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ABSTRACT The lateral separation of virus rod particles of tobacco mosaic virus has been studied as a function of
externally applied osmotic pressure using an osmotic stress technique. The results have been used to test the assumption
that lattice equilibrium in such gels results from a balance between repulsive (electrostatic) and attractive (van der
Waals and osmotic) forces. Results have been obtained at different ionic strengths (0.001 to 1.0 M) and pH’s (5.0 to
7.2) and compared with calculated curves for electrostatic and van der Waals pressure. Under all conditions studied,
interrod spacing decreased with increasing applied pressure, the spacings being smaller at higher ionic strengths. Only
small differences were seen when the pH was changed. At ionic strengths near 0.1 M, agreement between theory and
experiment is good, but the theory appears to underestimate electrostatic forces at high ionic strengths and to
underestimate attractive forces at large interrod spacings (low ionic strengths). It is concluded that an electrostatic-van
der Waals force balance can explain stability in tobacco mosaic virus gels near physiological conditions and can provide

a good first approximation elsewhere.

INTRODUCTION

The nature of the forces that stabilize liquid crystalline gels
formed from long, cylindrically symmetrical rods is of
considerable interest in both physics and biology. Such gels
form spontaneously in aqueous solutions of cylindrical rods
such as tobacco mosaic virus (TMYV), in the filament
lattice of striated muscle and in the array of collagen fibrils
in cornea. More than forty years ago, Bernal and Fan-
kuchen (1941) suggested that the stability of these systems
was the result of a balance of long-range forces: repulsive
electrostatic, and attractive van der Waals forces. If such a
force balance is the basis of stability in these systems, one
would expect that the interrod spacing at equilibrium
would depend on the concentration of shielding ions in the
solution (through the ionic strength, I) and the charge on
the rods (through the pH). Variations of either of these
parameters would be expected to change the electrostatic
force while having little effect on the van der Waals force.
The result would be a shift in the equilibrium separation.
Changes qualitatively similar to those expected were found
for the TMV system (Bernal and Fankuchen, 1941) and
for the filament lattice in vertebrate cross-striated muscle
(Rome, 1967; April, 1975).

There have been several attempts at a quantitative
comparison, based on theoretical calculations of electro-
static and van der Waals forces, several of which have been
applied to the muscle filament lattice (Elliott, 1968; Miller
and Woodhead-Galloway, 1971; Brenner and McQuarrie,
1973; Morel and Gingold, 1979). In the case of muscle,
most of the comparisons showed a large discrepancy
between the available experimental data and the calcu-
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lated equilibrium spacing, a finding not altogether surpris-
ing since the actual muscle filament lattice is a poor
approximation to the conditions used in calculating the
interrod forces (cylindrical rods with uniformly distributed
charge on their surface forming a single hexagonal lattice).
Looking at the simpler TMV system, Parsegian and Bren-
ner (1976) compared the limited data of Bernal and
Fankuchen (1941) with theoretical electrostatic and van
der Waals calculations and concluded that “The observed
spacings are inconsistent with a force-balance model.”
They were, however, unable to identify the source of the
discrepancy (i.e., in the calculation of electrostatic or van
der Waals forces, or in additional factors) and urged
further experimentation to clarify the situation.

It was this report (Parsegian and Brenner, 1976) that
stimulated our interest in this problem, and over the last
few years we have been collecting experimental data from
TMYV gels. All of these data have been compared with
calculated curves for electrostatic and van der Waals
forces. In particular, we designed experiments to test
whether or not the relation between lattice spacing and
external pressure agrees with that predicted from calcu-
lated electrostatic pressure, and whether a specific balance
between electrostatic and van der Waals forces is responsi-
ble for the stability of the gels.

