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ABSTRACT Low-frequency vibrations in biomacromolecules possess significant biological functions. In this paper, the
a-helix element is compared with a mass-distributed spring. Based on this, a set of intuitive and easily handled equations
are derived for predicting the fundamental frequencies of helical structures in protein molecules. As shown in the
equations, the fundamental frequency depends not only on the constituents of a helix itself but also on its
microenvironment. The calculated results agree with the observations. The calculations also demonstrate that the
low-frequency vibrations with wave number of -30 cm-' do not necessarily arise from motions that involve either all or
very large portions of the protein molecule as previously thought; a piece of helix containing more than 10 residues and
surrounded by a proper microenvironment can also generate such low-frequency motions. Furthermore, we illustrate
that the low-frequency motions are closely related to the native state of a protein molecule. Upon denaturation, which is
accompanied by a radical change of the relevant microenvironment, the original fundamental frequency also
disappears. Consequently, this kind of special frequency termed activating low frequency can serve as a dynamic
criteron in identifying whether a biomacromolecule is in its native state. The energy of a phonon excited by this kind of
low-frequency vibration is of the same order of magnitude as the average enthalpy value per residue measured during
conformational change in some protein molecules. Therefore, there must be some intrinsic relation between the
allosteric transitions of protein molecules and their low-frequency motions.

INTRODUCTION

With the emergence of a series of experimental results
(1-7) showing the existence of low-frequency motions in
biomacromolecules, more attention has been recently paid
to the biological functions of low-frequency vibrations in
proteins and other biomacromolecules. They can roughly
be classified as follows. (a) Green (8), Ji (9), and Frohlich
(10) envisioned that the low-frequency pulsation, which
involves either all or large portions of a protein molecule,
might play a critical role in the catalytic function of
enzyme. (b) Suezaki and Go (11), and Ponnuswamy and
Bhaskaran (12) treated globular proteins as continuous
elastic spheres or as prolate and oblate spheroidal bodies,
and described their low-frequency breathing motions. (c)
Careri et al. (13) and Englander (14) studied the relation-
ship between the hydrogen exchange properties and this
kind of internal motion in proteins and nucleic acids. (d)
Chou and Chen (15) demonstrated that the associations
between some biomacromolecules would concomitantly
excite low-frequency phonons (whose wave numbers are
10-100 cm-'), otherwise a thermodynamic deficit could
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not be compensated for. Based on such a thermodynamic
deduction, the relationship between this kind of low-
frequency vibration and the conformational changes in
biomacromolecules are discussed. (e) Sobell et al. (16-18)
presumed that the low-frequency (acoustic) phonons can
play an important role in DNA breathing and drug
intercalation. (f) Zhou (19) investigated the vibrational
energy of a ringlike DNA and analyzed related biophysical
phenomena. (g) Chou et al. (20) discussed the relationship
between low-frequency vibrations and the cooperative
effects in oligomeric proteins. Based on this, a physical
picture describing the microscopic mechanism of the coop-
erativity in hemoglobin was shown.
Now that the low-frequency vibrations do really exist in

biomacromolecules and reveal significant biological func-
tions, the following questions are naturally raised. (a) How
do we calculate or predict this kind of low-frequency
motions from a known component element in a biomacro-
molecule? (b) How does the microenvironment around the
component element influence its fundamental frequency
(lowest frequency)? (c) What is the inherent relation
between this kind of fundamental frequency in a biomacro-
molecule and its biological function? The present study
was initiated in an attempt to approach these basic
subjects. Because the a-helices occupy a prominent posi-
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tion among the component elements of protein molecules,
we will take the a-helical structure element as a typical
subject and attempt to carry out an investigation.

