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ABSTRACT It is shown by use of an extremely simple explicit two-state model that two basic ideas may be sufficient to
understand at least qualitatively the sensitive activation of isometric muscle contraction by Ca*. (@) Ca’>* binds much
more strongly on troponin if myosin is already attached to actin. The steady state analogue of this is that the single rate
constant (in the two-state model) for myosin attachment plus P, release is much larger if Ca?* is bound to troponin. (b)
End-to-end tropomyosin interactions are responsible for positive cooperativity. Although these ideas seem to be
sufficient, this of course does not mean that they are necessary. These same ingredients were used in two previous, more
elaborate models for the cooperative equilibrium binding of myosin subfragment-1 on actin-tropomyosin-troponin, with
and without Ca?*, and for a study of the steady state ATPase activity of the same system. Essentially as an appendix,
the above-mentioned simple treatment is extended to a somewhat more realistic and complicated model of isometric

contraction.

INTRODUCTION
A general outline of the roles of calcium and cooperativity
in the regulation of skeletal muscle has been available for
some time (1-6). Also, a general theoretical formalism
exists (7-13) that interconnects the structure, biochemis-
try, and biophysics of activated skeletal muscle. The
purpose of this paper is to present two of the most
elementary examples possible that extend the theoretical
formalism to include the regulation problem for steady
isometric contractions. These models are so simple, in fact,
essentially pedagogical, that the quantitative results
obtained should not be taken very seriously. However,
these examples appear to contain at least one possible set of
sufficient ingredients for the combined problem. They
should therefore be quite helpful in the future in extending
the treatment to models that are much more realistic in
various ways. A more elaborate analysis would be
- extremely model dependent (details of structure, of regula-
tion mechanism, and of biochemical mechanism). It there-
fore seems a little premature to attempt such a calculation
at the present time. The complexities of the full problem
will surely require a Monte Carlo computational approach
if mathematical approximations are to be avoided. The
present models are of value primarily because they provide
an opportunity to view the elements of the problem in
simple analytical form.

The cooperativity in S-1 (subfragment-1 of heavy mero-
myosin) binding to regulated actin (i.e., actin saturated
with tropomyosin-troponin) (14) is presumably due to
interactions between the ends of neighboring tropomyosin
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molecules (15). We have used this feature in several
previous theoretical papers (16—19) on cooperative equilib-
rium and steady state S-1 activity, employing two different
models. In the present work, our second model (18, 19) of
tropomyosin response to Ca’* and myosin is adopted, but
only because it is simpler. The other model (16, 17) may
well prove to fit the relevant experiments better.

To simplify the biochemistry as much as possible, we
adopt a two-state ATPase cycle, with one attached state
and one unattached state. Such a cycle, of course, omits too
many biochemical details (6, 13) but it does suffice to
provide a semiquantitative understanding of much of mus-
cle biophysics (7,12). One unfortunate complication
inherent in the use of a two-state cycle is the fact that the
“attachment” step includes both attachment and P,
release. Reference 6 should be consulted to compare the
full kinetic diagram with the two-state cycle used here.

As to structure, in the so-called overlap region between
thick and thin filaments there is one actin monomer per
55/2 A in a thin filament, and there is one myosin
molecule, or cross-bridge (two heads), per 143/3 A
(20, 21) in a thick filament. Because there are twice as
many thin as thick filaments, the number of cross-bridges
per seven actin monomers (the number covered by one
tropomyosin molecule) in the overlap region is then 2.02.
For maximum simplicity, again, we therefore assume (a)
that there are exactly two cross-bridges per Tm (tropomyo-
sin) unit, presumably not from the same thick filament, (b)
that only one particular thin filament site (out of seven) is
suitably oriented for attachment of each cross-bridge (Fig.
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1 A), and (c) that only one of the two heads of a cross-
bridge can attach to actin at a time. Previous calculations
(12, 13, 22) indicate that the single-site assumption, b
above, leads to a calculated mechanical force too small by a
factor of ~2 (the same is found in the present work).
Presumably, then, the assumed one-site specificity is too
strong and, instead, two or three neighboring actin sites
should be made available, in models, per cross-bridge.
However, this complicates the kinetic diagram considera-
bly (10, 22), so we omit this refinement.

An important feature included in the theoretical for-
malism mentioned above (9, 11) is the uniform averaging
(z averaging, below) over relative myosin-actin site posi-
tions. With the simplifying assumption, a above, of an
integral number of cross-bridges per Tm unit (seven actin
sites), this uniform averaging (to avoid periodic properties
not observed) would have to have its origin in the random
phases (myosin-actin site distances) of different fibrils in a
single muscle fiber or of different filaments in a single
fibril, or both. The integral assumption is used for a
technical reason: it makes each unit in the one-dimensional
array of Tm units (Fig. 1 4) equivalent, and hence leads to
cooperativity calculations that are much simpler than they
would otherwise be. Incidentally, each thin filament has a
length of ~1 um, so that there are ~26 Tm units per thin
filament. The cooperativity calculations given in these two
papers will ignore end effects (i.e., the calculations apply
strictly to an infinite filament). A finite filament can be
used in future Monte Carlo calculations (along with
numerous other refinements); in fact, a finite filament is an
advantage for Monte Carlo calculations.

Fig. 2 illustrates the properties we assume for Tm-Tn
(Tn, troponin), when Ca®* or S-1, or both, are bound or
attached. The properties are the following (19). Tm-Tn
blocks the binding sites on the thin filament. When Ca’* is
bound, but not S-1, there is a conformational change in Tn
that moves Tm relative to the actin sites. This movement of
Tm requires expenditure of free energy, which would be
reflected in the binding constants of Ca®*. Tm is moved
even further, with a greater cost in free energy, when the
first S-1 is bound or attached to a site of the unit, in the
absence of Ca?*. If the unit is already saturated with Ca*,
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FIGURE 1 (A) Model for binding two Ca®* on troponin (7'n) and two
myosin (M) on specific actin sites x(A4 and B). Tm is tropomyosin. (B)
Simpler model used in sections 1-3 with one Ca®**, one M, and one
specific actin site x per Tm unit.
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FIGURE 2 Schematic representation of four states of tropomyosin-
troponin used in binding model (19). Troponin undergoes a conforma-
tional change (circle, square, rectangle) when Ca?* is bound (heavy
point), causing tropomyosin-troponin (Tm-Tn) to change position in
relation to the actin sites when tropomyosin-troponin is in state 1
(substates 10, 11, 111, according to number of Ca®* bound). When S-1-N
(N, nucleotide) is bound, tropomyosin-troponin is in state 2, with a
position relative to actin sites that is independent of troponin conforma-
tion.

attachment of the first S-1 requires less work against Tm:
the attachment or binding constant of S-1 is correspond-
ingly larger. Once one S-1 is attached to a unit, binding of
either Ca’* or additional S-1 requires no further work
against Tm: these binding or attachment constants, for
Ca®* or S-1, are therefore maximal.

As will be seen below, there are two essential ingredients
in the regulation part of the problem, for the model
adopted here. (a) Ca”* binds more strongly to Tn if S-1 is
already attached to actin (1) or, equivalently, either at
equilibrium (1) or at steady state (23), S-1 attaches more
strongly to actin if Ca’* is already bound to Tn. This
steady-state effect is a consequence of an increase in the
rate constant for the step that includes P; release (23). (b)
There is strong positive cooperativity in the system (14, 15)
owing to nearest-neighbor Tm-Tm interactions. The latter
property sharpens the response to the former.

Sections 1-3 treat an even simpler system than that
outlined above (Figs. 1 4 and 2), namely, the hypothetical
model shown in Fig. 1 B in which there is only one
cross-bridge per Tm unit and only one Ca?* binding site
per Tn. Even this elementary system retains the essential
Ca”* and cooperativity features of skeletal muscle regula-
tion. In sections 4 to 6 this treatment is extended to the
somewhat more realistic and complicated model in Figs.
1 A and 2. Even this modest refinement leads to consider-
able new complexity.