We used an osmotic stress technique to obtain curves
relating the interaxial rod spacing to the externally applied
osmotic pressure under a range of conditions of pH and
ionic strength. The techniques used and some of the
preliminary data are published in an earlier paper (Mill-
man and Nickel, 1980). For convenience, our experimental
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data and the theoretical calculations are expressed in terms
of pressure rather than force, since this is our experimental
variable and pressure can be calculated more directly. If
TMYV gels are stabilized by an electrostatic-van der Waals
force balance, we would expect our experimental data to
correspond to the difference between electrostatic and van
der Waals pressure. At very high pressures (>2,000 torr)
other force systems (e.g., stereochemical and hydration
forces) will contribute to the repulsive pressure, and will
prevent the rods moving closer to one another. Over most of
our experimental range (202,000 torr) van der Waals
pressure is much smaller than electrostatic pressure (see
Fig. 2), and we would thus expect the data to lie close to the
electrostatic pressure curve. In general, we have found
good agreement between theoretical calculations and
experimental data in the mid-pressure range, but some
anomalies appeared at the extremes of the range.

METHODS

The procedures used were those described by Millman and Nickel (1980).
Small samples (2-3 mg) of purified TMV were removed from the final
centrifuge pellet, placed in a small plastic chamber (of volume 5-10 ul)
containing excess buffer solution, and allowed to equilibrate until an x-ray
diffraction pattern showing the hexagonal phase was obtained (a few days
to several weeks) (Fig. 1 a). The gels were then equilibrated with a larger
volume (~5 ml) of buffer solution containing various concentrations of
dextran, an uncharged, chemically inert molecule that is too large
(200,000 or 2,000,000 mol wt) to penetrate the gel phase. Thus, the
dextran exerts an osmotic pressure on the gel. The externally applied
osmotic pressure is a function of the dextran concentration and was
determined from previously obtained calibration curves (Millman et al,,
1983). The lattice spacing (or interaxial spacing between the virus rods,
designated by C) was obtained from low-angle x-ray diffraction photo-
graphs of the gels. Only gels that gave clear x-ray diffraction patterns
were used, and all of these showed sharp patterns characteristic of an
hexagonally ordered system (Fig. 1). The ionic strength of the buffer
solution was varied from 0.9 to 0.001 M and the pH from 5 to 7.2. Spacing
measurements were also made under conditions of zero applied pressure
(i.e., in buffer solutions without any dextran). To check that polymer
molecules were not entering the spaces between the TMV particles, in
some experiments the dextran solution was separated from the gel by a

FIGURE 1

sheet of dialysis membrane (similar to that used for the pressure
calibration). No significant difference was detected between results with
and without the dialysis membrane (Fig. 2). We conclude that no
significant amount of dextran entered the gel spaces in the experiments
without the dialysis membrane.

RESULTS AND DISCUSSION

Electrostatic Interactions

TMYV gels, prepared and equilibrated in dextran solutions
using 0.1 M sodium phosphate buffer at pH 6, were used as
a standard to which results obtained under other conditions
could be compared. The standard conditions of pH and
ionic strength approximate those found in physiological
solutions and are also conditions where the charge on the
TMYV rods has been determined (Caspar, 1963). A consid-
erable amount of data and the most accurate curve of
interrod spacing as a function of pressure were obtained
under these conditions (Fig. 2).

Under all conditions studied, the interaxial spacing (C)
decreased with increasing applied pressure (Fig. 1). The
pressure-spacing curve showed a relationship between C
and the logarithm of pressure, which was approximately
linear (Figs. 2—4). About half of the experimental data
were obtained with a sheet of dialysis membrane separat-
ing the TMV gel from the external (dextran) solution; the
rest of the data were obtained without such a membrane.
While there appeared to be a slight tendency for the
experiments without dialysis membrane to give smaller
spacings than those where the dialysis membrane was used,
the difference was not significant. It is possible that the
larger spacings occurred because some samples with dialy-
sis membrane had not fully equilibrated with the external
solution when the x-ray diffraction patterns were obtained,
since in other systems equilibration is slower with dialysis
membrane (Millman et al., 1983). Only under conditions
approaching zero applied pressure (i.e., when no dextran
was used) did the experimental data depart significantly

