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ABSTRACT  Recently it has become possible to measure fluorescence phase-shift and modulation data over a wide
range of modulation frequencies. In this paper we describe the analysis of these data by the method of nonlinear least
squares to determine the values of the lifetimes and fractional intensities for a mixture of exponentially decaying
fluorophores. Analyzing simulated data allowed us to determine those experimental factors that are most critical for
successfully resolving the emissions from mixtures of fluorophores. The most critical factors are the accuracy of the
experimental data, the relative difference of the individual decay times, and the inclusion of data measured at multiple
emission wavelengths. After measuring at eight widely spaced modulation frequencies, additional measurements
yielded only a modest increase in resolution. In particular, the uncertainty in the parameters decreased approximately as
the reciprocal of the square root of the number of modulation frequencies. Our simulations showed that with presently
available precision and data for one emission bandpass, two decay times could be accurately determined if their ratio
were =>1.4. Three exponential decays could also be resolved, but only if the range of the lifetimes were fivefold or
greater. To reliably determine closely-spaced decay times, the data were measured at multiple emission wavelengths so
that the fractional intensities of the components could be varied. Also, independent knowledge of any of the parameters
substantially increased the accuracy with which the remaining parameters could be determined. In the subsequent
paper we present experimental results that broadly confirm the predicted resolving potential of variable-frequency

phase-modulation fluorometry.

INTRODUCTION

During the past decade, time-resolved fluorescence mea-
surements have become widely used in biochemical and
chemical research (1, 2). Examples include resolution of
the emission from mixtures of fluorophores (3-5), analysis
of excited-state reactions (6-9), excited-state energy trans-
fer (10-11), and determination of time-resolved emission
spectra (12-13). Such measurements have been performed
using both small molecules and more complex samples
consisting of proteins and/or membranes (14-17). Time-
resolved data are most often obtained using pulsed excita-
tion, and then the time-dependent decays of fluorescence
intensity are measured. By iterative reconvolution, one
estimates the impulse-response function of the sample, that
is, the decay of intensity that would be observed for
delta-function excitation. The impulse-response function,

G. Laczko is on leave from Jozef Atilla University, Szeged, Hungary and
H. Cherek is on leave from Nicholas Copernicus University, Torun,
Poland.

BiopHYs. J. © Biophysical Society
Volume 46 October 1984 463477

I(2), is then interpreted by comparing it with predictions
from various assumed models.

An alternative to the pulse method is the technique of
phase-modulation fluorometry (18-21). Instead of a
pulsed excitation, the excitation beam is intensity modu-
lated sinusoidally at a frequency comparable to the decay
rates of the sample. Information concerning the decay law
of the sample is obtained from the phase shift (¢) and the
modulation (m) of the emission, both measured relative to
the phase and modulation of the incident light. Under ideal
experimental circumstances, it is generally accepted that
both pulse and phase-modulation techniques yield equiva-
lent information. For pulse fluorometry, it is ideal to have a
narrow excitation pulse. For phase-modulation fluorome-
try, it is ideal to have a wide range of modulation frequen-
cies. Developments in laser technology have made progres-
sively shorter pulses of light available and, hence, have
stimulated growth in the field of pulse fluorometry (22—
23). In contrast, most available phase-modulation fluorom-
eters operate at only two or three modulation frequencies,
which greatly limits the information content and/or resolv-
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ing power of the measurements. Consequently, a great deal
of effort has gone into extending the usefulness of the one-
or two-frequency data. Specifically, Weber developed a
mathematical solution whereby these data can be used to
solve for the lifetimes and fractional amplitudes in a
multiexponential decay (24). An alternative experimental
procedure for resolving such complex decays, based on
phase-sensitive detection of fluorescence, was developed by
Lakowicz and co-workers (25-26).

It is apparent from recent results in at least two labora-
tories (27-29) that phase-modulation fluorometers, which
operate over a range of modulation frequencies, are fea-
sible and are likely to become widely available. Histori-
cally, the limiting factor has been the Debye Sears acousto-
optic modulators. These modulators operate only at a few
frequencies, are moderately unstable, and do not generally
work at modulation frequencies >30 MHz. At present,
several suitable broadband modulators are available,
including electro-optic, traveling-wave electro-optic, and
acousto-optic modulators (30-31). Available modulation
frequencies can now range from DC to =300 MHz and,
potentially, to =1 GHz. Furthermore, future developments
may circumvent the limitations of these modulators. Spe-
cifically, the harmonic content of pulsed excitation sources
can also be used to obtain phase and modulation data over
a range of modulation frequencies (32). As a result of these
recent technical accomplishments, it is now necessary to
consider methods to analyze the variable-frequency data.
In this paper we describe the analysis of such data by the
method of nonlinear least squares (33-35), in a manner
analogous to the least-squares analysis of time-correlated,
photon-counting data. In our analysis we fitted the mea-
sured phase and modulation data in the frequency domain
with values predicted by an assumed model, which was also
calculated in the frequency domain. This method is distinct
from those described previously (24-26, 36) in that the
system can be over-determined by using many modulation
frequencies and the analysis is not limited to a double-
exponential decay. Our simulations and analysis illustrate
for the first time the resolving power of the variable-
frequency measurements with currently attainable accura-
cy. In the subsequent paper (29), we describe experimental
data that demonstrate that the predicted resolution can be
experimentally realized.

THEORY

The objective of the fitting procedure is twofold. First, we wish to test the
validity of an assumed model. For instance, we may wish to test whether
the decay is a single, double, or triple exponential. Also, one wishes to
determine the parameters associated with the model and the uncertainties
associated with the parameters.

The fitting routine finds the best possible match between the measured
phase (¢,) and modulation (m,) values with those predicted on the basis
of an assumed decay law (¢, and m,,). The subscript w is an index of the
modulation frequency (w = 2 = - frequency) and the subscript ¢ indicates
calculated values. We assume that the impulse response function I(¢) , at
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any time ¢, can be represented by a sum of n exponential decays,

I(t) = Z ae”"m, 1)

For a mixture of noninteracting fluorophores the values of 7, represent the
individual lifetimes and the values of a,, the preexponential factors. The
fractional steady state intensity, f;, of each component in the mixture is
given by

T

Z a;Tj
J

The interpretation of these parameters is more complex in the case of
time-dependent solvent relaxation or other excited-state processes (2, 7).
The response functions may still be represented by Eq. 1, except that the
values of o; and 7; may not have physical significance.