CONTINUITY MODEL AND CALCULATION
FORMULAE

Due to the extreme complexity and inherent flexibility of
biomacromolecules, rather than the discrete model suitable
for the normal mode calculation method developed by
Wilson (21), Itoh et al. (22), and Fanconi et al. (23), we
prefer to adopt the continuity model to treat the internal
low-frequency motions in biomacromolecules. In principle,
the normal mode calculation method can be used to
calculate and analyze vibrational movements in any mole-
cules, but in practice this is unfortunately computationally
impossible due to the lack of symmetry in biomacromole-
cules and limitations on computer size and speed. When
discussing the high-frequency vibrations of a molecule,
which involve very small relative displacements and very
strong molecular forces (such as covalent bonds) between
neighbor individual atoms, one must resort to a discrete
model. But for the low-frequency motions in a biomacro-
molecule, which involve much larger effective masses and
much weaker force constants (15), and whose modes can
be compared with an accordionlike motion (1), heartbeat
pulsation (8-9), or any kind of vibration that involves
many atoms and spans a much bigger dimension than the
length of a covalent bond, it is not only more convenient but
also physically reasonable to use the continuity model. A
similar concept regarding the continuity model was also
described by Suezaki and Go- (1 1), and Ponnuswamy and
Bhaskaran (12). In adopting the continuity model, one will
of course lose the information concerning the high-
frequency motions in a biomacromolecule. Nevertheless,

this is worthwhile because the low-frequency motions in a
biomacromolecule possess much more significant biologi-
cal functions than the high-frequency motions (8-9, 13-
20). Besides by means of the continuity model, we can
easily obtain an intuitive and clear physical picture of
low-frequency vibrations in a biomacromolecule, which is
very helpful in gaining an insight into their biological
functions.

According to the continuity model, an a-helix can be
compared with a spring whose mass, however, is not
negligible, namely, to a spring with distributed mass.
Based on this, the fundamental frequencies of a helix with
different terminal conditions can be expressed as follows
(see Appendix I). (a) If the two ends of a helix are linked to
two mass-negligible springs as illustrated in Fig. 1 A, then
we have

1 [ k + K* 1/2

V=-- [(at + a2)pL/3 (1)

with

K2
a, = K1 + K2'

K,
a2 = K, + K2 (2)

(3)K*=- KIK2
K, + K2

where v is the fundamental frequency of the system
considered, i the corresponding wave number, c the speed
of light, k the stretching force constant of the helix, p the
mass per unit length along the axis of the helix, L the
length of the helical axis, and K1 and K2 are the force
constants of the two attached mass-negligible springs,
respectively. (b) If the two ends of the helix are linked to
two fragments with masses ml and m2 (Fig. 1 B), respec-
tively, then we instead have

1 [ k 1/2
c 2rc m* + (f3 + i32)pL/3

m1= m2
ml + M2

* M,M2
m =

ml + m2

2mI + m2

(B)

FIGURE I The vibration system of the helical structure in which the two
ends of a helix are linked to (A) two mass-negligible springs with force
constants K, and K2, respectively, and (B) two sequential fragments with
mass m, and M2-

From above we see that to calculate the fundamental
frequency of a helix system we have to find the stretching
force constant of the helix. Obviously, for an a-helix being
in an accordionlike vibration, its force constant is essen-

tially related to the constituent hydrogen bonds. As is
well-known, the normal a-helix has 3.6 residues per turn,
with a hydrogen bond between the CO of the it' residue and
the NH of the (i + 4)th residue as shown in Fig. 2. Now, the
problem is how to express the stretching force constant of
the whole a-helix in terms of the force constants of the
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resolution and composition of force constants is necessary.
Suppose the stretching and bending force constants of the
hydrogen bond are k' and k', respectively. Then the force
constant for such a hydrogen bond vibrating along the helix
axis should be

k [(ks cosO)2 + (k' sinO)2]'2. (7)

FIGURE 2 Illustration of an a-helix where 0 denotes peptide oxygen,
and @ peptide nitrogen, and Po denotes hydrogen bond.

constituent hydrogen bonds. For such a purpose, it would
be instructive to further compare an a-helix with a cylin-
der, then imagine that its flank is cut off along a straight
line parallel to the helix axis, and flattened as illustrated in
Fig. 3. Because the hydrogen bonds in an a-helix are not
precisely parallel to the helix axis, but have some deviation
angle, say 0, from it, the following step referring to the

I I

Thus, according to the combination relations of force
constants as given in Appendix II, the resultant force
constant, k, for the spring system as shown in Fig. 3 can be
expressed as

k= [(1/4k*) + (1/4k*) + (1/3k*)
+ (1/4k*) + (1/3k*)]-'. (8)

Following the above steps, for any a-helix, we can
always derive the approximate expression of its stretching
force constant in terms of the force constants of the
constituent hydrogen bonds, e.g., for a normal a-helix with
11 amino-acid residues, the corresponding stretching force
constant is

k = [(1/4k*) + (1/3k*)]-' =1 k*.H H ~~7 H (9)

Note that the number of the hydrogen bonds in an a-helix
is generally n - 4, where n is the number of the constituent
amino-acid residues.

