scored only 95, the test would still
be marked as confirming even though it is lower
than the high threshold. Thus, confirming tests that
did not flag indicate borderline cases that need
further examination. After data loading and
analysis, completed retest requests are
automatically taken off the task list. Emails are
sent to researchers when mutant family lines
accumulate multiple affected animals.

References
1. Stein L (2005) Simple Common Gateway

Interface Class (http://search.cpan.org/dist/
CGI.pm/)

2. Sun Microsystems Jpost Applet (2000)
(http://java.sun.com/openstudio/jpost/index.
html)

3. Trager EH (2001) open source Madeline
v0.933 pedigree drawing program
(http://eyegene.ophthy.med.umich.edu/madeli
ne-0.933/index.html)

4. Zhou Y (2004) Data type related to database
tables, spreadsheets, CSV/TSV files, HTML
table displays, etc. (http://search.cpan.org/~
ezdb/)