Conveniently, one may predict the frequency-dependent values of ¢
and m for any assumed decay law (37-38). These values may be obtained
from the sine, N,, and cosine, D,, transforms of the impulse response
function,

i 2

j(;m I1(t) sin wt dt
N2 TS 3
j(; I(t) dt
fm 1(f) cos wt dt
p-% OO 4

Lo

where the subscript w indicates the frequency w. For a multiexponential
decay these transforms are

" w7
N .J= Wl 5
By ©)
“ oT;
D,-J=) ——5—,
¢ ,Z,: (1 + &?7d) ©)

where J = Z; a; 7;. The phase and modulation values can be calculated
from N, and D, and are given by

é., = arc tan (N,/D,) @)
m., = (N3 + D)2 ®)

For a given sample the estimated values of a; and 7, are those that
minimize x?, which is the error-weighted sum of the squared deviations
between the measured and calculated values. When both phase and
modulation data are available, x? is given by

1 1
XZ = Z 0_2 (¢«> - ¢cw)2 + Z 2 (mu - mco)29 (9)
w dw

@ me

where o4, and o, are the estimated uncertainties in the phase and
modulation data at each frequency, respectively. The choice of errors is
discussed later. Minimization of x* with respect to the parameters a; and
7; is a complex but thoroughly studied problem. We used the Marquardt
algorithm (34) as described by Bevington (33). The detailed equations are
given in the Appendix.

To facilitate interpretation of our simulations, it is useful to review the
properties of a good fit between the experimental and the calculated data.
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This is usually judged by the value of the reduced x?,

2 1 , X

e el (10)
The term, v = 2N — p, is the number of degrees of freedom, where N is
the number of frequencies for which both phase and modulation data
were measured and p is the number of floating parameters. For example,
if measurements are made at 16 frequencies and the data are fit to a
two-component decay, then v = 2(16) — 3 = 29; one «, value can always
be fixed without loss of generality.

For the correct model and random experimental errors the value of xZis
expected to fluctuate near unity. Notice that the calculated value of x
depends on the estimated errors (o, and o,,). In contrast to the
photon-counting experiments (39), these errors are not estimated directly
from Poisson counting statistics. For our simulated data, the errors are
known because they were incorporated into the calculated values. For
experimental data, they were estimated from the deviations between the
measured and calculated values for known single- or multi-component
solutions (29). In phase fluorometry, the meaningful errors appear to be
day-to-day fluctuations in the measured quantities, rather than statistical
fluctuations of these quantities during any single measurement session.
This important aspect of the analysis is discussed in the subsequent paper
(29).

The least-squares procedure allows estimation of the uncertainties in
the parameters. One meaning of these uncertainties is as follows. If a
single parameter is held fixed, not at the calculated value but rather one
standard deviation away from this value, then x? will increase to x* + 1
after all the other parameters have been optimized. We confirmed this
relationship in a number of our simulations. Additionally, the dependence
of x? on the values of the parameters intuitively reveals the uncertainties
in these values. For example, if x varies only slightly for widely different
values of a parameter, then clearly the value of this parameter is
uncertain. This occurs for closely spaced lifetimes, or for high degrees of
correlation between the parameters. The minimum value of x%is used as a
measure of the probability that the experimental data are described by
the assumed model. Values of x2 that are significantly greater than unity
indicate that the assumed model is probably inadequate to explain the
data, or suggest that systematic errors are present.

The estimated uncertainties in the derived parameters are given by the
square root of the diagonal elements of the error matrix (covariance
matrix, Eq. A13). The correlation coefficients between the parameters
can be obtained from the off-diagonal terms. If the parameters are
correlated, then the diagonal elements will not provide a good estimate for
the joint confidence region of the parameters. Remember that in the
present analysis the terms in the error matrix are independent of the
actual experimental data. Rather, they depend on the day-to-day random
errors in the measurements (g, and 7,,), the frequencies used, and the
parameters themselves (o, and 7,) (see Eqs. A8—A10). In our analysis of
simulated data, we used the assumed level of random error as the values of
04, and o,,,.

Analysis of Phase and Modulation Data
Measured at Multiple Emission
Wavelengths

The equations described above are appropriate for phase and modulation
values measured at a single emission wavelength or with a single emission
bandpass. Because measurement of the phase and modulation data is
quite rapid, one is naturally inclined to measure these data at several
emission wavelengths. Such additional measurements do not substantially
increase the time needed to complete the experiment. The additional data
enhance the ability to resolve closely spaced lifetimes.

Analysis of the multiple-wavelength data is a straightforward extension
of the procedure described above for a single emission bandpass. For a
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mixture of fluorophores, in which each fluorophore displays a single
lifetime independent of emission wavelength, the decay law at any
wavelength A is given by

I = ia,()\) e, (11)

The preexponential factors depend on emission wavelength. The frac-
tional steady state intensity at each wavelength is given by

a;(N)7;

Z a;(N)7;
J

fi) = (12)

The sine and cosine transforms are given by expressions comparable to
Eqgs. 3-6, except «; is replaced by a;(A). The calculated phase and
modulation values also depend on emission wavelength, i.e., ¢,,(A) and
m,,(\). The value of x? is given by

1
f=gzamm—%mr

1
+ 2T I = ma 1 (13)

where ¢,(A) and m,(\) are the measured values at the indicated
wavelengths. The detailed equations are once again given in the Appen-
dix. Using this procedure, the values of a(\) and 7; are varied until the
minimum value of x? is obtained. Notice that the 7; values are forced to be
the same at all emission wavelengths, but that the ay\) values are
wavelength dependent. This model is appropriate for systems in which the
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FIGURE 1 Simulated phase and modulation data for a single exponen-

tial decay are shown. The assumed decay time for the simulated data was
20 ns. Gaussian noise was added to both the phase and modulation values.
For phase the added noise level (s,) was 0.5° and for modulation the
added noise (s,,) was 0.005. The upper panel shows the simulated phase
and modulation values at 16 frequencies (®). The solid line (—) is the
theoretical curve for the best fit through these data. The lower panels
show the deviations between the simulated and calculated values of the
phase and the modulation.
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FIGURE 2 Simulated phase and modulation data for a multiexponential decays are shown. Left: The assumed decay times were 5 and 20 ns.
The fractional intensities of the components were assumed to be equal (f, = f, = 0.5). The levels of added Gaussian noise were g, = 0.5° and
o,y = 0.005. The dashed line (upper panel) and open circles (lower panels) indicate the best fit obtained using a single decay time. The solid
lines and symbols represent the best fit using two decay times. Right: The assumed decay times were 5, 10, and 20 ns. The fractional intensities
of the components were assumed to be equal (f, = f, = f3 = 1/3). Gaussian noise was added at a level of 0.1% (o, = 0.1° and g,, = 0.001).
The dashed lines and open symbols represent the best fit obtained using a two-component decay. The solid lines and symbols represent.the best

fit obtained using a three-component decay.

lifetime of each fluorophore is independent of emission wavelength, or for
the case of a two-state, excited-state reaction (6, 7). This model is not
appropriate in instances where the decay times depend on emission
wavelength, such as with solvent relaxation (13-15).