We start in section 1 (and again in section 4) with the
equilibrium attachment problem. This is done not because
it is thought that regulation is essentially an equilibrium
problem but rather, again, for a technical reason: If a
two-state cycle is used to handle the steady state problem,
then it is possible to cast the steady state analysis into
quasi-equilibrium form. Hence, relatively simple equilib-
rium results can be taken over, for the steady state, without
formal change. This cannot be done if three or more states
are used in the kinetic cycle. In this latter case the
theoretical problem is much more formidable. Despite the
equilibrium flavor at the outset, regulation proves here to
be a kinetic, not an equilibrium, problem (cf. Chalovich
and Eisenberg [23]).
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1. EQUILIBRIUM ATTACHMENT OF
MYOSIN, MODEL 1

We consider first an equilibrium version of the model and
then turn to the steady state case. This procedure is useful
because the steady state treatment has a close formal
resemblance to the equilibrium treatment. The system of
interest is the one-dimensional lattice of units in Fig. 1 B,
with nearest-neighbor Tm-Tm interactions. An isolated
individual unit (no neighbor interactions) can exist in four
different states (a, b, ¢, d), as shown in Fig. 3. The ana-
logue of Fig. 2 for the present simpler model is presented in
Fig. 4. When Ca?* is not bound to Tn (Fig. 3), the
attachment equilibrium constant of M (myosin cross-
bridge) to A (the specific actin site, x) is K. This is a
dimensionless constant (M is part of the myofilament
structure and does not have a concentration) for the
process @ —> b. Included in X (i.e., reducing its value) is the
work necessary to move Tm (Fig. 4). When M is not
attached to A (Fig. 3), the binding constant of Ca>* to Tn
is K,(process a — c). The concentration of Ca’* is p. When
M is attached to A, the binding constant of Ca?* to Tn is
K, (process b — d). It is much easier to bind Ca>* when M
is attached (Fig. 4): K, » K,. We shall use the ratio K, /K,
= 20, as an example. This is based on the value of the
corresponding ratio (19) in sections 4-6, evaluated from
data in reference 1.

The grand partition function (24) for an isolated unit is
then

E=1+K+Kp+Kep-K, (1)

where the individual terms are proportional to the popula-
tions of the corresponding states (Fig. 3) at equilibrium.
Thus, because K, » K,, M attaches to A much more
readily when Ca?* is bound to Tn (see also Fig. 4): when
Ca®* is not bound, the attachment constant of M is K;
when Ca?* is bound, the attachment constant of M is
(Ko/K)K (Fig. 3).

At an arbitrary p, the probability 6 that M is attached, in
an isolated unit, follows from Eq. 1:

0= K(1 + Kyp) /4. 2
The two limiting cases of interest are

0-K/0+K) (o=0) 3)
- (K/KDK/[L + (K/KIK]. (=)  (4)

For example, if K = 0.2 and K,/K, = 20, then 6 = 0.167
when p = 0, and 6 = 0.8 when p = «.

We now consider a one-dimensional array (Fig. 1 B) of
these units, at equilibrium. At this point, Tm-Tm interac-
tions have to be introduced explicitly. These are responsible
for the cooperativity in the system. Fig. 4 is pertinent here.
In this figure, the states are classified and relabeled
(0, 1, 2) according to the position of Tm relative to the
actin sites. As in reference 19, we assume an optimal
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FIGURE 3 Four states of an isolated unit taken from Fig. 1B, at
equilibrium. The relative weights (Rel. Wts.) of the four states are given
by grand partition function terms.

Tm-Tm interaction if two neighboring units are in the
same position or state (0, 1, or 2) and less favorable inter-
actions the larger the position difference of two neighbors.
This assumption is consistent with the equilibrium S-1
binding data (19). If we let w; be the interaction free
energy (a negative quantity, relative to infinite separation)
between two Tm neighbors in states i and j (or j and i), and
define x; = e™/*", then we take (in accordance with the
above discussion)

Xoo =Xy =X =X, X > Xqp, X2 > Xa. %)

The exact equilibrium properties of the one-dimensional
array can be deduced using the well-known matrix method
(25). Because of the three states 0,1,2, we need a 3 x 3
matrix here. The single-unit grand partition function
terms, namely, 1, K,p, and K(1 + Kyp), for states k = 0,1,2
are entered in the successive rows of the matrix. These
entries refer to the kth unit in the linear array. The
columns relate to the k + 1th unit, which may also be in
any one of the states 0,1,2. The appropriate Boltzmann
factor for the k, k + 1 neighbor interaction is then
multiplied into each matrix element. Thus the complete
3 x 3 matrix in this case is

X Xo1 Xo2
K,.pxo K.px K.px,,
K(1 + Kwp)xe; K(1 + Kyo)xi2 K(1 + Kpp)x/ . 6)

If Ymax is the largest eigenvalue of this matrix, then the
grand partition function for a long array of m units is X =
Ymax- Because there is a factor K in the matrix for each
attached M (myosin), the equilibrium fraction of units
with M attached is given by

0 = KolnYpg, /9K. (7

This can be evaluated numerically for arbitrary p.
In the limiting case p — 0 (no Ca?*), the matrix

M
State 0 1 2
{a (c) (bd)

FIGURE 4 Simpler version of Fig. 2 for the model used in sections 1-3.
The state labels a, b, c, d are from Fig. 3.
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simplifies to (states a and b, Fig. 3)
Kxp, Kx/. (8)

0 =2KY;'/R(l1 - K +R,) &)
R, = [(1 - K)* + 4KY;']'?

Here we find (26)

Y‘,! XZ/X(2)2> 1,

where Y, is the effective cooperativity parameter in the
absence of Ca’*. Y, > 1 (see Eq. 5) corresponds to positive
cooperativity. We shall take Y, = 20 (19) as typical. Y, is
larger the larger the incompatibility between two Tm ends
in states 0 and 2 (Fig. 4) relative to two Tm ends in states
0,0 or 2,2. Y, depends on the nucleotide bound to M (19).

In the limiting case p — = (Tn saturated with Ca®*), the
matrix is (states c and d, Fig. 3)

(K.px K.pX.z)
KKipx,; KKyox/, (10)

From this we obtain (26)
0 = 2(K,/K,)KYZ'/R.[1 — (Ky/K)K + R.] (11)
R, = {[1 - (Ko/K)K) + 4(Ko/K)KY '}
Y, =x*/x},> 1.

Note that Eq. 11 has the same functional form as Eq. 9,
but (K,/K,)K replaces K, and Y, replaces Y,. Although
Y. > 1 (positive cooperativity), Y., < Y, (Eq. 5). We take
Y. = 4 (16) as a representative value.

If each element in Eq. 6 is divided by x, we see that in
this more general case (arbitrary p), a third effective
interaction parameter appears: Y, = x*/x}, > 1 (Eq. 5). A
simple energetic argument in relation to Fig. 4 suggests
that Y, = Y,/Y., so we take Y, = 5, below, as typical.

The right-hand curve in Fig. S is a plot of 6 (fraction of
M attached) against log K, using Eq. 9 (i.e., in the absence
of Ca®*) with Y, = 20. On this curve, § = 1 at K = 1 (Eq.
9). The left-hand curve in Fig. 5 shows 6 as a function of
log K, as calculated from Eq. 11 (i.e., with Ca* satura-
tion), using K,/K, = 20 and Y, = 4. This latter curve has
0 = 5 at K K/K, = 1, that is, at K = 0.05.