FUNDAMENTAL FREQUENCY AND
MICROENVIRONMENTS

The observations by laser Raman spectroscopy (1) show
the pronounced low-frequency peaks at -29 cm-' and 32
cm-' for a-chymotrypsin and pepsin, respectively. How-
ever, upon denaturation their respective low-frequency
peaks disappear, too, which means this kind of low-
frequency vibration is very sensitive to the conformations
of protein molecules. To explain the above experimental
results, Suezaki and Go- (11) likened the native globular
proteins to continuous elastic spheres in low-frequency
breathing motions and used the formula

1 (rE 1/2
2rc prJ (10)

f
FIGURE 3 Illustration obtained by cutting and flattening the flank of
the a-helix in Fig. 2.

to calculate their wave numbers. In Eq. 10, E is Young's
modulus of the elastic material, and p and r are the mass
density and radius of the sphere, respectively. They substi-
tuted E = 10"1 dyn/cm2, r = 20 A, and p = 1 g/cm3 into
Eq. 10 and obtained M = 26 cm-'. However, the validity of
their calculations might be questioned for the following
reasons. First, there is no reliable information about the
value of E for globular proteins, and the value they took
was rather arbitrary. Second, their calculations did not
touch on any specific character of internal structures of
individual protein molecules. According to their model, the
low-frequency wave number should be inversely propor-

CHOU Biological Functions ofLow-Frequency Vibrations

I

883



tional to the size of the protein molecule no matter what
conformation it has (see Eq. 10). Obviously, there is not
such a simple relation in actual observations. Furthermore,
for some proteins, e.g., carboxypeptidase, so far even a
weak low-frequency peak has not been observed (1). All
these indicate that the low-frequency modes apparently
hinge on the internal structures of protein molecules. Now,
let us investigate these phenomena according to the inter-
nal structures of protein molecules.

a-Chymotrypsin

a-chymotrypsin consists of 245 residues. A view of its
complete polypeptide chain is outlined in Fig. 4, where
residues 57, 102, and 195 are the components of the active
site (24). The fl-barrel 1, formed by six adjacent anti-
parallel chains along the sequence from residues 29 to 112,
appears at the upper left; while the A-barrel 2, formed also
by six adjacent anti-parallel chains from residues 133 to

230, is at the lower right. There are three a-helices. Helix 1
involves residues 164 to 179, and hence is entirely bound in
the fl-barrel 2. Therefore, it is not likely that there is any
low-frequency vibration coming from this helix, which is
seriously restricted by the surroundings. Helix 2 (residues
230-235) and helix 3 (residues 235-245) are contiguous to
each other, and their axes make an angle of A400. But helix
2 is almost buried inside the molecule, too. Accordingly,
only helix 3, the COOH-terminal a-helix, is on the enzyme
surface, forming a tail on the second barrel and making
hydrophobic contacts with both barrels. Besides, the only
hydrogen bond between the COOH-terminal helix and the
remainder of the molecule is a salt bridge from the
terminal carboxyl group to Lys 107, and such a hydrogen
bond is almost perpendicular to the COOH-terminal helix
axis. The other end of the COOH-terminal helix is linked
by a covalent bond to helix 2, which, however, is buried
inside the protein molecule, therefore this end is actually
linked by a covalent bond to an object whose mass is much
bigger than that of the COOH-terminal helix. Because
both the covalent bond and hydrogen bond can be regarded
as mass-negligible springs, the COOH-terminal helix plus
its microenvironment, as described above, can be classified
to the category of vibration system illustrated in Fig. 1 A.
But note that in the case considered here, one of the two
mass-negligible springs is linked to the helix in a mutually
perpendicular way. Therefore, for this spring, rather than
stretching force constant, we should take the corresponding
bending force constant for calculation. For example, in
Eqs. 2-3, we should assign,

K= ks, K2= k4 (11)