RESULTS

General Features of Variable-frequency
Phase and Modulation Data

Frequency-domain phase and modulation data are not
widely available; hence the appearance of these data are
not widely appreciated. Simulated data for single- and
double-exponential decays are shown in Figs. 1 and 2. We
assumed the data were measured at 16 modulation fre-
quencies, ranging from 1 to 179.2 MHz. Measurements at
this number of frequencies may be accomplished in a short
time (minutes), and unless an unreasonable number of
frequencies are used, additional measurements do not seem
to improve the resolution. The values in the frequency
range are comparable to the upper limit of 140 MHz used
in the actual measurements (29). Random Gaussian error
was added at a level comparable to the day-to-day fluctua-
tions found in the experimental data (29). For most
simulations we assumed a constant level of random error
independent of frequency, phase angle, or modulation. The
average random error in the experimental data is +0.5° in
phase angle and +0.005 in modulation. We will refer to
this as a random error of 0.5% in reference to the
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maximum modulation of 1.0 and the maximum phase
angle of 90° (nearly 100°). However, we stress that 0.5%
noise does not refer to 0.5% of the measured values, but
rather 0.5% of the maximum possible phase and modula-
tion values. To reveal the effect of random error on
resolution and in anticipation of greater precision from
future instruments, we considered error levels ranging
from 0.1 to 1.0%.

Single-exponential Decays.  Simulated data for
a single-exponential decay (7, = 20 ns) are shown in Fig. 1.
Gaussian noise was added at the level of 0.5%. Also shown
is the best one-component fit. The value of 7 estimated
from the least-squares procedure was 19.95 ns, with an
uncertainty of +0.08 ns. Also shown in Fig. 1 are the
calculated values of ¢ and m, based on the best one-
component fit. The deviations between the simulated and
the calculated values are shown in the lower panels. These
deviations appear to be randomly distributed around zero,
a result considered to indicate that there is a good fit
between the experimental data and the assumed model;
that is, a single-exponential decay. For this particular
simulated data set we found x = 0.80. We examined nine
additional simulations with 7, = 20 ns and 0.5% random
error. Five of these simulations are shown in Table 1. In
each case the results were comparable to those shown in
Fig. 1, except for the expected variation based on the
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TABLE 1
SINGLE- AND DOUBLE-EXPONENTIAL FITS TO A
SINGLE-EXPONENTIAL DECAY LAW*

Single-exponential

Simulation fit Double-exponential fit
number —m——— 2
™ X2 T T2 h XR
ns ns ns
1 19.91 1.30  20.04 409 098 1.26
2 2000 0.95 19.63 12.56 1.07 0.95
3 1997 0.84 19.99 747 099 0.90
4 20.00 0.87 1882 2370 0.77 0.84
5 2006 0.73 22.16 1892 0.37 0.76

*The assumed parameters were 20 ns and 0.5% random error.
1/, is the fractional intensity of component 1, and f; + f, = 1.0.

random nature of the simulated data. The estimated values
of 7 ranged from 19.91 to 20.16 ns, in accordance with the
calculated uncertainties, and x& ranged from 0.72 to 1.30.
Furthermore, we fixed the value of 7, and examined x? = »
Xk As expected, x* increased approximately from 30 (x?)
to 31 (x*> + 1) when 7 was varied by one uncertainty limit
(£0.10 ns).

We attempted to fit these one-component simulations
using a two-component decay law. The results of five
representative simulations are summarized in Table I. The
use of two-components did not result in an improved fit, as
indicated by the similar values of x& There was also a
strong tendency either for the two lifetimes to be the same
or for the amplitude of one of the components to approach
zero. Such results indicate that including an additional
component in the decay law is not justified by the experi-
mental data.

Double-exponential Decays. Simulated data
for a double-exponential decay are shown in Fig. 2 (left).
The assumed lifetimes were 5 and 20 ns, the fractional
intensities were assumed to be equal (f, = f, = 0.5), and
the level of random error was 0.5% (0.5° in phase and

+0.005 in modulation). In the frequency domain the effect
of a multiexponential decay is to increase the frequency
range over which the phase angles are substantially dif-
ferent from 0° or 90°, and over which the modulation is
different from 1.0 and 0. For more widely spaced lifetimes,
the increased frequency range is greater and individual
plateaus become apparent for each lifetime. The inade-
quacy of the single-component fit is evident from the
systematic deviations between the simulated and calcu-
lated phase and modulation values. For the double-
exponential model the deviations are substantially smaller
and randomly distributed around zero (lower panels). The
need for at least two-components is also evident from the
values of x& For the single- and double-exponential fits the
values of x3are 109 and 1.0, respectively. The use of a still
more complex decay law, i.e., three-components, did not
yield smaller values of & Also, there was a tendency for
either two of the three lifetimes to be identical or for one of
the amplitudes to be zero.

Triple-exponential Decays. The previous
examples may be regarded as easy resolutions because
there were only two lifetimes, which were widely spaced
and of comparable amplitude. The resolution of the indi-
vidual decay times and amplitudes becomes difficult and
ambiguous when the decay is more complex than a double
exponential (39). This is illustrated in Fig. 2 (right), which
contains simulated data for a three-component decay. We
assumed the fractional intensities of each component were
equal (f, = f, = f3 = 1/3) and the lifetimes were 5, 10,
and 20 ns. With random errors of 0.5%, this triple-
exponential decay cannot be resolved (data not shown).
Hence, the random error was decreased t0 0.1% (+0.1° in
phase and +0.001 in modulation). The two- and three-
component fits are shown in Fig. 2. The value of x3 is
decreased from 3.46 to 0.73 by assuming a third-compo-
nent was present. Hence, one is inclined to accept the
three-component fit. However, the deviations between the
measured and calculated values are rather small using

TABLE I1
ANALYSIS OF SIMULATED THREE-COMPONENT DECAYS*

2

XR
Simulation
number Two- Three- ni ™ 3 h f2
component component
ns ns ns

1 2.61 0.60 4.3(04) 7.6 (0.8) 18.8 (0.4) 0.18 0.41
2 4.65 1.06 4.7 (0.2) 9.6 (1.1) 21.1(1.1) 0.28 0.42
3 2.30 1.15 5.1(0.3) 10.4 (2.7) 19.9 (1.6) 0.37 0.30
4 2.97 0.69 5.1(1.1) 11.9 (1.3) 22.5(7.0) 0.37 0.41
5 3.56 1.50 4.7 (0.5) 8.5(1.6) 19.6 (1.0) 0.25 0.38

Average 3.22 1.0 4.8 (0.5) 9.6 (1.5) 20.4 (2.2) 0.29 0.35

*The assumed parameters were 5, 10, and 20 ns; 0.1% random errors; f; = f, = f; = Yh;and f, + f; + f5 = 1.0.

$The values in parentheses are the uncertainties in the lifetimes.
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either the two- or three-component decay laws. Note that
the simulated data have random statistical errors whose
magnitudes are accurately known. This is not the case for
experimental data, which may contain both random and
systematic errors. Consequently, in an experimental situa-
tion it may be difficult to choose between these fits.
Additional simulations using the same assumed parame-
ters are summarized in Table II. At this degree of precision
(0.1%) the x} values of the two-component fit consistently
indicate that an additional-component was present.
Although the simulations in Table II indicate that the
three components may be resolved, the uncertainty in the
individual values is substantial (~10% on the average). For
example, the estimated uncertainties in the 20, 10, and S ns
components are 2.2, 1.5, and 0.5 ns, respectively.