The two curves in Fig. 5 contain an equilibrium version
of muscle regulation by Ca®*. If the attachment equilib-
rium constant for M, in the absence of Ca?*, has a value
significantly <1, e.g., K = 0.2, while the attachment
constant for M in the presence of Ca’* has a value
significantly >1, e.g., (K,/K,) K = 4, then the introduction
of Ca?* into the system can result in a dramatic increase in
the probability 6 of attachment of M. This is illustrated by
the long vertical arrow in Fig. 5 placed at K = 0.2 along the
abscissa. Here 6 increases from 0.015 to 0.916 when Ca”*
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log K

FIGURE 5 Plots of 6 from Egs. 9 and 11 as functions of log K. These
curves correspond to extreme Ca’* concentrations (p = 0, p = ). The
vertical arrow shows the change in § when Ca?* is added, if K = 0.2.

is added. Cooperativity plays a significant role in this
result. In the absence of cooperativity (Y, = Y, = 1), as
already considered following Eq. 4, the corresponding
increase in 6 would be less impressive: § = 0.167 to 0.8.
Note also that there would be significant attachment (6 =
0.167) in the absence of Ca’*. Fig. 5 is analogous to Fig. 2
in reference 16, where K, ¢ corresponds to K here.

The above effect of Ca’* addition is shown in more
detail in Fig. 6, where the solid curve is 6 as a function of
log K,p along the vertical arrow in Fig. 5 (only the end
points are given in Fig. 5). This curve (Fig. 6) has been
calculated numerically from Eq. 7, using Y, = S as well as
the other parameters already mentioned. The analogue in
reference 16 is the dashed curve in Fig. 3.

Because a cross-bridge cannot exert force on an actin
filament unless it is attached (9, 11), the result in Fig. 6 for
the equilibrium degree of attachment is what is needed
qualitatively. Of course, at steady state, attachment is
governed by rate constants (see below), not equilibrium
constants. Isometric force is activated when the Ca”*
concentration p is increased by a factor of ~100 (from 10~’
M to 10~° M). This corresponds to 2 units on the abscissa
of Fig. 6. The degree of cooperativity in this figure, that is,
the sharpness in the rise in 6, is seen to be consistent with
this observation. It should be emphasized that the values of

e P=o0 f_:_d
K=02 kT
08 [ K,/Ky=20 ==
Y=20,Y,=5Y, =4 —> -
06 0 11159 d
v 110
04 | Y0=Y‘=Y.=1\ _
-~ B
Rk ——
p=0 .
-2 -1 0 +1

log Kq p

FIGURE 6 Change in 8 as a function of log p (Ca?*) along the vertical
arrow in Fig. 5 (i.e., with K = 0.2), as calculated from Eqs. 6 and 7. The
broken curve is obtained in the absence of cooperativity. In the example
leading to Eq. 31, 6 is proportional to the isometric force F (right
ordinate).
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the cooperativity parameters being used here are based on
equilibrium S-1 - ADP binding data (16, 19). Larger
parameter values would lead to sharper curves. Indeed, the
values of Y,, Y;, and Y__ are expected to depend (19) on the
conformation of the attached myosin and on the bound
nucleotide in the attached state.

The broken curve in Fig. 6 is what is found in the
absence of cooperativity (Y, = Y, = Y, = 1). This curve
has been calculated from Eq. 2, using K = 0.2 and K,/K, =
20. We turn now to the corresponding steady state prob-
lem.

2. THE STEADY STATE (ISOMETRIC)
SYSTEM, MODEL 1

To maintain our policy of maximum simplicity, we adopt a
two-state cycle, shown in Fig. 7 A, to represent the ATPase
activity of M, as well as attachment-detachment of M to
actin (6, 13). The schematic diagrams in Figs. 1 B, 3, and 4
are still applicable, but attachment is now part of a
two-state cycle and, in fact, can be achieved in principle by
two different biochemical routes, shown in Fig. 7 4 (re-
lease of P;; and release of T, binding of D). Note that
neither route involves just simple attachment; in both cases
other elementary events are included. Fig. 7B and C,
shows, with simpler notation, the same two-state cycle,
without and with Ca?* bound to Tn, and the first-order
rate constants that we adopt for these cycles for a single,
isolated Tm unit. These rate constants are perturbed by
neighbor interactions in the array in Fig. 1 B, as discussed
below. Fig. 8 4 and B, presents the corresponding free
energy curves (12). In one complete cycle (either o, 3, or «,
A), the free energy of Tm + Tn + M drops by an amount
Apatp = AT, the free energy of hydrolysis of ATP (~13
kcal mol™!).

The free energy of the attached state is a function of z, a
variable (usually called x) that locates the axial position of
M relative to its specific actin site. We take this function to
be a parabola (again, the simplest choice). K,(z) is the
attachment constant of M at z in Fig. 8 4 (no Ca®*) via the
a, o transitions and K,(z) is the (very weak) attachment
constant via (', 8. The corresponding (larger) attachment
constants in Fig. 8 B (Ca’* bound) are KK, (z)/K, via the
«, k" transitions and K, K,(z)/K, via X', \. K,(z) and Ky(z)

Unattached
AQM-DJ?‘ A+M CRTM
~T
P t l alfe Al xtx x}a
! D
A-M-D Q cﬁor
Attached
A B C

FIGURE 7 (A) Two-state ATPase cycle, with attachment-detachment.
D = ADP. Rate constant notation for the cycle without (B) and with (C)
Ca?*.
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are both analogues of K in Fig. 3. X, is independent of z
because it refers to binding of Ca’* on Tn with M
unattached (hence z cannot be involved). We take K to be
a constant as well, though in principle it could be a function
of z (e.g., if the angle of attachment of S-1 to actin varies
with z). With K, and K, chosen as constants, the two
parabolas in Fig. 8 are the same except for vertical
displacement; the left one (no Ca?*) is higher by an
amount kT'In(K,/K,). The deeper free energy well in Fig.
8 B corresponds to tighter attachment of M to A when
Ca’* is bound.

The eight rate constants in Fig. 8 are also, in general, all
functions of z. We assume that Ca’* binding and release
are relatively fast processes, always at equilibrium. Hence
corresponding rate constants need not be introduced.

If the lowest free energy level in either Fig. 8 A or 8 Bis
chosen as zero, then the top (constant) level is AkT and the
attached state has free energy:

no Ca** kT[A — T, + (£*/26%)]
= kT[A - InK,(2)] (12)
Ca®*  kT[A - T. + (z%/26%)]
= kT[A — In(K,K,(2)/K,), (13)
where kT/d” is the force constant of the free energy curve.
Other useful relations (12) are

a(z)/a(2) = K.(2) = exp[T, — (2}/26%)] (14)
B(2)/B'(2) = 1/Kp(2) = exp[A — T, + (2°/20")] (15)
«(2)/K'(2) = K, K.(2)/K, = exp[T. — (z°/20%)] (16)

A2)/N(2) = K, /K Ks(2z) = exp[A — T, + (*/26)] (17)

af/a'f = kN[N = K, /K; = e* (any z) (18)
T, =T. - In(K\/K,) (19)
22 = 26T, 22 = 2¢°T... (20)

In the isometric steady state each z value is independent,
for computational purposes. This feature is what makes the
steady isometric case relatively tractable.

FIGURE 8 Free energy curves corresponding to Fig 7, 4 and B.
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Quasi Equilibrium

If we now make several quite reasonable kinetic assump-
tions, the formal equations of the equilibrium treatment in
the previous section can also be used at steady state. This is
possible because of our employment of two-state cycles
(27, 28). Cycles with three or more states do not have this
quasi-equilibrium property: the analysis becomes much
more complicated.

Nearest-neighbor interactions (Fig. 1 B) will perturb
the rate constants in Fig. 7 B and C. If we divide the
perturbation free energy symmetrically between forward
and backward transitions in all four cases, which is plausi-
ble because of the complexity of the condensed transitions
in Fig. 7 A4 (6, 13), this is expressed formally by taking the
kinetic parameters (27) f, = f = f, = /A = .