FIGURE 4 A view of a-chymotrypsin, where the polypeptide chain is
represented by a ribbon folded at each a-carbon atom. Helix 1, the
COOH-terminal a-helix (residues 235-245) is on the enzyme surface,
and the short contiguous helix 2 (residues 230-235) are almost buried
inside the protein molecule. These two helices are specially marked by
dark color. Their axes (indicated by * ) makes an angle of A400.
Helix 1 (residues 164-179) is wholly bound in 1B-barrel 2 (residues
133-230), which is located at the lower right of the figure. ,B-barrel 1
(residues 29-112) appears at the upper left, in front of the COOH-
terminal helix. It looks like that the COOH-terminal helix forms a tail on
the second cylinder (,8-barrel) and makes hydrophobic contacts with both
cylinders (/3-barrels 1 and 2). The only hydrogen bond between COOH-
terminal helix and the remainder of the protein molecule is that made by
the terminal carboxyl group with Lys 107 (illustrated by ---) holding the
COOH-terminal helix more firmly to the enzyme surface. Residues 57,
102, and 195 are the components of the active site. Disulphide linkages
are indicated by shaded bars.

where kc is the stretching force constant of a covalent bond,
while k4 has the same implication as in Eq. 7.

The amino-acid sequence of the COOH-terminal helix
is (24)

Val-Asn-Trp-Val-Gln-Gln-Thr-Leu-Ala-Ala-Asn
(235) (245)

whose mass is 1,242 daltons. To make a fair approxima-
tion, we can suppose p, the mass per unit length of the
helix, is even, and thus have

1,242
pL= N grams, (12)

where N is the Avogadro constant.
The stretching force constant of the helix can be

calculated by means of the method described in the last
section. For a helix with 11 residues, the expression of its
stretching force constant has already been given in Eq. 9.
The stretching force constant, OH, of the hydrogen bond is
0.13 x 105 dyn/cm, and its bending force constant k4 is
0.03 x lO dyn/cm (24). The deviation angle, 0, of the
hydrogen bonds from the helix axis is 2 260. Then accord-
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ing to Eq. 7

k = [(0.13 cos 260)2 + (0.03 sin 26o)2]1/2 X 105

= 0.12 x 105dyn/cm.

Substitution of the above into Eq. 9 gives

k = 0.20 x I05 dyn/cm.

(13)

(14)

Because the force constant of a covalent bond is much
larger than that of a hydrogen bond, Eqs. 2-3 can be
reduced to (cf. Eq. 1)

caI O, a2 C 1

K*-k B = 0.03 x I05 dyn/cm.

(15)

(16)

Substituting Eqs. 14-16 into Eq. 1, we obtain

1 [(0.20 + 0.03) x 10' x 6.02 x 10211/2
2r x 3 x 101[ 1,242

3 I
= 30cm-', (17)

which is in good agreement with the result observed by
Brown et al. (1).

However, when the a-chymotrypsin was denatured with
sodium dodecyl sulfate, the salt bridge between Lys 107
and Asn 245 (Fig. 4) was disrupted as well, and hence the
one end of the COOH-terminal helix is no longer held to
the enzyme surface. In this case the low-frequency peak at
29 cm-', which is closely related to the conformation
before denaturation as illustrated in the aforementioned
calculation, will of course vanish. Instead, "rather intense
Raman scattering throughout the region of 20-150 cm- ' is
observed on the denatured material, but it is broad and
structureless," as described by Brown et al. (1). This is
apparently related to the free motion of the one end of the
COOH-terminal helix, which will no doubt increase the
background noise, and also related to a decrease in the
order of protein conformation. Furthermore, the hydro-
phobic contact of the COOH-terminal helix with both
(3-barrel 1 and (-barrel 2, which somewhat plays a role in
stabilizing the relative position of the two ,B-barrels, will
also be collapsed. This will automatically be followed by a
change of the relative positions among the active groups
His 57, Asp 102, and Ser 195 (Fig. 4), and eventually
result in a loss of activity.