Remember that the fitting procedure minimizes x3 but
that this minimum value depends on the estimated errors
(04,and g,,,). If these are estimated correctly, the xvalues
will be distributed randomly about unity. However, if the
values are not estimated correctly, then x& can be substan-
tially different from unity. Because the actual level of
random and systematic errors may vary among experimen-
ts, xzat ~2 or 3 may or may not indicate that an additional
component should be included in the decay law. As is the
case with most fitting procedures, experience is required
with the instrument and the analysis in order to confidently
interpret the relative and absolute values of x3

Effects of Random Errors on
Distinguishing Between Two- and
Three-Component Decays

Effect of the Range of Lifetimes.  The ability to
distinguish between complex and simple decay laws, and
the ability to reliably determine the lifetimes and ampli-
tudes, depends strongly on the random error in the data
and the difference between the individual lifetimes. The
use of variable-frequency data to distinguish between
single- and double-exponential decays is illustrated in Fig.
3. We calculated the value of x% for one- and two-
component fits to two-component data. We observed a
range of 0.7-1.3 for x% in our simulations of one- and
two-component systems. Choosing a conservative ap-
proach, we selected x = 3 to unequivocally suggest that an
additional component is present. Note that the extent of
random error may not be known in an experiment. Hence,
the magnitude of the x values may be uncertain. After
some experience with a particular measurement, a smaller
decrease in the relative value of x% may be regarded as
significant. Using x& = 3 as a cutoff and assuming the
random errors are 0.5%, a double-exponential decay can be
distinguished from a single-exponential decay if the decay
times differ by 40%; that is, if the long component is 20 ns
and the short component is <12 ns. For example, a
single-component fit to a simulated decay with 10- and
20-ns lifetimes results in x& = 9.6, clearly indicating the
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FIGURE 3 The effect of random error on the ability to distinguish
between a one- or two-component decay is demonstrated. Values of xxare
shown for one- and two-component fits to simulated data with two decay
times. In all simulations the decay time of the long component (7,) was 20
ns, f, = f, = 0.5. The decay time of the short-component (r,) is
indicated on the x-axis. Also shown are simulations for measurements at
multiple emission wavelengths, at which the fractional intensity of each
component was different. For the multiple-wavelength simulations (- - -),
we assumed that measurements were performed at five emission wave-
lengths, such that the values of f, were 0.2, 0.35, 0.5, 0.65, and 0.80, and
fawasl — f.

need for an additional component. In contrast, if the
lifetimes are 15 and 20 ns, the single-component value of x&
is 1.04. This is what is expected for a two-component fit to
the data, and one cannot distinguish between the two
models. During these simulations it became apparent that
the level of random error is the most critical factor
affecting the resolution. For example, if the random error
could be decreased to 0.1% (0.1° in phase and 0.001 in
modulation), then a double-exponential decay could be
clearly identified if the lifetimes differed by only 20%, that
is, if the short component were <16 ns (lower panel). For
decay times of 19 and 20 ns, x for a one-component fit is
near unity. These limits are conservative estimates, based
on the rejection of xi values >3. Given an appropriate
range of modulation frequencies, the x3 values are depen-
dent on the ratio of the lifetimes, not on their absolute
values. Hence, the same resolution is expected for shorter
lifetimes. A sample with two decay times of 4 and 5 ns
could be identified if the random error were <0.1%.

Measurement at Several Emission Wavelengths.
Measurements at various emission wavelengths, such that
the fractional intensities of each component are varied,
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makes it more easy to distinguish between one- and two-
component decays. The fractional intensity of component
one (f,) was assumed to vary from 0.2 to 0.8, and f,, from
0.8 to 0.2 (Fig. 3). We found it easier to identify a
double-exponent decay by using of data measured at various
emission wavelengths. For example, using the cutoff of x& =
3 and 0.5% random error, a sample containing 18- and 20-ns
components could be distinguished from a single-component

increase is less dramatic than that found for the two-
component decays (Fig. 3).

Accuracy in Determination of Lifetimes
and Amplitudes from the
Variable-frequency Data

Two-Component Decays. In the preceding

sample (top). With random errors of 0.1%, a two-compo-

nent decay of 19.5 and 20 ns could be distinguished from a
single-exponential decay (bottom). Even if the level of

random error were 1%, one could still distinguish between
decays of 16 and 20 ns. These results suggest that when the
emission spectra of the components are different, the data
should be measured at multiple emission wavelengths. The

use of multiple-wavelength pulse data was described pre-
viously (40).

Three-Component Decays. ~ We also considered
the more difficult case of identifying a three-component
decay from the large value of x3 for the two-component fit
(Fig. 4). The three lifetimes were chosen by maintaining a
constant ratio between these values. We used 73/7, = 7,/7),
where 7, is the longest and 7, is the shortest lifetime. 7; was
held constant and equal to 20 ns. Using x& = 3 as the
cut-off and 0.5% random error, the two- and three-
component fits were distinct if the intermediate lifetime
were =~6 ns and the shortest lifetime <1.8 ns. If the
precision of the measurements could be increased to 0.1%,
then the two- and three-component decays could be distin-
guished if the shorter lifetimes were <10 and <5 ns. The
increased difficulty of identifying a three-component decay
is also evident from the multiple wavelength simulations.
Including data at five different fractional intensities
(wavelengths) narrowed the range of lifetimes needed to
detect the presence of the third component, but the

T,(ns)

FIGURE 4 The effect of random error on the ability to distinguish
between a two- and three-component decay is demonstrated. Values of x4
are shown for two- and three-component fits to three-component simula-
tions. The assumed lifetimes were selected by maintaining 7;/7, = 7,/7),
where 7; and 7, are the longest and shortest lifetimes, respectively. 7; was
constant and equal to 20 ns. For the multiple-wavelength simulations the
fractional intensities were as follows: f, = 0.1, 0.2, 0.333,0.5,0.6; f, =

0.3,0.3,0.333,0.3,0.3;and 73 = 20 ns and f; = 0.6, 0.5, 0.333,0.2,0.1.
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section we described criteria to estimate the number of
components in the decay law. We now describe how the
values of the decay times and the level of random error
affect the more difficult task of reliably estimating the
correct decay times and fractional intensities. How well the
parameters are estimated is indicated by the sensitivity of
X% to variation of these same parameters. If x& depends
strongly on parameter values, then these values may be
determined with confidence, i.e., with low uncertainty. In
contrast, if x% varies only slightly with wide variations in
the parameter values, then the parameter estimates are less
certain. We investigated the resolution that is possible by
examining the dependence of x& on the parameter values,
as suggested by Bevington (33). In particular, we fixed the
parameter of interest at values bracketing the true value.
Then x; was calculated by allowing the other parameters to
vary so as to yield the minimum value of x2 The results of
this analysis for a two-component decay with a random
error of 0.1% are shown in Fig. 5 (top). The longer lifetime

0.1% RANDOM ERROR

(20,5)

DECAY TIMES
(20,10) (ns)

(20,10)

1 L 1 1 1 1 1 1 1 1 N 1 |

(20,8)  DECAY TIMES (ns)

0 10 " ] 22 26
UIFETIME OF FIXED COMPONENT (ns)

FIGURE 5 The sensitivity of x4 to the values of the decay times for a
two-component decay and data with random error are shown. The
percentage of random error is shown in the figure. The values of x} were
obtained by keeping one decay time fixed at the value indicated on the
x-axis. Then, the other parameters were varied to yield a minimum value
for x2 If x&increases rapidly as a lifetime is varied, then this value may be
estimated with little uncertainty. If x2 is not sensitive to variation of a
lifetime, then the uncertainty in this estimated value is greater. In
general, the lifetimes are known to be within the range where x* = » x&
increases from the minimum value (x’nin) t0 X’min + 1.