The interaction parameters Y, Y, , and Y, arise as in the
equilibrium problem. The values depend on the relative
compatibility or incompatibility of pairs of Tm ends in
states 0, 1, 2 of Fig. 4. State 2 in Fig. 4 refers here
specifically to A - M - D (Fig. 74). Hence it is appropri-
ate to use Y values found for S-1 - ADP (14, 16, 19).

The rate constants in Fig. 7 C are also perturbations of
those in Fig. 7 B, owing to the presence of Ca’*. The free
energy effects are expressed by (see Eqs. 14-17)

«/x = (af ) (Ko/K,)
AN = (B/8)(K./Ks).

(21

Physically, the presence of Ca’* reduces the work M has to
do against Tm in the attachment process (Fig. 4). The total
effect should therefore appear in the rate constant for
attachment. Formally, f$* = 1 and f§* = 0 (27), or

« = a(K,/K,), K =a
A=, N = B(Ky/K,)

(22)

for the separate rate constants.
We omit the details (27, 28) but it is easy to show that,
with the relations

fotfo=1,  fith=1  fE+Sf5=1 (23)

all satisfied, as above, the steady-state distribution of states
in Fig. 1 B, including interactions, will have an equilibrium
form. To be more specific, in Fig. 3 and in Egs. 1-11, we
merely replace K by

5:(2) = [a(2) + B'(2)]/[B(2) + «(2)]. (24)

No other parameter changes are needed. If, in Fig. 7 B, the
a, o transitions corresponded to the true equilibrium
constant KX (i.e., if the 8, 8’ transitions did not occur), then
we would have K = a(on)/a/(off ). With the 8, 8’ transi-
tions included, the steady-state quasi-equilibrium analogue
is s,(z) = total on/total off = (a + 8)/(8 + &) as in Eq.
24. The analogue of the attachment constant (K,/K,) K, in
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Egs. 4, 11, and elsewhere, is (using Egs. 22)
s.(2)=(k&+N)/(A +x)
= (Ko/K)(a + B)/(B + &) = (Ku/K,)so(2). (25)

Thus K,/K, automatically plays the same role in the
steady-state system as in the equilibrium system. As a
consequence of these close analogies with the equilibrium
attachment problem, many results of the previous section
carry over to the present section.

Attachment at Steady State and at
Equilibrium

In the equilibrium attachment of M in Fig. 3, the attach-
ment constant K, with no Ca>* bound, is increased to
(K,/K,) K when Ca®* is bound. Consequently, the degree
of attachment of M to A is increased by Ca’*. At steady
state (neglecting here, for simplicity, the reverse or primed
rate constants as we do below in section 3), the quantities
that determine the degree of attachment, i.e., the ana-
logues of K and (K,/K,) K at equilibrium, are rate constant
ratios: a/f =~ s,, with no Ca** bound, and x/\ =~ s, when
Ca’* is bound. The detachment steps, 8 and X (Figs. 7 and
8), are not the inverses of the attachment steps, a and «.
Furthermore, several successive elementary steps are tele-
scoped into both “attachment” and “detachment” in the
simple two-state cycle (Fig. 7 4) we are using. Thus, at
steady state, the regulation of the degree of attachment of
M . D to A (Fig. 7 A) by Ca’* is not a consequence of the
effect of Ca’* on the simple equilibrium binding to M - D
to A (as in section 1) but rather of the effect of Ca’* on the
attachment and detachment rate constants o and g.
According to Eq. 22, in our simple model the presence of
Ca’* does not affect 3 (i.e., A = 8) but a is increased by the
factor K,/K, [i.e., x = a(K,/K,]. The rate constant a and
the equilibrium constant K, refer to the overall process:
attachment of M . D . P, to actin plus P; release. The free
energy decrease in this process, kTIn K, (Eq. 12 and Fig.
8 A), is increased in magnitude by Ca’* to kTn(K,K,/K,)
(Eq. 13 and Fig. 8 B). K, refers here to binding of Ca?* on
Tn with M . D . P; (Fig. 7 A) unattached, whereas K,
refers to binding of Ca?* on Tn with M . D attached to A
(Fig. 4). In the present steady-state model we need Ca’* to
be bound more strongly to Tn when M - D is attached to A
(K, > K,). This has a kinetic effect at steady state,
converting « to x = a(K,/K,) (Eq. 22).

In the simple two-state cycle being used here, « and «
refer to attachment of M - D - P; to actin plus P, release.
Recent experimental work (23) shows that P, release is the
Ca**-sensitive part of this over-all process. A more detailed
cycle would separate attachment from P, release.

Isometric Force and ATP Flux

We first discuss the limiting cases p = 0 (no Ca’*) and
p = o (Ca?* saturation), because they are simpler. The
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attachment probability 6(z) can be calculated from Eq. 9
or 11 using s,(z) in place of X in Eq. 9 and s,.(2) in place of
(Ku/K,)K in Eq. 11. This has to be done at each z. The
mean isometric force F per cross-bridge is then found by
averaging the force (kT/o%)z of a cross-bridge attached at
z over the repeat distance d = 385 A (9, 11, 12):

Fd 1 r.p
kT~ 2o 0(2) zdz. (26)

The mean ATP flux per cross-bridge, J, is a little more
complicated. The values of the perturbed rate constants in
the cycle of a given unit, at any particular time, depend on
the instantaneous states of the two neighboring units.
Thus, it is necessary to count the numbers of triplets of
various kinds in the steady state (quasi equilibrium). This
has been done elsewhere (26). The result for the flux for a
cross-bridge at z, when p = 0, is (reference 26, Eq. 21)

af — of’
B+a )x

[(l - so)z + 4Yo—l/zso + (1 + so)Ro] YJI/Z
Rl +2Y]'s, + 55 + (1 + 5) R,]

J(2) -(

(27)

Again, as with 6(z) above, J(z) must be calculated at each
z. For the case p = , substitute everywhere « for , A for 8,
and subscript « for subscript 0. The effect of these
substitutions on the leading parentheses () in Eq. 27 is to
multiply by K, /K,. Then, in either case, the mean flux is

N
=3, J@d (28)

We turn now to the calculation of F and J when p is
arbitrary. Because of the quasi equilibrium, Egs. 6 and 7
can be used as before (Fig. 6) to find 8 (numerically) at
arbitrary p and z if we replace K by s,(z) (Eq. 24). No
other parameter change is needed. For a given p, 0(z) must
be calculated over the range in z. Then, for any p, F can be
obtained using Eq. 26.

The calculation of J(z) at arbitrary p and z, to use in Eq.
28, is much more laborious, though the method itself is
straightforward. We merely sketch the procedure here. To
encompass a triplet in a nearest-neighbor pair of units, we
now take two successive Tm molecules as one unit. The
units are nonoverlapping. Each unit can be in nine
different states (0, 1,2 x 0, 1, 2), so we must use 2 9 x 9
matrix. The x; interactions occur both within units and
between neighboring units. There are 18 kinds of triplets
that must be counted. To count a particular type of triplet,
say, 000, we introduce a fictitious factor ¥, for each 000,
into each matrix element ij in which the sequence 000
occurs in the pair ij (e.g., the pair 10, 00). Then, in a large
array of m Tm molecules, the mean number of 000 triplets
is found from

Noo = (m[2)(¥3In,,,,/3%),_,, (29)
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where 7., is the largest eigenvalue of the 9 x 9 matrix.
The derivative has to be evaluated numerically. This
method is also discussed in reference 29, in relation to its
Eq. 30. With the numbers of all triplets available, J(z) can
be calculated using the procedure in Eqgs. 1-4 of reference
26.

3. NUMERICAL EXAMPLE, MODEL 1

The objective here is to provide a numerical illustration of
the above steady state equations. In view of the many
simplifications already introduced, we use a very elemen-
tary but still significant (12) kinetic model. We first
introduce the “physiological” rate constants «, &, A, X’ (i.e.,
with Ca’* present). The set a, o/, 8, 8 (no Ca?*) then
follow from Egs. 22. Also, with s,(z) specified (Eq. 25),
5,(2) is simply s..(z) /20 (taking K, /K, = 20).