Pepsin
Pepsin has 327 residues (25). Those stretches of polypep-
tide chain that adopt a helical conformation are residues
58-62, 137-141, 225-235, and 303-309 (26). Among
these four helices, only the helix (residues 225-235) is most
likely related to the observed low-frequency peak of 32
cm-' (1) because the other three helices are too short,

FIGURE 5 Stereoscopic drawing of the pepsin polypeptide chain con-
structed on the basis of the coordinates of the a-carbon atoms. The helix
(residues 225-235) is drawn with bold-darkened line. The two sequential
segments, residues 222-224 and residues 236-241, are linked along the
sequence to the two ends of the helix (residues 225-235). But both these
segments have some free space to vibrate with very weak constraints from
the other joint parts of the sequence, and hence can be approximately
treated as two attached mass fragments as illustrated in Fig. 1 B.

consisting merely of four to six residues. Besides, this helix
is situated on the surface of the enzyme as can be seen from
Fig. 5, the stereoscopic drawing of the pepsin polypeptide
chain based on the a-carbon atoms (27). For clarity, in Fig.
5 the helix (residues 225-235) is marked by a thick line.
The two ends of the helix are linked by covalent bonds to
two segments (residues 222-224 and residues 236-241)
that both of them have some free space and can vibrate
along the helix axis but undergo very weak constraints
from the other joint part of the sequence. They can
therefore be approximately treated as two mass fragments,
attached to the two ends of the helix, as shown in Fig. 1 B.
Consequently, the microenvironment in the present case
makes the helix (residues 225-235) belong to the category
of vibration systems as described by Fig. 1 B. In other
words, its fundamental frequency should be calculated by
Eq.4.

The amino-acid sequence of the helix is (25)

Thr-Ser-Ala-Ile-Ala-Ile-Asn-Ile-Gln-Ser-Asp,
(225) (235)

which gives

pL = 1,1 13 daltons = 'N grams. (18)

The residues 222-224 and 236-241 that attach to the two
ends of the above helix and can be approximately regarded
as two mass fragments are Thr-Gly-Pro and Ile-Gly-
Ala-Ser-Glu-Asn, respectively. Therefore we have

256 571
ml,= N-grams, m2 = grams.-N-gas N (19)
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Substitution of Eq. 19 into Eqs. 5-6 yields

#I = 0.69, B2 =0.31

m*= 176.8.

(20)

(21)

Substituting Eq. 14 (note that the helix considered here
consists of 11 residues, too), and Eqs. 18-21 into Eq. 4, we
obtain

1 0.20 x 105 x 6.02 x 1023 1/2
27r3x 10'0 176.8 + [(0.69)3 + (0.3 1)31 X 1,113/3

= 33 cm-', (22)

which is also in good agreement with the observed value of
32 cm-' (1).

Recently, Go et al. (30) made an interesting computa-
tion for a small globular protein, the bovine pancreatic
trypsin inhibitor, by treating the energy surface as a
multidimensional parabola and only dihedral angles as
variables. According to such an approach they found a
frequency spectrum, among which, however, the lowest
frequency is 5.7 cm-', 15-30 cm-' lower than the lowest
frequencies so far observed for most globular proteins (31).
Besides, it is also a question how to single out from the
frequency spectrum the dominant low frequency that
corresponds to the outstanding low-frequency peak
observed uniquely, and how to give such a dominant
low-frequency motion an intuitive physical picture.

LOW-FREQUENCY AMPLITUDE

As is well-known, an oscillator with frequency v will excite
the phonons with energy of hv. Because phonons are bosons
(15), under thermal equilibrium, the mean number of
phonons thus excited is, according to Bose-Einstein statis-
tics, given by

(n) = kT-' (23)

where kB is the Boltzmann constant, h the Planck constant,
and T the absolute temperature. Therefore, the average
vibration energy of the oscillator is

(E) = (n)hv= ehP/kBTp 1 (24)

On the other hand, a combination of Eqs. Al 2, A6, A7,
and 2 and 3 will give

Max U = [(a,k + aK2K,) + (a2k + a2K2)] 2/2
= (k + K*)a2/2. (25)

According to energy conservation, we have Max U =

(E) and therefore the amplitude can be written as

12hv/(e1'/ B - 1)|
k + K* hpikBT

2kB T
\/k + K* (26)