Low-angle x-ray diffraction patterns from TMYV gels taken at a specimen to film distance of 23.7 cm. (a) gel in 0.01 M phosphate

buffer, pH = 6. (An insert is overlayed from the back x-ray film to show the central part of the pattern, which was heavily overexposed.) (b)
and (c) show the same gel in similar buffer but with 10.4 and 28.5% dextran, respectively. Reflections are indexed on the hexagonal lattice as

noted.
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FIGURE 2 Interaxial spacing (C) as a function of applied osmotic
pressure (P) for TMYV gels in sodium phosphate buffer of ionic strength
0.096 M and pH 6.0. Circles are experimental observations with (@) and
without (O) dialysis membrane, the cross is the centroid of the data with
standard error bars. Lines are theoretical curves for electrostatic pressure
(dashed line), van der Waals pressure (dotted line), and the difference
between electrostatic and van der Waals pressure (solid line).

from a linear relationship between C and the logarithm of
pressure (Fig. 2), and this condition will be discussed
later.

Under the standard conditions (/ = 0.1 M, pH = 6),
isolated subunits of TMV have a net negative charge of two
electrons (Caspar, 1963). There are 49 subunits in each
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FIGURE 3 Interaxial spacing (C) as a function of applied osmotic

pressure (P) for TMV gels in sodium phosphate buffer at pH 6.0
compared with theoretical electrostatic pressure curves at ionic strengths
of 0.9 M (e and thin solid line), 0.01 M (O and dashed line), and 0.001 M
(X and dotted line). The thick solid line is the theoretical electrostatic
pressure curve for an ionic strength of 0.096 M from Fig. 2. Symbols with
error bars are the centroids of the data with the bars indicating one
standard error.

MILLMAN ETAL. Interrod Forces in Tobacco Mosaic Virus

1000

P (torr)

100

10
18 20 22 24 26

FIGURE 4 Interaxial spacing (C) as a function of applied osmotic
pressure (P) for TMYV gels in sodium phosphate buffer at pH 5.0 and ionic
strength of 0.096 M as in Fig. 3. The lines are the theoretical curves for
electrostatic pressure with rod charges of 14 electrons/nm (solid line) and
7 electrons/nm (dashed line). The cross indicates the data centroid with
standard error bars.

axial repeat of 6.9 nm, so that if no charge is bound or lost
when the virus assembles, the intact virus should have a net
charge of 14 electrons/nm. Electrostatic pressure curves
were calculated from nonlinearized solutions to the Pois-
son-Boltzmann equation as described by Millman and
Nickel (1980) using a rod charge of 14 electrons/nm, a
charge diameter of 18 nm (approximately the outside
surface of the intact virus), and ionic concentrations appro-
priate to each experimental condition as calculated by the
method of Perrin and Sayce (1967). The curve for the
standard conditions is shown as the dashed line in Fig. 2.
Calculations using the Alamov/Wooding method of Parse-
gian and Brenner (1976, Eq. 1) gave pressures ~35%
higher for the same conditions, whereas the planar-
linearized solution used by Millman and Nickel (1980) (in
particular for the muscle filament lattice) gave pressures
~20% lower. Thus, theoretical curves calculated by these
different methods differed by less than the scatter in the
experimental points. Van der Waals pressure was calcu-
lated from the equations of Brenner and McQuarrie
(1973), using a rod diameter of 18 nm and a Hamaker
coefficient of 7 x 10~'* erg (Parsegian and Brenner [1976]
give a range from 5-9 x 107" erg), and is shown as the
dotted line in Fig. 2. The solid line represents the difference
between the curves (electrostatic — van der Waals) and
clearly is in good agreement with the experimental data.
This agreement confirms our assumption that most of the
pressure observed under these conditions is electrostatic.
As predicted, the effects of van der Waals forces are
significant only at very low pressures; elsewhere the curve
is dominated by the electrostatic pressure. Least-squares
fits were made to each set of data (excluding points at zero
applied pressure) assuming that the logarithm of pressure
is linearly related to C (a good assumption over the
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TABLE 1
SLOPE OF CURVES FOR (LOG,;) PRESSURE AS A
FUNCTION OF INTERAXIAL SPACING (C) AT pH
6.0 AND DIFFERENT IONIC STRENGTHS*

lonic Debye Slope Of. SIOPF from Number of
electrostatic experimental .
strength constant observations
pressure curve data
M nm™' nm~' nm™!
0.87 3.04 —1.56 —0.58 + 0.05% 7
0.096 1.01 —-0.52 —0.50 + 0.05 24
0.048 0.73 -0.36 —0.24 + 0.09 11
0.010 0.33 —0.169 —0.171 £ 0.016 32