To begin with, we take the parameters of the Ca’* free
energy curve to be (13) A = 23, T, = 20, and o® = 200 A2,
Then T, = 17.00. We take x and A as constants (12) in the
range z = 0, and « = 0, X finite for z < 0. Thus attachment,
force generation, and ATPase activity occur only when z >
0. Specifically, we adopt A as a reference rate constant (to
be evaluated later) and choose x = 4\ (to make s, ~ 4,
corresponding to K, K/K, = 4 in Figs. 5 and 6). Then Eqs.
16 and 17 determine the functions x'(z)/A and N'(z)/\.
These four rate constants are shown in Fig. 9, as functions
of z. Also included in the figure is the function

5.(2) = [x + N(2]/IA + K (2)]. (30)

Because \'(2) is so small and «'(z) rises so rapidly near z =
90 A, s.(z) has practically a constant value, s, = 4, from
z=0toz =75 A and then drops rather rapidly to zero. The
half-value, s, = 2, occurs at z* = 86.3 A.

We should now use s,(z) and s.(z) from Fig. 9 to
calculate 0(z) and J(z) for insertion in Eqs. 26 and 28.
However, as a final simplification and approximation, we
adopt the constant values s, = 0.2, s, = 4.0 in the interval
0 = z < z*, and 5, = s, = 0 otherwise. This amounts to
neglecting the primed rate constants (back reactions) in
this interval, though z* itself depends on «'(z). Because s,

X/
x/A

A/A
P2 J k
20 40 60 80 100 z-
FIGURE9 Plot of rate constants x, ¥, A, X’ in an example, as functions of

z, all relative to the reference constant A. Also included is s.(z) from Eq.
30.
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and s_ are now considered to be constants, # and J are also
constants in the same interval. Also, the leading paren-
theses in Eq. 27 becomes « in this interval and becomes « in
the p = = case. Thus we have, from Egs. 26 and 28,

Fd/kT = 0z%*/2¢>, T =Jz*/d. 31)

Isometric Force

Because the values chosen for s, and s, are the same as
those used for K and (K,/K,) K, respectively, in Fig. 6, the
steady state 0(p) in Eq. 31 is the same as the equilibrium
8(p) in Fig. 6. Hence, the curves in Fig. 6 are also isometric
force curves, as indicated by the right-hand ordinate. The
conversion factor is z*?/20” = 18.61. The limiting values of
Fd/kT for the solid curve are 0.278 at p = 0 and 17.05 at
p = =. As already mentioned, the steepness of the solid
curve in Fig. 6 is consistent with in vivo requirements, but it
could be made steeper by increasing the cooperativity
parameters. Also, experimental force curves (30-34) have
this same form. However, the present, illustrative model is
too simple to justify the actual fitting of experimental
curves. _

The experimental value of Fd/kT at p =  (taken from
reference 13) is 30. As already mentioned, the discrepancy
of a factor of ~2 is presumably due to the assumption that
only a single specific actin site is available for cross-bridge
attachment.

Isometric ATP Flux

Because of the complexity mentioned at the end of the
previous section, we calculate J only for p = 0 and p = .
Using s, = 0.2, Y, =20forp=0and s, = 4.0,Y_ = 4 for
p = =, Eq. 27 leads to

J = 0.2393a = 0.2393 x 47/20
J=0.1312¢ = 0.1312 x 4\

(p=0)
(p = ).

Then, with z*/d = 0.224 in Eq. 31, we find J = 0.0107\ for
p =0andJ = 0.1176) for p = . The latter flux is larger by
a factor of 11. Also, if the experimental value of J(p = ) is
taken to be 3 s~! (35), then A = 25.5 s™". The value of « is
then 102s~".

In the absence of cooperativity (Y, = Y_ = 1), the two
values of J in Eq. 32 become

J = 0.8333a = aB/(a + B)
J =020 = A /(x + )

(32)

(»=0)
(ﬂ - °°)’
using s, = a/f = 0.2 and s, = x/X = 4.0.

(33)

4. EQUILIBRIUM ATTACHMENT OF
MYOSIN, MODEL 2

In Fig. 1 A there are exactly two myosin molecules (M) per
Tm unit. The myosin molecules are regularly spaced. The
two specific actin sites (x) to which these molecules can
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attach are designated A and B. The binding of the two M
molecules (call them M, and M) to A and B is not
equivalent because the position of M, relative to A is
shifted 55/2 = 27.5 A compared with the position of My
relative to B. The details of the model just outlined have
been arbitrarily selected for illustrative purposes and ease
of calculation; they are almost certainly not realistic.

Fig. 2 shows, for one Tm unit, the four possible states of
Tm relative to actin, depending on the binding of Ca’* or
of the S-1-N part of a myosin molecule (S-1, subfragment
one; N, nucleotide bound to S-1). State 1 (no S-1 bound) is
divided into three substates depending on Ca?* binding.
Tm is pushed into state 2 when the first M is bound to the
unit; binding of Ca’* or of a second M does not alter the
position of Tm in state 2 relative to actin (19).

The grand partition function of a single isolated Tm unit
is

£=1+2K.p + a*K2p® + £t (34)
&= (Ka + Ky + K\Kp) /L 35)
& =1 + 2Kyp + B*K3p%. (36)

The terms in Eq. 34 refer to the successive states in Fig. 2.
Here p is the concentration of Ca’*, K, is the binding
constant of the first Ca>* on a state 1 Tm, a*K, is the
binding constant of the second Ca?* in state 1, and K, and
B* are similar for binding Ca?* on a state 2 Tm. Of course
a* and B* are not to be confused with the rate constants a
and B of section 2. The attachment constant of M, on site
A, if Mg is not attached, is K,/L. If Mg is already
attached, this constant is K. K,/L is the analogue of K in
section 1, where there is only one M per unit. Similarly,
Kg/L and Kj refer to attaching Mg with M, not attached,
or attached, respectively. The factor L » 1 arises from the
work needed (19) to push Tm from its position relative to
actin in state 10 to its position in state 2. Thus, for example,
it is much easier to attach M, if My is already attached
(K, » K,/L). As usual, the separate terms in Eq. 34,
including the subterms in Eqs. 35 and 36, are proportional
to the corresponding relative populations of the states or
substates at equilibrium. This remark applies to isolated
Tm units (no cooperativity). We turn now to a long linear
array of Tm units, as in Fig. 1 A4, where there are nearest-
neighbor interactions between Tm units that perturb the
equilibrium just described.

There are 10 kinds of nearest-neighbor interactions
(19), of which four are illustrated in Fig. 10. We again use
the notation x;; = e ~™/*”, where wj is the ij pair free energy
relative to infinite separation of i and j. Like pairs all have
the same free energy (19) so that

Xoo = Xy = Xqipp = X2 ™ X. 37

In designating pairs, the second subscript (0, I, or II) for
state 1 (Fig. 2) is used here and in Fig. 10. Then we define,
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FIGURE 10 Notation used for nearest-neighbor Tm pairs, based on
states in Fig. 2. The second subscript (0, I, II) is used for substates of state
1.

for the six unlike pairs,
Y = xz/xf\h Y,= Xz/xcznh Yo= x’/xéz

(38)
Y,= xz/x?lh Y, = Xz/"?z, Y, = xz/xfu.

This a generalization of the system used in section 1. In the
limit p — 0, Y, dominates (states 10 and 2 are populated).
In the limit p — o, Y, dominates (states 1II, and 2 are
populated).