Note that, for low-frequency phonons whose wave numbers
are <50 cm-', we generally have hv << kBT at room
temperature. Now for the COOH-terminal a-helix (resi-
dues 235-245) of a a-chymotrypsin, substituting T =
3000K, k = 0.20 x 105 dyn/cm and K* = 0.03 x 105
dyn/cm (see Eqs. 14 and 16) into Eq. 26, we obtain a =
0.20 A. Similarly, for the helix (residues 225-235) in
pepsin we have a = 0.21 A at room temperature (note that
in this case K* = 0). Therefore, at room temperature the
low-frequency amplitudes thus calculated for the two
a-helices each having 11 amino-acid residues are in good
agreement with the room mean square (rms) displacement
of the overall end-to-end length found by Peticolas (28) for
an essentially same helical structure.

LOW-FREQUENCY VIBRATIONS AND
BIOLOGICAL FUNCTIONS

From the above illustrations, we can see how the funda-
mental frequency of a helix in a protein molecule depends
on its microenvironment as well as the constituents of itself.
On the other hand, this kind of low-frequency vibration is
also closely related to the native state of a protein molecule.
As observed upon denaturation, the original low-frequency
modes existing in a-chymotrypsin and pepsin disappear
immediately (1). According to the above theoretical analy-
sis, this can be attributed to a conformational change of the
protein molecules, which of course includes a dramatic
change of the relevant microenvironments. Consequently,
both the experimental observation and the theoretical
analysis would naturally yield the concept of activating low
frequency (20), which possesses a unique character and
might serve as a potential dynamic criterion for identifying
whether a biomacromolecule is in its activated state,
because the creation and annihilation of such low-
frequency phonons are always accompanied by a major
conformational change in a protein molecule, which is
actually closely related to its activation and deactivation.
Furthermore, the idea of activating low frequency will be
very useful for investigating the action mechanism of
biomacromolecules from the viewpoint of dynamics (8-9,
15, 20).

Note that, the energy, hv, of a phonon excited by this
kind of low-frequency vibrations is -85 cal/mol. But when
pepsin undergoes conformational change of denaturation,
the measured enthalpy is 22 kcal/mol (29). Dividing the
above value by 327, the number of residues in pepsin, we
obtain -67 cal/mol, the corresponding enthalpy for each
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residue in average. Therefore the low-frequency phonon
energy possesses the same order of magnitude as the
average enthalpy value measured for each residue during
conformational changes in some protein molecules.
Accordingly, it is very likely that this kind of low-
frequency vibration can describe the microscopic process
and mechanism of the allosteric transition in a protein
molecule and the transmission of biological information at
the molecular level. Further investigation and the related
details on this subject will be presented in another report.

CONCLUSIONS

The fundamental frequencies calculated with the formulae
derived in this paper are in good agreement with the
experimental results. As reflected in our formulae, the
fundamental frequency of a helix is related not only to the
constituents of itself, but also to its microenvironment, and
thereby to the conformation of a whole protein molecule.

Our calculated results also show that the low-frequency
vibrations with wave numbers of -30 cm-' do not neces-
sarily arise from motions that involve "either all or very
large portions" of the protein molecules as suggested by
Brown et al. (1). A piece of helix containing more than 10
residues plus a proper microenvironment can also generate
this kind of low-frequency vibration. Such a conclusion is
also supported by the rigorous normal mode calculations,
in which a more simple and ideal a-helix of poly-L-alanine
was taken as the model (22). When the number of the
constituent alanine residues is 15, the wave number of the
corresponding fundamental frequency thus obtained is 29
cm-'. This indicates good agreement between the results
obtained by our calculations and by the rigorous normal
mode method if a reasonable factor regarding the differ-
ences in both the end conditions and the constituents of the
helices is taken into account. Besides, our calculated results
in both the fundamental frequencies and the corresponding
low-frequency amplitudes are also supported by a recent
paper of Peticolas (28), who applied an adjustable parame-
ter to simplify calculations and obtained some quite inter-
esting results as well.

Although the calculated results based on such a consid-
eration are in good agreement with the observations,
generally speaking, there might exist different vibrational
modes for different protein molecules, depending on indi-
vidual internal structures. For example, a low-frequency
peak was also observed for immunoglobulin G, whose
conformation assumes extensive A-sheet regions but no
a-helical regions at all. Therefore, as a further step, an
investigation into the fundamental vibrations of (3-struc-
ture is necessary, and will be approached elsewhere.