469



in each simulation was 20 ns. The shorter lifetime was
adjusted progressively closer to the 20-ns component. For
widely spaced lifetimes (5 and 20 ns), x3 is strongly
dependent on both values. The minimum value of x3 is
sharply defined at these lifetimes. As the magnitude of the
two lifetimes become comparable, x& becomes less depen-
dent on the fixed values. For example, for data with 0.1%
random error, the individual lifetimes were still determined
with little uncertainty for lifetimes of 20 and 10 ns.
Determination of the 20- and 15-ns decay times is less
certain because x3 is constant for a wide variation of the
decay times. Although not shown, resolution of 18 and 20
ns appears to be impossible using data at a single-emission
bandwidth, even with an uncertainty of 0.1%.

The marked effect of the random error on resolution can
be seen by comparing the upper and lower panels of Fig. 5.
In the lower panel the level of random error has been
increased to 0.5%. The lifetimes can be resolved only if the
difference is twofold, that is, 20 and 10 ns, as xZ is rather
insensitive to changes as large as 2 ns in the fitted lifetimes.
With a random error of 0.5%, resolution of 20- and 15-ns
decay times is no longer possible.

During experimentation it is frequently necessary to
estimate the lifetime of a minor component in the decay.
We performed simulations to indicate the lifetime uncer-
tainty of such minor-components (Fig. 6). We used a
two-component decay with decay times of 2 and 20 ns. The
fractional amplitude of each-component was decreased
from 50 to 10%. We chose a random error of 0.2%, which
could be accomplished using the current instrument at
times when its performance was better than its average
performance. As the amplitude of a component decreases,
x&depends less upon this component; hence the value of its
decay time obtained by minimizing x4 is less certain. For

FRACTIONAL INTENSITY (%)
50% 10%
LI TR
RN
: I
9 - | ,'
n
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7 | :
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1 1 A\ 1 1 1 1 1
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o 2 4 16 20 24

LIFETIME OF FIXED COMPONENT (ns)

FIGURE 6 The lifetime of a small amplitude component is estimated.
The assumed lifetimes in the two-component decay were 2 and 20 ns, and
the added random error was 0.2%. The steady state fractional amplitude
of each component is given in the figure, and the value of the fixed
lifetimes is given on the x-axis. As the amplitude of a component
decreases, x& becomes less sensitive to the lifetime of this component.
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instance, if the fractional amplitude of the 20-ns compo-
nent were 10%, then x% would change from 0.8 to 1.1 as the
lifetime was changed by 2 ns. In contrast, if the fractional
intensity were 50%, then a comparable change in x} would
be obtained if the decay time were changed by only 0.2 ns.
These results indicate that the lifetimes of components
present at a level of 10% (as the steady state intensity)“can
be determined with currently available instrumentation if
the decay times are significantly different. An increase in
the noise level to 0.5% results in uncertain values for the
decay time of a 10% component for the same assumed
decay times.

Multiple Emission Wavelengths.  We exam-
ined the effect of measurements at multiple emission
wavelengths on the sensitivity of xkto the parameter values
(Fig. 7). We chose a two-component decay that was barely
resolvable using measurements at a single emission band-
pass; where 7, was 15 ns, 7, was 20 ns, and the random
error was 0.1%. The steep parabolas found for the multi-
ple-wavelength simulation indicate that it is much easier to
determine the two lifetimes. Also shown in Fig. 7 is the
dependence of xxon the lifetimes when five simulations are
simultaneously analyzed, but all with f, = f, = 0.5. These
results indicate that the improved resolution provided by
the multiple-wavelength measurements exceeds that
obtained by repeatedly measuring the sample using the
same experimental conditions.

Three-Component Decays.  We also examined
the sensitivity of x to the value of each parameter used to
fit a three-component decay. The value of one decay time
was fixed, and we allowed the remaining parameters to
vary until a minimum value of xj was obtained. We used
decay times of 5, 10, and 20 ns, equal fractional intensities
(f1=f2=f3=1/3),and a random error of 0.1%. Using

Variable f;

Number Of
Measurements
(some fi)

LIFETIME OF FIXED COMPONENT (ns)

FIGURE 7 The x2 values for measurements of multiple emission wave-
lengths (global) (—) and multiple measurements at the same emission
wavelength are compared (——, - - -). The random error level was 0.1%.
For the multiple measurements the fractional intensities were equal
(f1 = f2=0.5). For the Global analysis the values of f, were 0.2, 0.35,
0.5,0.65,and 0.8,and f,=1.0 — f,.

BIOPHYSICAL JOURNAL VOLUME 46 1984



the results shown in Fig. 4, we concluded that this decay
was more complex that a two-component decay because x%
decreased from 3.2 to. 1.0 when a third component was
included. Hence, it was interesting to examine the confi-
dence with which the decay times could be determined
from the fitting procedure. The results of this analysis are
presented in Fig. 8. For measurements at a single emission
bandwidth with no fixed parameters, x? is rather insensi-
tive to the values of the decay times. This is especially true
for the decay time of the central 10-ns component. This
decay time may vary from 6 to 14 ns with a variation of x}
from 1.1 at 10 ns to 1.2 at 6 and 14 ns (data not shown).

Improved resolution can be obtained by measuring the
phase and modulation data at multiple emission wave-
lengths. We assumed that data were obtained at five
emission wavelengths and that the fractional intensities of
the three-components were different at each wavelength
(Fig. 8). To mimic the frequent experimental situation in
which all-components emit at all measurable wavelengths,
the fractional intensities of each component exceeded 10%
at each emission wavelength. From the results in Fig. 8, it
is evident that the use of data obtained at several emission
wavelengths enhances the sensitivity of x3 to the values of
the fitted parameters, and thus decreases the uncertainties
in the parameters.

In the analysis described above, we assumed that none of
the lifetimes and/or fractional intensities were known
independently. In an experimental situation, one may have
additional information about one or more components that
may be used to improve the analysis. To model this case,
we assumed that the lifetime of the central 10-ns compo-
nent was known and that the data were available at a single
emission bandpass. This lifetime was then fixed in the
least-squares minimization (Fig. 8). This additional infor-
mation substantially increased the sensitivity of x3 to the
values of the fitted parameters, and thereby improved the
reliability of these parameters.