*Comparison of theoretical slopes from calculated electrostatic pressure
curves with experimental slopes derived by least-square regression of data
for log,, (pressure) against interaxial spacing.

$Standard error.

observable range). The centroids and slopes are compared
with theoretical electrostatic pressure curves in Figs. 2—4
and in Table I.

Changing the ionic strength would be expected to cause
a considerable change in the electrostatic pressure (be-
cause of ionic shielding) but to have little effect on van der
Waals pressure. Experimental data at ionic strengths of
0.001, 0.01, and 0.9 M are shown in Fig. 3, along with
calculated electrostatic pressure curves. The changes in the
experimental curves are similar to those predicted and the
data lie close to the appropriate theoretical curves. It is
particularly significant that the experimental slopes (ob-
tained from least-squares reduction of the experimental
data) change with the ionic strength almost exactly as
predicted from the calculated curves (Table I). The excep-
tion here is for the data at / = 0.9 M where the slope of the
experimental curve is lower than predicted. Such a result is
hardly surprising given that the Poisson-Boltzmann equa-
tion is not expected to apply at ionic strengths above ~0.1
M (see Millman and Nickel, 1980). But even at an ionic
strength of 0.9 M, the positions of the data and the centroid
calculated by least squares do not depart dramatically
from the theoretical curve (Fig. 3). The data at lower ionic
strengths (0.01 and 0.001 M) show greater scatter than the
data at the higher ionic strengths, reflecting a decreased
gel stability at the greater rod separations.

Changing the pH while holding the ionic strength
constant would be expected to give pressure-spacing curves
of similar shape, but shifted parallel to the horizontal axis
according to the change in rod charge (Millman and
Nickel, 1980). The isoelectric point for intact TMV par-
ticles is between 3.0 and 3.5 (Bernal and Fankuchen, 1941;
Caspar, 1963). Above the isoelectric point, an increase in
pH would be expected to increase the rod charge and thus
increase the interaxial spacing, whereas a decrease in pH
would do the opposite. Electrophoretic mobility studies,
however, suggest that the change in charge above pH 5 is
small: shifts of one pH unit change the charge by <10%
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(Kramer, 1957). Thus we would expect little change in the
pressure-spacing curves with pH in this range.

Data from gels equilibrated in 0.1 M phosphate buffer
solutions containing dextran at a pH of 5.0 are shown in
Fig. 4. As expected, the data are very similar to those
obtained at pH 6.0. The centroid of the data at pH 5.0 lies
slightly, but not significantly, to the left of the theoretical
curve (Fig. 4), consistent with a decrease in rod charge of
~10%. A further set of data at pH 7.2 was published in
Millman and Nickel (1980, Fig. 5). When this set of data
is compared with the curve calculated using the same
parameters as in Figs. 2 and 3 (charge of 14 electrons/nm
and a diameter of 18 nm) the centroid of the data lies
slightly, but not significantly, to the right of the calculated
curve, suggesting again that while there may be a small
increase in the filament charge (10-20%), there is no large
change. Thus the experimental data over this limited range
of pH (5.0-7.2) are consistent with theoretical predictions
based on the electrophoretic mobility and electrostatic
pressure calculations.