The 4 x 4 matrix corresponding to Eq. 4 in reference 19
(or to Eq. 6 here) is

1 X X X
AX, A AX, AX,

BX, BX, B BX,
cx, CX, Cx. C (39)
where
X, =Y 2 4 =2Kp, B =a*Kp?, C = ¢, (40)

Various mean equilibrium properties can be found (19) by
differentiating the largest eigenvalue v,,, of Eq. 39. For
example, because each state 2 element in Eq. 39 (fourth
row) contains a factor C,

p, = dlnvy,,,/dln C, (41)

where p, is the fraction of Tm units in state 2. Within state
2, from Eq. 35, the relative populations of the three kinds of
attachment of the two M molecules are proportional to K,
(M, only), Kg, and K, K (both M’s). Thus the probability
that A is attached, for a unit in state 2, is

0A - (KA + KAK3)/(KA + KB + KAKB)' (42)

This is independent of p and of cooperativity parameters
because of our assumptions about state 2 (19). The over-all
fraction of M, attached is then p,8,. The corresponding
fraction for My is p,0s.

Limits of High and Low Ca?*
Concentration

In the limit p — 0, only states 10 and 2 are significant, and
&, = 1. Thus Eq. 39 becomes

. <)
£X & (43)
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Similarly, in the limit p — o, only states 11I, and 2 are
important, and §, = 8*K}p’. In this case, after dividing
each element by a*K?p?, Eq. 39 reduces to,

1 X,
(Ez(m)X. &z(w)) (44)
where
() = (Ku + Kp + KxKp)/L(«) (45)
L(=) = L(a*K}/B*K?}). (46)

Egs. 43 and 44 are alike except that X, replaces X, and
L(c) replaces L. Also, Eq. 43 corresponds to Eq. 8, with £,
in place of K, and Eq. 44 corresponds to Eq. 10, with £,()
in place of (K,/K,)K. Thus, the analogue here of the
important parameter K, /K, in section 1 is

£X(=)/£; = L/L(=) = B*K}/a*K?. 47

This ratio is almost 20 (1, 19) when M is S-1 (details
below). That is, Ca?* binds more strongly on troponin
when S-1 is bound to actin. Because, by assumption,
L() = 1 (i.e., M pushes Tm further than two Ca’* do; see
Fig. 2), we must also have L > 8*K}/a*K?.

When p — 0 or p — «, p, can be calculated just as in
Egs. 9 and 11 (with the parameter changes mentioned
following Eq. 46). Because £,() » £,, the population of
state 2, p,, can be much larger at p = « than at p = 0 (just
as in Fig. 5). The same is then true of the amount of
attachment of M, and My because the fraction of M,
attached is p,8, and the fraction of My attached is p,f85.
The quantities 8, and 6 are independent of p and hence
have the same values at p = 0 and p = .

5. THE STEADY STATE (ISOMETRIC)
SYSTEM, MODEL 2

The general principles here are the same as in the discus-
sion of steady states in section 2. However, we have to
contend now with more complexity, because there are two
M molecules and two Ca?* per unit.

The basic ATPase cycle is, again, that shown in Fig. 7 A.
The rate constants, attachment equilibrium constants, and
attached-state free energy curves, associated with this
cycle under various conditions (see below), are all func-
tions of z. According to our arbitrarily selected model in
Fig. 1 A, corresponding free energy curves for A + M, and
B + Mg will be related to each other as shown in Fig. 11. A
and B are equivalent sites and M, and M, are considered
to be equivalent cross-bridges (though they probably come
from different thick filaments). Hence the two curves in
Fig. 11 are the same except for a lateral shift. As an
example, the two points included in Fig. 11 correspond to
the particular position of the Tm array relative to the M
array pictured in Fig. 1 4 in which B is optimally placed
for Mg attachment.
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il '/ hew

4kT
TEFree A rkt A .
nergy
M, M, Qi
B+Mg : : A+M,
-275 0 z(A)—
FIGURE 11 Relationship between free energy curves of A + M, and

B + Mj in the section 5 model (Fig. 1 4). Au,yp is the free energy of
hydrolysis of ATP.

The value of z is arbitrarily defined by the relation of A
to M,, with z = O set at the free energy minimum for
AM,.

Corresponding to Fig. 7 B, and C, an isolated Tm unit
has three kinetic diagrams, depending on the number of
Ca”* bound to troponin, as shown in Fig. 12. All transitions
are reversible, but the inverse arrows and rate constants
(primed, e.g., o/ is the inverse of a,) are omitted to
simplify the figure. The equilibrium analogue (previous
section) of Fig. 12 is presented in Fig. 13, with attachment
equilibrium constants included. The state shown in the
upper left-hand corner of each diagram in Figs. 12 and 13
belongs to state 1; the other three states in each diagram
belong to state 2. Note that the rate constants and attach-
ment constants within state 2 in these figures are indepen-
dent of the Ca?* state (see Fig. 2).

There are two attachment equilibrium constants for
each cycle, related to rate constants (all of these “con-
stants” are functions of z):

anfay = Kaa/L,
#a/ba = (Kao/ L) (Ko/K,),
ka/Kp = (Kaa/ L) (B*K?/a*K3),
/M = (Kag/ L) (B*K/a*K])  (50)
bi/bs = Kag. (51)

Ba/Ba = Kag/L (48)
Va/va = (Kag/L)(Kp/K,) (49)

aA/a.'A = KM»

Another set of equations follows on replacing subscript A

0Ca? 1Ca? 2Ca?
(10) ,’i“\ an 2 1o ,/A—"\
8.8 A8, aB A8 a8
ag ™ xg
RO
be be be
SOL BRIl B IO
N—" ~—" N
Qg Qg Qg
A B C

FIGURE 12 Rate constant notation used for the kinetic diagram of one
isolated Tm unit, depending on the number of Ca?* bound to troponin. 4
and B are actin sites, M is a myosin molecule (one S-1 head attached).
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0Ca? 1Ca? 2Ca?

as_ Kol 8 (Ky/Kal(KgiL) KelLle)
Ka Ko Ka Ka
L K Ko L K Ll K
& %
Kg K Kg
A B (o

FIGURE 13  Equilibrium version of Fig. 12, showing attachment equilib-
rium constants rather than rate constants.

by B. All of these cycles satisfy the same thermodynamic
force relation, e.g.,

aAbA/a'Ab;\ = KM/KM b eA
asbs/ainb'n = K&,/Km = eA

where A = Ap,rp/kT.

The deepest free energy well for an attached state (see
TkT in Fig. 11) occurs in the a, b cycles, because the
strongest attachment of M, with constant K,, or Kg,
occurs when another M is already attached. The depth of
the a,, b, well is the same as that of the ag, by well (Fig.
11). The free energy minimum in the )\ cycles (two Ca®*
bound) is higher than in a,b by kT InL(); the free energy
minimum in the g, v cycles is higher than in a,b by kT
In(LK,/K,); and the minimum in the a, B cycles is higher
than in a, b by kT In L. Thus we have a whole family of free
energy curves to relate to rate constants (as in Fig. 8 and
Eqgs. 14-17).

(any 2)
(52)

(any 2)

Quasi Equilibrium

We make the same plausible assumptions here about
kinetic parameters as in section 2. As a consequence,
individual rate constant relations are

HA = aA(Kb/Ka)$ “,A = a'A (53)
”'A - ﬁ'A(Kb/Ka)s Vo = BA
Ka = aA(ﬂ*Kz/a'K:)a K =0y (54)
M = Ba(B*Ki/a*KD),  M=Ba
ap = aAL’ a.'A - a’A (55)
by=BiL,  ba=Ba.