6 L THREE COMPONENTS
H =5, r,-n?.r,-zo-:

e e e e
LIFETIME OF FIXED COMPONENT (ns )

FIGURE 8 The dependence of x}on the lifetimes for a three-component
decay is demonstrated. The value of x3is shown for measurements at one
emission bandpass (—) and at five emission wavelengths (- - -). Also
shown is a single bandpass simulation where the central lifetime (10 ns) is
known (- - -). The fractional intensities are given in Fig. 5. The random
error level was 0.1%.
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Sensitivity of the Parameter Estimates to
Frequency Dependence in the Random
Errors

In the preceding simulations we assumed that the errors
had a Gaussian distribution and were independent of
frequency. From our experimental work we recognized
that the random errors could be dependent on the modula-
tion frequency (29). To analyze the effect of frequency-
dependent random errors, we chose multiple simulated
data sets, which were derived using parameters near the
limits of resolution. Specifically, we used simulated data
with 7, = 10 ns, 7, = 20 ns, f, = f, = 0.5, and a random
error of 0.5%. From Fig. 5 we recall that the parameters
could be resolved, but that the values of x3 were relatively
insensitive to changes in these parameters. We reasoned
that if the derived parameters were sensitive to frequency-
dependent weighting of the data, this sensitivity should be
most apparent for such a borderline case.

Two types of data sets were generated. The first
included Gaussian errors that were independent of modu-
lation frequency, and the second contained frequency-
dependent errors comparable to those found experimen-
tally (29). The frequency dependence of o, was assumed to
increase proportionally to log w , from 0.1 to 1.1°, and o,
was assumed to increase from 0.002 to 0.012 (Table III).
Both types of data were analyzed with the usual frequency-
independent values of o, and ¢,,, and then with frequency-
dependent values (o, and ¢,,,). The results in Table III
indicate that the derived parameters are not very sensitive
to the weighting factors, at least within the limited range of
our simulations. We did not examine more extreme varia-
tions of o, and o, with frequency because such simula-
tions would not be directly comparable with experimental
data. We do not wish to diminish the importance of using
the appropriate values of o, and o,,. Rather, we wish to
indicate that the weighting factor can be estimated with
sufficient accuracy from experimental data (29) and that

TABLE III
EFFECT OF DIFFERENT WEIGHTING OF THE
DATA ON THE PARAMETER ESTIMATES

Frequency dependence of errors in ~ Averages of nine simulations

Data Analysis T T, N
ns ns
Independent*  Independent 20.2(1.5)§ 10.0(0.6) 0.48
Dependent} Independent 20.6 (2.7) 10.2(09) 047
Independent Dependent 21.7 (2.8) 10.2(1.1) 0.6
Dependent Dependent 20.9 (2.0) 10.3(0.8) 0.45

The assumed parameters were 7, = 10 ns, 7, = 20 ns, f, = f; = 0.5, and
0.5% random error. The values shown are the average of nine independent
simulations.

*Independent: o4, = 0.50 and o, = 0.005.

{Dependent: o4, = 0.1 + 0.5 log w and o,,, = 0.002 + 0.005 log w.

§The number in the parentheses is the average of the uncertainties.
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frequency-dependent variations in ¢, and o, will not
prevent a successful analysis.

Note that, in contrast to the parameters themselves, the
estimated uncertainties in the parameters are strongly
dependent on the weighting factors (Eqs. A8—-A12). We
estimated the uncertainties from the diagonal elements of
the error matrix.

Resolvability Analysis Based on the Error
Matrix

Lifetime Resolution.  In the preceding sections
we described the ability to determine multiexponential
decay parameters based on the values of x& This is a
familiar approach that is encountered in the laboratory.
However, the resolvability of multiexponential decays may
be described more generally. In particular, examination of
the error matrix (Eqs. A8-A10) also provides an estima-
tion of the possible resolution. The uncertainties in each
parameter can be estimated using only knowledge of the

errors in phase and modulation, the set of frequencies, and-

the dependence of ¢ and m on each parameter (Eq. A8).
Inversion of the matrix yields the uncertainties in each
parameter. We assume here that two lifetimes are resolva-
ble if these values, with their associated errors, do not
overlap. We stress that these estimates are based on the
assumption that the linearized form of the model is valid in
the region of the final estimates for the parameters.

Such calculations are presented in Fig. 9. We assumed a
logarithmic, equally spaced frequency set (1, 2, 4, 8, 16, 32,
64, and 128 MHz) and an error of 0.2° and 0.004 for phase
and modulation, respectively. These errors, being the same
for all measurements, factor out of the error matrix.
Consequently, the uncertainties in the parameters are
linearly proportional to the measurement errors (Appen-
dix). All fractional intensities were 0.5. For a given value of
), it is possible to calculate the minimum and maximum
values 7, which give nonoverlapping values of 7, and 7,
considered with their associated errors. In Fig. 9 we report

1000

7, (ns)

FIGURE 9 A double-exponenetial decay resolvability plot is shown.
Lifetime pairs in the shaded region cannot be resolved using the frequency
set 1,2, 3, 8, 16, 32, 64, and 128 MHz if the random error of the phase
and modulation measurements are 0.2° and 0.004, respectively.
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the minimum and maximum value of 7, obtained as a
function of 7,. The dashed region in this figure depicts the
region where the one- and two-component decays cannot
be distinguished. The resolvability plot is invariant (sym-
metric) for an exchange of 7, with 7,, and we can define a
resolvability ratio—the ratio of the maximum value of 7, to
the value of 7, in the nonresolvability region. Because the
width of the resolvability region in Fig. 9 is proportional to
the measurement error, it is straightforward to calculate
the resolvability ratio for different error values.

There are some important points to consider in Fig. 9.
First, the nonresolvability region has a width that is
approximately constant from 1 to 500 ns. The position of
the constant width region on the lifetime axis depends on
the frequency set used. If we multiply all frequencies of the
set by 2, the constant width region will move down on the
lifetime axis by a factor of 2. This implies that on a log
scale the resolvability plot is shape invariant. Second, for
our choice of frequencies and errors, the resolvability ratio
is ~1.4, which simply means that two lifetime values are
resolvable if they differ by a factor of 1.4 in the region 1 to
500 ns. For example it is possible to resolve 1 and 1.4 ns, as
well as 20 and 28 ns or 50 and 70 ns. Third, the width and
extension of the resolvability region depends on the fre-
quency set. Fourth, inside the resolvability region, it is
impossible to distinguish between a double- and a single-
exponential decay. That is, the x obtained using a double-
and single-exponential decay are too similar to determine
the appropriate decay law.

