reproducibility of our experimental technique as well as between T_0 samples, a statistical measurement model was generated from microarray data from six independent T_0 samples. The measurement model represents the observed $log₂(R/G)$ values in terms of specific effects due to gene, culture, and replicate. Let Y_{ijk} denote the measured \log_2 (R/G) value of the ith gene for the kth replicate slide within the jth culture. The model is given by $Y_{ijk} = \mu_i + \alpha_j + \beta_{k(j)} + \varepsilon_{ijk}$, where μ_i represents the underlying true/idealized (but unknown) value of the log-ratio for the ith gene, α_i denotes a global effect (across all genes) that is present during the measurement of slides from the jth culture, $\beta_{k(i)}$ denotes an effect on the measurement (across all genes) associated with the kth replicate slide within the jth culture, and ε_{ijk} represents the specific effect of the kth replicate slide within the jth culture on the ith gene. The ith gene is said to be up-regulated or down-regulated (treatment versus control) if the estimate of μ_i ($\hat{\mu}_i$) is significantly different than zero. Examination of μ_i shows data between 1 and -1 \log_2 demonstrating no significant differences between the T_0 samples (Fig. 1A).

The other effects (α_j , $\beta_{k(j)}$, and ε_{ijk}) are regarded as random measurement errors and thus hinder the ability to determine whether a gene is up- or down-regulated. In this case, the α_i effects are relatively large ($\hat{\sigma}_{\alpha}$ = 0.57) and are possibly a consequence of unique PMT settings for each culture. The $\beta_{k(j)}$ effects are smaller ($\hat{\sigma}_\beta = 0.08$). In combination, the α_j and $\beta_{k(i)}$ effects introduce a specific global shift (across all genes) in log-ratios for each slide when comparing T_0 measurements averaged from culture two versus averaged from culture one (Fig. 1B). Presumably, these global effects can be effectively removed via

Correlation Between Biological and Technical Replicates. To evaluate

proper normalization. The other measurement error (ε_{ijk}) is gene-specific and much smaller than the α_j and $\beta_{k(j)}$ effects. A LOWESS smooth [54] of the raw standard deviations suggests that $\hat{\sigma}_{\varepsilon}$ is about 0.30 when $|\hat{\mu}| \ge 1$ (Fig. 1C). Thus, disregarding the α_i and $\beta_{k(i)}$ effects, any change greater than 1.6 fold can be viewed as statistically significant with a Type I error (or false positive rate) of about 0.01.

Fig 1. (*A*) Histogram of estimated values of μ log₂ ratio. (*B*) Mean log₂ ratio of culture 2 (C2) slides versus culture 1 (C1) slides (replicate T_0 samples). (*C*) Standard deviation of the ε_{ijk} 's as a function of $\hat{\mu}_i$ across the various genes with LOWESS smooth.

References

54. Cleveland WS: **Robust Locally Weighted Regression and Smoothing Scatterplots**. *Journal of the American Statistical Association* 1979, **74**(368):829-836.