Another set follows on replacing subscript A by B. Inciden-
tally, this particular assignment (Egs. 53—55) is not essen-
tial so long as relations like Egs. 23 are satisfied. We find
from Egs. 53-55,

[(aa + B2)/(B + )] = [(ax + bL)/(ba + ap)I/L  (56)

[(ua + va)/(a + Q)]
= [(aa + b))/ (ba + a)1(Ko/K,L) (57)
[(xa + M)/ + €] = [(an + BR)/(ba + aW)]/L(). (58)
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There are corresponding equations with subscript A
replaced by B. In this quasi-equilibrium steady state there
is “detailed balance” as at equilibrium. Fig. 12 can be
treated formally like Fig. 13. The bracket [] on the
right-hand side of Eqs. 56-58 is the steady state analogue
of K, in Fig. 13. The three brackets on the left-hand side of
Eqs. 5658 are the analogues, respectively, of K,/ L in Fig.
13 4, of (K,/K,)(Ka/L) in Fig. 13 B, and of K,/L() in
Fig. 13 C. The brackets are all functions of z; the above
comments apply at any z. In fact, the four brackets
mentioned all have the same z dependence; they differ only
by constant factors. All of the B rate constants and
brackets have the same z dependence as their A analogues,
except for a shift of 27.5 A (Fig. 11).

The perturbations of rate constants owing to nearest-
neighbor interactions can also be treated in a quasi-
equilibrium fashion (26) if we assume f, = f; = 1, etc., as
in section 2.

Thus, the calculation of state probabilities in this quasi-
equilibrium steady-state, including the effects of neighbor
interactions, is carried out just as in the previous section for
the equilibrium case. All that is required is a change in
parameters. We define

ra(2) = (ap + bL)/(bs + db) (59)
rg(2) = (ap + bp)/(bs + ab) (60)
uy(z) = (ra + rg + rarg)/L. (61)

Hence r,, rg, and u, correspond to K,, Kg, and £, at
equilibrium (Eq. 35). In using Eqgs. 39 and 40 at arbitrary
p, for a steady state, the only change necessary is to replace
&, in Eqs. 40 by u,(z). Eq. 41 is still used to find p,(z) and
Eq. 42 becomes

0a(2) = (ra + rars)/(ra + rg + rars), (62)

with a similar expression for 6(z).

In the limit p — 0, Eq. 43 is the pertinent matrix with &,
replaced by u,(z). Eq. 9 can be used to calculate p,(z), if
we replace K by uy(z). In the limit p — «, the matrix Eq.
44 applies, with u_,(z) in place of £,(w), where

u.(2) = (ra + re + rars)/L() = uo(z)L/L().

Note that the functions u.(z) and uy(z) differ only by a
constant factor. Eq. 11 then gives p,(z) if (K,/K,)K is
replaced by u_ (2). It is clear from the above comments that
uy(2) is an effective steady state “equilibrium constant” for
formation of state 2 from state 1, when p — 0, and u_(z)
has the same significance for p — «. State 2 includes three
substates (only M, attached, only My attached, both
attached), which have their own internal quasi-equilibrium
distribution (see, e.g., Eq. 62).

(63)

Isometric Force

At steady state, for an arbitrary z value (Fig. 11), the
fraction of M, attached is p,(z)0,(z) and the fraction of
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M, attached is p,(z)05(z). The force exerted on actin by an
attached A is (kT/o*)z, where kT/d? is the force constant.
Similarly, for an attached B, the force is (kT/d*)(z +
27.5). thus the mean force F per cross-bridge is given by

Fd 1 [+
kT~ 2527-a2

where d = 385 A is the actin repeat distance and the factor
of 2 averages between M, and M;.

[P:(2)0a(2)z + P2(2)08(2)(z + 27.5)] dz, (64)

Isometric ATP Flux

The ATP flux can be calculated as shown schematically in
Fig. 14 A. At any z, the total ATP flux per Tm unit, J(z),
has four contributions, Ji, . . ., J,. Each of these is the net
transition flux (11) for the transition indicated by an
arrow. Substates with different Ca’* binding are not
shown here explicitly.

J, and J, can be combined, as in Fig. 14 B. This is flux
associated with “first M” attachment. Because the interac-
tions with neighbor units change in any change of state
1—2o0r2—1,J, + J,can be evaluated only if the mean
numbers of all triplets of Tm units are available (26). At an
arbitrary p, there are 40 types of triplets whose populations
can be found numerically from a 16 x 16 matrix (Eq. 29).
In the special cases p — 0 and p — oo, this complexity is
much reduced and the triplet numbers are already avail-
able analytically (26).

The calculation of J; and J, (Fig. 14 A) is easy because
the interactions of the given unit with its neighbors do not
change in these transitions (interactions do not depend on
the substates of state 2). These transitions refer to attach-
ment-detachment of M (“second M”’) when the other M is

already attached. We define
Pa(2) = ra/(ra + rg + rars), (65)

and similarly for pg(z). Eq. 65 gives the probability a unit
that is in state 2 has M, attached but not M. Then

J3(2) = p2paas — p(1 — pa — ps)as

(66)
Ji(2) = p2psan — p2(1 — pa — pe)aa.
The mean ATP flux per cross-bridge is
- 1 +df2
J = ﬂ a2 [J|(z) + -+ J‘(z)] dZ. (67)
State 1 ~r-o
AB VAB |
" M 1
L) 0F ()
fap ~ N g 2
Nl M
State 2 A B

FIGURE 14 (A) Four contributions to ATP flux. (B) Composite flux
Jy + J,, in the two-state cycle.
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ATPFluxatp—0and p — «

We can be explicit about J, + J, in these special cases.
When p — 0, only states 10 and 2 are important (Fig. 1 4).
The rate constants in the simulated two-state cycle, Fig.
14 B, can be deduced from Figs. 12 4, 14 4 and Egq. 65.
Corresponding to Eq. 27, we then find (26)

Ji(2) + J2(2)
[(1 = u)* + 4Y 5" %uy + (1 + uo) R)Y5'?

-0 Roll + 2Y5'up + 12 + (1 + u)Ry] (68)
where

Ry = [(1 — ug’ + 4u,Y;']'"? (69)

0- (ap + ap)(Bapa + Beps) — (aapa + apps)(Ba + Bs) . (70)

BaPa + BePs + Aapa + AP

Note that Eq. 70 simplifies to () = a, + op if the inverse
(primed) transitions are neglected. In the limit p —
(states 111, and 2), Egs. 68-70 still apply if we substitute
subscript o« for 0, « for a, and A for 8 (Fig. 12). From Egs.
54 we see that the effect of these substitutions on the
leading () in Eq. 68 is to multiply by the factor 8*K}/
a*K?, or L/ L().

6. NUMERICAL EXAMPLE, MODEL 2

The example we use here is very similar to that in section 3.
In fact, we adjust parameters to make it as similar as
possible.

The “physiological™ rate constants are considered to be
the a,b set (attachment-detachment with one M already
attached). These rate constants come into play only in state
2, which is significantly occupied only at high enough Ca®*
(bound Ca?* enhances the attachment of the first attached
M). Any rate constant function for M,, say a,(z), is
related to the same function for My by a,(z) = ag(z —
27.5).

We take L = 50 and B*K7/a*K? = 20. These are
rounded off slightly from values found in reference 19.
Then L(x) = 2.5. The individual Ca?* parameters adopted
(compare reference 19) to give the factor 20, above, are
K, =36 x10°M7", K, = 10" M~', a* = 0.1543, and
B* = 0.40. Eqgs. 53-55 then relate the other rate constant
sets to the a,b set.

As in section 3, we take the functions a,(z) and b,(z) to
be constants for z = 0, and @, (z) = O for z < 0. Thus all the
“action” for M, takes place at positive z. We use b, as a
reference constant, to be evaluated later, and take a, /b, =
2.317. This particular value is chosen so that we will have
u, = 4 (Eq. 63) in the principal z interval (see below). In
section 3, we used, correspondingly, s.. = 4. As in section 3,
we have (see Egs. 51)

ap/dy = Kp, = exp[l — (2°/20%)] ()
ba/bis = 1/K s = exp[A — T + (2/26%)] (72)
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for the relations between rate constants and free energies.
For the corresponding B functions, replace z by z +
27.5 A. These equations then give b)(z)/b, and aj(z)/ba.
On substituting into Eq. 59, we obtain r,(z). The function
ra(2) is practically constant at the value 2.317 from z = 0
until the neighborhood of z = (26°T')'/%, where 7, drops
rather quickly to zero (just as s does in Fig. 9). Using A =
23, and ¢* = 200 A?, as before, 7, (z) falls to its half-value
(1.158) at z = 86.3 A (as in section 3) if we choose I' =
19.455 (instead of ', = 20, as in section 3).