Effect of Number and Choice of Modulation
Frequencies.  To investigate the effect of the number of
frequencies on the resolvability ratio, we evaluated the
error matrix as a function of the number of frequencies. In
Fig. 10, we report the uncertainties of 7,, 7,, and f, as a

L L &f,

e

5 10 20
Number of Modulation Frequencies
FIGURE 10 The effect of the number of frequencies on the uncertainties
in the lifetimes (A7) and the fractional intensities (A f) is shown. The
assumed lifetimes were 7, = 6.7 ns and 7, = 15 ns, with f, = 0.5. The
symbols are as follows: A7, and Ar, (®) and A f, (A) for equally spaced
frequencies on the log scale from 1 to 128 MHz. The open circle indicates
the uncertainty in Ar; when two optimal frequencies are added to the total
frequency set. The calculated optimum frequencies were F, = 10.6 MHz
and F, = 71.3 MHz. The frequencies used were 12 and 60 MHz.
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function of the number of frequencies for two selected
lifetime pairs. Angular frequency values were chosen
equally spaced on a log scale and symmetrically placed
with respect to the reciprocals of the two lifetime values.
An extensive study on a large number of lifetime pairs has
shown that they have a common characteristic, an asymp-
totic linear behavior. In all cases investigated the slope of
the linear part in Fig. 10 is between —1/2 and —1/3. This
result implies that the error in the parameters decreases
only as the square root or cube root of the number of
frequencies. Consequently, if we want to decrease the error
in the parameters by a factor of 2 (to decrease the
resolvability ratio by a factor of ~ vZ, we must increase the
number of frequencies by a factor between 4 and 8. The
errors are relatively insensitive to the number of frequen-
cies, which imposes a practical limit on the number of
frequencies to be used. The same reduction in the parame-
ter error obtained by increasing the number of frequencies
from 2 to 8 (= 2% can be obtained by increasing the
number of frequencies from 8 to ~512. A set of 16 different
frequencies equally spaced in a log scale in the range 1-128
MHz is adequate for most practical cases and allows for an
occasional invalid measurement without complete loss of
the experiment.

In the special case where a two-component decay can be
quite confidently assumed, we find that an optimum
two-frequency set exists for which the errors on the param-
eters are smaller than they are with an equivalent number
of evenly spread frequencies and for which error is reduced
to the greatest degree by simply averaging data at these
two frequencies. Optimum two-frequency selection
removes the curvature in the plots of Ar vs. number of
frequencies. Because the number of frequencies is
increased only by averaging symmetrically at the two
optimum frequencies, the error in the average value of 7
will be dependent on the square root of the number of
measurements. An empirical formula for finding the opti-
mum two frequencies F; and F, is

1 3

F =% > =a_
! 2w, F, 2T, a4
where 7, < 7, and, hence, F, < F,.
Three-Component Decay.  The same procedure

employed to analyze the resolvability of a two-component
system can be applied to the analyze a three-component
system. In Fig. 11 we report the result of this analysis for a
fixed value of 7, (= 10 ns) as a function of 7, and 7;. This is
a projection onto the 7,, 7, plane of a slice (at r; = 10 ns) of
a three-dimensional volume within which a 7,-7,-75 triplet
cannot be resolved. For this calculation we assumed f, =
f2= f3=1/3. The frequency set and the errors were the
same as those used for the analysis of a two-component
system. Further analysis generally shows that a three-
component system can be resolved for these frequencies
and errors if the lifetimes are separated by a factor of 2.3,
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FIGURE 11 A triple-exponential decay resolvability plot, which is the
same as Fig. 9 except f, = f,= f3=1/3.

or a total range of ~fivefold. As one-component becomes
further separated from the other two, those two can move
closer together, and still be resolved. As with the two-
component set, an optimal three-frequency set can be
found for a 7,-7,-7; triplet. The same formula may be used
for F, and F, with 7, < 73 < 7,. The third frequency is
obtained from the first two, F; = (F\F,) .

In conclusion, analysis of the error matrix gives the
general condition for resolvability of a lifetime pair or
triplet. A similar analysis for different parameters values
follows the same trend, but gives different resolvability
ratios. As noted before, in the analysis it is important to
assign experimental errors. Generally, this assignment is
based on the experimental observation of the deviation
around the mean of a series of identical measurements
taken on a number of days, as discussed in the subsequent

paper (29).
DISCUSSION

In the preceding sections we considered the use of multifre-
quency phase and modulation data for the resolution of
multiexponential decays of fluorescence. One may ques-
tion the usefulness of this method for the analysis of
nonexponential decay laws. Such complex decays are
observed for energy transfer (10, 11, 41), for time-depen-
dent solvent relaxation (13, 42, 43), and for the case when
substantial collisional quenching occurs when the time-
dependent terms in the diffusion equations are significant
(44). The analysis of such decays by phase-modulation
fluorometry should pose no special problems. Basically, the
impulse response function must be transformed into the
frequency domain, as described by Eqs. 3 and 4. The
transformations may be accomplished numerically or ana-
lytically. Then, the least-squares procedure described in
Eqgs. 1-9 and A1-A22 can be used. This method has
already been used to calculate time-resolved emission
spectra of proteins and membranes labeled with fluores-
cent probes (45). Similarly, differential polarized phase
angles and demodulation may be used to determine the
time-resolved decays of fluorescence anisotropy. Such
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work is currently in progress. It appears that phase and
modulation measurements, when performed over a range
of modulation frequencies, will provide time-resolved data
that are at least equivalent to those obtained using pulsed
excitation.

APPENDIX

The minimization of x? function with respect to model parameters can be
accomplished using different approaches. We used the procedure
described by Bevington (33, chapter 11) and Brandt (35, chapter 9). Let
a; and a;,, represent the parameters a,, and 7,, for the mth exponential
component of a system with n components. The maximum number of
parameters is 2n. One value of « can be fixed because either 2 a,, 7,, or 2
a,, can be set equal to unity. For a general fit with no restricted
parameters, the maximum value of j, therefore, is 2n — 1.

The minimization procedure consists of solving the system of equations
by setting to zero the derivatives of x? with respect to the parameters a;.
Generally, we have a system of 2n — 1 nonlinear equations. One usually
uses a Taylor expansion of the theoretical function to linearize the
function with respect to the parameters.

= Po + Z—Ba (A1)

om
mm=m0¢,+z 3 °“6aj.
i 94

(A2)

In these expressions the zero subscript refers to the starting or current
value of the parameter and the subscript w refers to the frequency. Using
these expanded functions, x? is given by

1 2
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The strategy used in the least-squares method is to calculate the
parameter increments da; to yield the minimum value of x’. This occurs
when all the derivatives of x* with respect to the parameter increments are
zero. Hence,
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These equations can be rearranged to yield
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This yields a set of simultaneous equations
(A6)
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One can solve for the increments da; using the standard procedures of
linear algebra. In matrix notation Eq. A6 becomes

(A8)

B = daa, (A9)
where 8 and éa are row matrices, and « is a symmetric matrix, called the
curvature matrix because it describes the curvature of x? in parameter
space. The values of da; are obtained by inverting a to yield € = o', which
is the covariance matrix of the parameters, also called the error matrix
where

Ba~! = Be = da. (A10)
The new value of g; is found from a; = a, + da;. This process is repeated
using the new values of a; until x* reaches a minimum. We used the
gradient-expansion algorithm in which a value X is added to the diagonal
terms of the curvature matrix. This matrix is given by

Q. +A for j =k
ay = (A11)

Qe forj # k.