APPENDIX I

The fundamental frequency of the vibration system illustrated in Fig. 1 A
can be derived as follows. Suppose 0 is the static reference point of the
vibrational system concerned. The two sides of this point will move always

in an opposite direction. Such a point actually divides the spring L into
two parts, L, and L2 whose force constants are assumed to be k, and k2,
respectively.

If a, and °2 are the maximum absolute displacements of the two ends of
the spring L along the x-axis (Fig. 1 A), then according to the property of
an even spring we obviously have

1 02

L, L2
(Al)

with

L= LI +L2

a = al + a2, (A2)

where a is the maximum stretch amount of the spring L. Suppose the
force constant of the spring is k, which can be written as (see Appendix II)

1 1 1
k ki k2

(A3)

where k1 and k2 are the force constants of the springs LI and L2,
respectively. On the other hand, according to the force equilibrium of the
system, we have

(A4)
where K, and K2 are the force constants of the two mass-negligible springs
linked to the two ends of the spring L, as shown in Fig. 1 A.

From Eqs. Al-A4, it follows

LI = aIL
L2 = a2L (A5)

al = o7

(A6)U2 = a2U

k
ki =-k

a,

k
k2 =k

a12 (A7)

where a1 and 2 are defined as in Eq. 2. The displacements of any points
on LI and L2 at any time can be described by

x
u, (x,t) = - ,sin wt (-LI c x c- O)

LI
x

U2(X,t) = - u2Sin wt (0 c x c L2)
L2

(A8)

respectively, where w is the round frequency. Suppose p is the mass per
unit length of the mass-distributed spring, then the maximum kinetic
energy of an element pAx of the spring L,, a distance xi from the point 0,
is

PAX [du, 2 PAX [Xi 12
Max (AT'l) = Max | -] I-aW

2 Ldt
Xi

2 LL

The total maximum kinetic energy of the spring L, is thus

Max T- lim? [ Max (AVT)] P2CL,f Li x2dx

= pL1W2U2/6.

(A9)

(A10)
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(A)

k

k

(B)

ko

FIGURE 6 The spring system that is formed by (A) a series connection
of two individual springs, and (B) a parallel connection of n identical
springs.

Similarly, the total maximum kinetic energy of the spring L2 is

Max T2 = pL2 2u2/6. (Al 1)

On the other hand, the total maximum potential energy of the whole
spring system is

Max U = fl (k, + K,)x'dx' + f (k2 + K2)x'dx'

= (k, + K,)U2/2 + (k2 + K2)a2/2. (A12)

According to energy conservation, we have

Max TX + Max T2 = Max U (A13)

or

p(L1o72 + L2 )2 /3 = (k, + K,)4 + (k2 + K2)o-. (A14)

Substituting Eqs. A5-A7 into the above, we obtain

)2(a' + a')pL/3 = (a, + a2)k + a 2K, + a2K2, (A 15)

which yields

k+K* 12

(=[Xa' + a')pL/]3 (A16)

where K* is defined as in Eq. 3. Based on Eq. A16, the corresponding
fundamental frequency and wave number can be expressed as in Eq. 1.
Following the analogous derivation steps, we can obtain Eqs. 4-6.

APPENDIX II

Consider the force constant of the spring system shown in Fig. 6A.
Applying a unit force at its right end, each constituent spring will stretch
by an amount l/k, and 1/k2, and the total displacement of the end
becomes

AL=-+-. (A17)
k1 k2

By definition, the resultant force constant for the system should be

1 1
AL 1 1 . (A18)

k, k2

Generally speaking, for a system consisting of n springs in series
connection, the resultant force constant, k, can be written as

1 1 1, (A19)
k2 k2 kn

where k,, k2, ..., kn are the force constants of the n individual springs,
respectively.

However, if a spring system consists of n identical springs in parallel
connection as illustrated in Fig. 6 B, a similar derivation will result

k = nk0. (A20)

Above we see that there is actually a crosswide corresponding relation
between the formulae for calculating the resultant spring force constant
and those for calculating the resultant resistance as far as the series
connection and parallel connection are concerned.

Received for publication 26 July 1982 and in final form 19 December
1983.
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