We now approximate 7,(z) by the step function shown
by the solid lines in Fig. 15 (r, = 2.317 in the interval 0 <
z < 86.3 A). The function rg(z) has the same shape but is
shifted 27.5 A to the left. Then u, (z) follows from Eq. 63
and is shown by the dotted lines (three branches) in Fig.
15. In the interval 0 < z < 58.8 A, u_ has the value 4 (as
mentioned above). In this interval of the z axis, both M,
and My can attach; u,, = 4 is the effective state 1 — state 2
“equilibrium constant” when this is the case. In the
interval —27.5A =< z =< 0 only Mj can attach; in the
interval 58.8 A < z < 86.3 A only M, can attach. In the
latter two intervals, u, = 2.317/2.5 = 0.93. Recall that
(Eq. 53) uy(z) = u.(z)/20. Thus u, = 0.2 in the main
central interval.

With r,(z) and rg(z) specified (Fig. 15), the functions
0,(z) and 65(z) follow from Eq. 62. It will be recalled that
0,(2), for example, is the probability that M, is attached
for a unit in state 2. This function steps down (Fig. 15)
fromd, = 1,t08, = 0.768, to 6, = 0, and similarly for 83, in
the reverse direction.

As already pointed out, with our choices of a, and b, the
use of a “box” function for r, in Fig. 15 is equivalent to
assuming a one-way cycle (neglect primed rate constants),
except that aj,(z) is involved in fixing the cutoff point
(86.3 A).

Isometric Force

At any p, the integral in Eq. 64 is carried out over the range
of zshown in Fig. 15. The factors in the integrand of Eq. 64
are all constant within the three subranges of Fig. 15,

P Yo,
3 L
| T ' T [7

2 :B 'y E"a '

]
6

1F :"‘,‘;;"‘-“_,_.-,2‘5:?2 ..... j:.-.'.-.ui.qgtﬂ
L L6 \ L %,
-20 0 20 40 60 80

z(A)—>

FIGURE 15 Functions chosen from r,(z) and rg(z) in numerical exam-
ple. The functions u,, 6, and 6, then follow; also, ¥, = u./20.
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except z and z + 27.5. Hence the integrals are very simple
(see Eq. 31). The values of 8, and 65 have been discussed
already (Fig. 15), and are independent of p. The values of
D:>(p) in the three subranges (only two are different) are
found from the u, values (i.e., from u./20 in Fig. 15) and
Eq. 41 (u, replaces &, in Eq. 40). However, before using Eq.
41, the cooperativity parameters Y; in Eq. 38 must be
specified. To begin with, we take Y, = 20and Y, = 4, as in
section 3. Larger values of Y; and Y, would produce
steeper curves, below. Using the argument mentioned in
section 1, we might then guess Y, = /5, ¥, = 5, Y3 = +/5,
and Y, = 4 /5,if Y, = 5 (from Y,/Y., = 5) is evenly split in
the two Ca?* binding steps. This is a plausible set of Y;
values, but still quite arbitrary. We call this the “symmet-
rical” case.

For use in Eq. 64, the calculated upper dashed curve in
Fig. 16 gives p,0, or p,0g, as a function of p, in the main
interval II (inset, Fig. 16). This is the probability that A is
attached (or that B is attached) for any z in this interval.
The two limiting values of p, are 0.015 (o — 0) and 0.916
(p — =), just as for 0 in section 1. The lower dashed curve
in Fig. 16 gives p, as a function of p in interval I (65 = 1,
0, = 0) or in interval III (6, = 1, 83 = 0). This is the
probability that M is attached when only one M can
attach. The calculated force per myosin molecule is then
found (Eq. 64) as the dashed line in Fig. 17. This curve is
moderately steep; experimental curves are steeper (30—
34).

For comparison, the dotted curves in Figs. 16 and 17
follow from the corresponding noncooperative case: all
Y,=1.

As an alternative (there are many possibilities), still
using ¥, =20,Y_,=4,and ¥, = Y, /Y, =5 ,wetake Y, = 1,
Y; =5, Y, = 20 (the “unsymmetrical” case). This assumes
that the first bound Ca** does not move Tm at all, but the
second one does. This choice of the Y; leads to the solid
curves in Figs. 16 and 17. The limits at p— 0 and p — =
are unchanged. The cooperativity exhibited in these curves
is stronger. Use of larger Y; values would produce still
steeper curves, but we do not pursue this point systemati-
cally because the model is too arbitrary. Qualitatively,
though, it is clear that this class of model can account for

08
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04t
0.2

1 +2

+*
logKqp

FIGURE 16 Calculated curves, in numerical example, of p,0 in region I
(see inset), of p,0, or pfy in region II, and of p,8, in region III, for three
choices of cooperativity parameters. Inset represents r, and ry from Fig.
15. —, unsymmetrical; ———, symmetrical; - - -, no cooperativity.

HILL Regulation of Skeletal Muscle Contraction by Calcium

logKqp

FIGURE 17 Calculated curves of isometric force as a function of Ca?**
concentration (p). F is the force per myosin molecule. —, unsymmetrical;
———, symmetrical; - - -, no cooperativity.

strong cooperativity in the isometric force as a function of
Ca?* concentration. The crossing point of the two coopera-
tivity curves in Fig. 17 occurs at pCa = 6.1 (using the value
of K, already given).

Isometric ATP Flux

The calculation of J (Eq. 67), at arbitrary p, is too
tedious (see the preceding section) to be worth carrying out
for this model. Incidentally, an exception (which likewise
we do not pursue here) isthecase Y, =Y, =Y;=1,Y; =
Y, =Y, > 1. This corresponds physically to neither bound
Ca’* moving Tm, though M does. We still have L > L(x)
(Ca?* binds more strongly on troponin in state 2). In this
case, the equilibrium 4 x 4 matrix, Eq. 39, is replaced by a

2 x 2 matrix:
El E.Xo
£5X &6 (73)

where §, = 1 + A + B (Eq. 40). Triplet numbers can then
be found and used as in reference 26.

We turn now to the limits p — 0 and p — o (“symmetri-
cal” and “unsymmetrical” cases are the same in these
limits). The numerical example we are considering here
corresponds to the use of one-way cycles, as mentioned
above. Hence, in Egs. 66 and 70,

J3 = p2paas, Jo = papsaa (74)
O=ar+ag=(a+a)/L (p—0) 75)
=xp + kg = (ap + ap)/L(x). (p— =)

J, + J, (first M) must be evaluated in regions I, I1, and III
(inset, Fig. 16), using Eq. 68 (the calculation in regions I
and III is the same). J; + J, (second M) refers to region II
only. We find, from the two contributions (Eq. 67),

2T = Jy,s + Jype = 0.0021a, + 0.0011a,
-0.0032a, (p—0)
(p—) (17)

“First M” flux predominates at p — 0 and “second M”

(76)

2J = 0.0423a, + 0.0648a, = 0.1071a,.
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flux at p — . The experimental value of J at p = o (see
section 3) is 3 s™'. On comparison with Eq. 77, we need
a, = 56s7' and b, = 24 s7'. Correspondingly, in section 3

we

require A = 25.5 s~". The flux ratio between p — « and

p — 0is 34 (this ratio was 11 in section 3).

I am indebted to Dr. Evan Eisenberg for very helpful criticisms of an
earlier version of this manuscript.
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