Van der Waals Interactions

TMV gels will generally form stable lattices in ionic
solutions where no external pressure is being applied (i.e.,
no polymer in the external solution) (Bernal and Fankuch-
en, 1941; Caspar, 1963; Gregory and Holmes, 1965). The
fact that a stable equilibrium can be obtained under such
conditions implies that there must be an attractive pressure
counteracting the repulsive electrostatic pressure and that
both of these must be greater than the thermal (k7))
disruptive pressure, which will tend to destroy any lattice
regularity (Millman and Nickel, 1980; Fig. 10). If one
assumes that the interaxial spacing under zero applied
pressure is largely the result of a force balance between
electrostatic and some attractive pressure, the magnitude
of the attractive pressure can be estimated. It will equal the
calculated electrostatic pressure at the lattice spacing
observed at zero applied pressure, since at this spacing the
net pressure must be zero (LeNeveu et al., 1977; Loosley-
Millman et al., 1982).

Lattice spacings obtained under zero applied pressure in
solutions at pH 6.0 but of different ionic strengths are
plotted as a function of the ionic strength in Fig. 5. The line
shown in this figure is the lattice spacing expected if
equilibrium under these conditions results from a balance
between electrostatic and van der Waals forces. This line
lies very close to line b in Fig. | of Parsegian and Brenner
(1976), which corresponds closely to TMV gels under our
conditions (where C = 7.0 nm~?). On this graph, we have
also plotted comparable data from Bernal and Fankuchen
(1941) that were obtained in ammonium sulphate solutions
at high ionic strengths. We find good agreement between
theory and experiment at ionic strengths near 0.1 M,
whereas at lower ionic strengths the observed spacings are
less than predicted. It is unlikely that we have underesti-
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FIGURE § Interaxial spacing (C) under zero applied pressure as a
function of ionic strength. @, data from gels in sodium phosphate buffer;
X, data in sodium or potassium chloride solutions; O, data of Bernal and
Fankuchen (1941) in ammonium sulphate solutions. The line represents
the spacings at which electrostatic and van der Waals pressures are
equal.

mated the van der Waals pressure, and thus at low ionic
strengths other attractive forces must be contributing to
the gel stability. Such additional force(s) may be related to
additional entropic free energy associated with the
ordering of the gel as suggested by Onsager (1949; see also
Straley, 1973). We would expect that such entropic forces
would be important only at low ionic strengths, the regime
where additional forces seem to be required. At higher
ionic strengths (0.2-2 M) the observed spacings are
greater than predicted, probably because the electrostatic
pressure departs from Poisson-Boltzmann statistics at such
high ionic strengths (e.g., Fig. 3 and Parsegian and Bren-
ner, 1976). At very high ionic strengths ( >2 M) the lattice
appears to be fully collapsed and its spacing reflects only
the diameter of the virus rods (i.e., stereochemical and
hydration forces).

In the data at zero applied pressure we observed a large
scatter, especially at the lower ionic strengths. It has been
suggested (Brenner and McQuarrie, 1973; Parsegian and
Brenner, 1976) that the depth of the energy well (i.e., the
interaction energy at equilibrium spacing) may be =kT. If
so, this could account for the large scatter observed. We
have calculated the interaction potential for our gels by
numerical integration of our calculated curves for electro-
static and van der Waals pressure (e.g., Fig. 2). The
potential energy per virus particle (¥) in a hexagonal gel is
given by

V- V32 [ [Pes) - Pvaw)] CdC, )

where £ is the length of the virus particle (equaling 300
nm), and P(es) and P(vdW) are the electrostatic and van
der Waals pressures, respectively. The results at three ionic
strengths are shown in Fig. 6, and are qualitatively similar
to the curves shown in Fig. 7 of Brenner and McQuarrie
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FIGURE 6 Interaction energy per virus particle calculated using Eq. 1
for ionic strengths of 0.1 M, 0.05 M, and 0.01 M. For details see text.