The value of X is varied using the method given by Marquardt (34), as
summarized by Bevington (33). Eq. A11 is different from that given in
reference 33, but Eq. All is consistent with the description given by
Marquardt (34). For small values of \, which are used near the x’
minimum, the search is approximately an analytical search, assuming the
Taylor expansion (Egs. A1 and A2) is valid. For large values of A one has

B; = A da;. (A12)
Then, because §; are the gradients of x* for the jth parameter [8; = —1/2
(3x*/8a,)], the da vector corresponds to the direction of the x* gradient.
Hence, by varying A, one varies the estimated parameters between those
suggested by the x* gradients and those suggested by linearization of the
function. This procedure yields rapid convergence to the minimum value
of x2

The uncertainties of the parameters can be estimated from the diagonal
terms of the e matrix (also called the covariance maxtrix). The uncer-
tainty in g; (g, is given by

cr,z,, =€ (A13)

If an individual parameter g; is held constant at (a;)ma + 04, and if the
other parameters are varied to minimize x%, then x? will usually increase
from x’min t0 X’min + 1. We confirmed that this was approximately true by
a number of simulations. Each time the increase in x? varied from 0.3 to
2.0. Of course, this is a result of the nonlinear nature of the fitting and
statistical variations in the individual simulations. The off-diagonal terms
of ¢ are generally nonzero, indicating that the parameters are correlated
with each other. One can describe the degree of correlation between ith
and jth parameters by using the correlation coefficient
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A value of P; =0 indicates no correlation, that is, the two parameters are
independent. A value of j close to +1 or —1 indicates correlation or
anticorrelation between the two parameters, which means that the two
parameters can be varied accordingly without varying the x? value. In this
case the values of the diagonal elements (¢;) do not correctly estimate the
uncertainties in the parameters, and the actual uncertainty will be >¢;;.

Observe that the curvature matrix a depends on the values of @g,, 64,
my,, and o, for a given set of parameters, but is independent of the
measured values ¢, and m, (Eq. A8). If we assume frequency-
independent errors o, and ¢, and if we define K = ¢,,/0,, where K is a
constant, then the error 1/ cr,2 becomes a common factor for each term in
the error matrix. Hence, in matrix notation we can write a = (1/0,2) o,
where o depends on the values of the parameters a; and on K. The error
matrix, which is the inverse of a, is € = ¢,2 (') ~'. The square root of the
diagonal terms of the errors matrix are the uncertainties in the parameter
a;, which are proportional to a,.

From Eqgs. A7-A9, notice that solving for the parameter increments da;
requires the partial derivatives of ¢, and m,, with respect to the
parameters. In principle one may use either numerical estimates of these
derivatives or the analytical derivatives. The numerical derivatives are
more sensitive to round-off errors in the computation. For our programs
written in BASIC and in PASCAL we were restricted to single precision,
so we used the analytical derivatives.

For convenience we redefine

N¥=N,J (A14)
D*=D,J, (A15)
where J = Z, a; 7. Then,
o, cOsgy, aN* 902
e T T @ 1
da; (D¥)? - N da; (A16)
ddo. CoS’¢g, (ONE , 9D
b — Al7
T i = A1)
amy, —Tmy, 1 IN} oD}
= N* D* —= Al8
3a, 7 T sz(,w( S o TG | (AI®)
- D s Al19
o, J sz‘,u(N“ ar, ¢ o, (A19)
where
IN? wT?
da; T1+ w7l (A20)
aD¥* T
< . A21
do; 1+ w7l (a21)
IN? 2q;wT;
A22
a7; (1 + o?7)? ( )
* _ 2
oD} a,(l w?7d) (A23)

a7; (1 + o7}

Analysis of Phase and Modulation Data at
Multiple Emission Wavelengths

If the phase and modulation data are measured at several emission
wavelengths then somewhat more complex expressions are needed for the
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analysis. The sine and cosine transforms of Eq. 10 are

A
NI - E % SNI) (A29)
DM - S0 Dz, (a29)
where
JO) = 2_aN);. (A26)
With this modification the 8 terms in the matrix become
a A
=TT 000 — V) fo )
1 I¢] A
+ }; Y o ) - ma ()] = m°”( ) (a27)
Similarly, the terms in the curvature matrix become
1 0%, (A) 9¢o. (A
ik = Z ; ”w a; aak
Z Z 1 3’"0«;()\) 34’0«:()\) . (A28)

aak

J

If necessary, wavelength-dependent values of ¢4, and g,, could be
substituted in Egs. A27 and A28. Including data at g wavelengths
increases the order of the matrix from2n — 1to2n — 1+ (g — 1) (n —
1), where n is the number of components. Recall that at each wavelength
one value a;(\) can always be fixed, so that each additional wavelength
adds n — 1 floating values of a;(\). For example, if measurements are
made at 10 wavelengths (g = 10) and the data are fit to a three-
component decay (n = 3), then the matrix (a) contains 23 rows and
columns. In contrast, for measurements at a single wavelength the order
of the matrix is five (three decay times and two values of the preexponen-
tial factors). In spite of this apparent increase in complexity, the total
number of computations is simplified because a number of derivatives are
equal to zero. From Eqs. A24 and A25 it is apparent that

*
M - (A29)
da;(\')
*
aD¥ ()\) (A30)
oy (N)
for A # X' For equal values of X the derivatives are as follows,
BN:‘()\)_ w7’ (A31)
do;(\) 1 + wPr?
aD*(\) T
= A32
do;(\) 1+ &7 ( )
IN¥*(\) 20N wT;
or, (1 + w2 (A33)
aD:(\)  a(\) (1 — *7)
ar, (1 + w?72)? (A34)

Programs based on the Marquadt algbrithm, for both the single- and
multiple-wavelength analysis were written in both BASIC and FOR-
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TRAN for a Digital Minc 11/23 computer (Digital Equipment Corp.,
Marlboro, MA). Copies of these programs are available from J. R.
Lakowicz on request. Additionally, a similar program is available in
PASCAL for an Apple computer (Apple Computer Inc., Cupertino, CA).
This program uses the values of da; to produce a new value for g; using
a; = a, + 6a;/S, where S is a stepping factor that adjusts the rate of
approach to the x* minimum. The uncertainties in the parameters are
estimated on the basis of the variance between the assumed model and the
experimental data for a particular data set. This program also yields rapid
convergence for most common experimental data, and is available on
request from E. Gratton.

This work was supported by grants from the National Science Founda-
tion: PCM 80-41320, 81-06910 and 82-10878 to J. R. Lakowicz, and
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American Heart Association.
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