(1973). At an ionic strength of 0.1 M, there is a well-
defined potential well, but its depth (4.6 x 107" J) is only
slightly > kT (4.0 x 107%' J). At this ionic strength we
observe gels of reasonable stability at spacings that corre-
spond to the spacing predicted from an electrostatic-van
der Waals force balance. The fact that the depth of the well
is about the same magnitude as kT indicates that the gel
must be stabilized by co-operative effects involving several
virus particles. At ionic strengths of 0.01 M and lower, the
interaction energy per particle is tiny (~1% of kT) and this
is much too small to produce a stable gel. Thus, as noted
above, such low ionic strength gels must be formed by and
rely for stability on attractive forces additional to van der
Waals forces. That gels are observed at all under such
conditions is surprising to us. Some of the additional force
may result from ionic impurities in the solutions used,
contamination with small amounts of polymer, or from
containment of the gel within a small space. Variability in
lattice spacing seems to be characteristic of TMV gels,
however. Even crystalline gels of TMV that have been kept
under stable conditions for many years show comparably
large variations in equatorial spacing (D. Caspar, personal
communication). But although the equilibrium spacing
varies greatly from one gel to another, the x-ray reflections
from a single gel are very sharp (Fig. 1), indicating a
uniform spacing within any one gel.

CONCLUSIONS

Some comments should be made here about our choice of
parameters for the calculated curves and the effects of
changes in these parameters. The slopes of the electrostatic
pressure curves are determined primarily by the ionic
strength, through the Debye constant. We have found good
agreement between experiment and theory for this param-
eter (Table I). The effects of changing charge and charge
diameter are similar to each other; i.e., a shift in the curve
parallel to the horizontal axis. For the TMYV case under our
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conditions, an increase in charge diameter of 1 nm is
equivalent to an increase in charge by a factor of about
two. (Note that in Millman and Nickel [1980] Fig. S, the
data at pH 7.2 is fitted to the curve for a charge of 35
electrons/nm and a diameter of 17 nm, whereas here we
find that the same data can be fitted equally well by a
curve for a charge of 17 electrons/nm and a diameter of 18
nm). We chose the charge diameter in this paper to give
the closest fit to the data at pH 6 using a charge of 14
electrons/nm. This latter parameter was selected from
Caspar (1963) based on a charge of 2 electrons/nm for an
isolated subunit. We have assumed that the charge per
subunit remains the same in the intact virus as in the
isolated subunits, but this may not be so. (In fact the
isoelectric point drops from 4.5 in the isolated subunits to
~3.2 in the intact virus [Caspar, 1963]). If the intact virus
does have a larger (or smaller) charge, then to fit the data,
the charge diameter would have to be decreased (or
increased) accordingly, though any change here would
likely be <1 nm. The diameter we have used is close to the
interaxial spacing found by Bernal and Fankuchen (1941)
at the isoelectric point (18.5 nm), but is a little larger than
the smallest spacing they observed (17.3 nm) in 6 N salt
(where it is possible that the rods could be slightly
compressed). In any case, these results indicate that the
charge diameter determined here is close to the outside
diameter of the virus and thus there cannot be a substantial
layer of bound water on the outside of the virus particles;
any such bound water must form a layer less than one
molecule thick (see e.g., Morel and Gingold, 1979).

From the above results we conclude that the major
long-range force system in aqueous gels of TMV is electro-
static, and that the electrostatic pressure (or force) can be
calculated from solutions to the Poisson-Boltzmann equa-
tion (Parsegian and Brenner, 1976; Millman and Nickel,
1980). At ionic strengths of 0.05 M and above, such gels
seem to be formed and stabilized by a balance between
electrostatic and van der Waals forces as suggested origi-
nally by Bernal and Fankuchen (1941). At lower ionic
strengths, however, van der Waals forces alone are insuffi-
cient to balance the electrostatic pressure, and other
attractive forces are necessary to explain the observed
balance.

It now becomes possible to use calculations of electro-
static and van der Waals forces to study other gel-like
systems such as the filament lattice of striated muscle
(Millman and Nickel, 1980; Millman, 1981; Millman et
al., 1983). The muscle system is considerably more com-
plex than the TMV system. It contains thick filaments with
prominent projections, forming a double hexagonal lattice
with a second set of thinner filaments. From comparisons
between calculated pressure-spacing curves and experi-
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mental lattice measurements we may now learn more
about the operation of such complex systems.
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