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ABSTRACT A variety of receptors are known to aggregate in specialized cell surface structures called coated pits, prior
to being internalized when the coated pits close off. At 370C on human fibroblasts, as well as on other cell types, a
recycling process maintains a constant number of coated pits on the cell surface. In this paper, we explore implications
for receptor aggregation and internalization of the two types of recycling models that have been proposed for the
maintenance of the coated pit concentration. In one model, coated pits alternate between accessible and inaccessible
states at fixed locations on the cell surface, while in the other model, coated pits recycle to random locations on the cell
surface. We consider receptors that are randomly inserted in the membrane, move by pure diffusion with diffusion
coefficient D, and are instantly and irreversibly trapped when they reach a coated pit boundary (the diffusion limit). For
such receptors, we calculate for each of the two models: the mean time r to reach a coated pit, the forward rate constant
k+ for the interaction of a receptor with a coated pit, and the fraction X of receptors aggregated in coated pits. We show
that for the parameters that characterize coated pits on human fibroblasts, the way in which coated pits return to the
surface has a negligible effect on the values of r, k+, and 4 for mobile receptors, D > 1.0 x 10-"1 cm2/s, but has a
substantial effect for "immobile" receptors, D << 1 x 10-11 cm2/s. We present numerical examples to show that it may
be possible to distinguish between these models if one can monitor slowly diffusing receptors (D < 1 x 10- " cm2/s) on
cells whose coated pits have relatively short lifetimes (_ 1 min). Finally, we show that for the low-density lipoprotein
(LDL) receptor on human fibroblasts (D = 4.5 x 10-" cm2/s), the predicted and observed values of k+ and 4 are in
close agreement. Therefore, even for the slowly diffusing LDL receptor, unaided diffusion as the transport mechanism
of receptors to coated pits is consistent with measured rates of LDL internalization.

INTRODUCTION

Receptor-mediated endocytosis is the process by which
normal cells take biological molecules selectively from the
external environment and transport them across the
plasma membrane through the use of specialized struc-
tures called coated pits (1). It has been shown that
receptors for a variety of ligands aggregate in coated pits
prior to internalization. It appears that some receptors
require ligand binding before they can aggregate in coated
pits (2, 3), while others are found to cluster in coated pits in
the absence of the ligand (4, 5).

In this paper, we consider ligand-independent receptor
aggregation. The low-density lipoprotein (LDL) receptor
is the prime example of the ligand-independent case. When
human fibroblasts held at 40C are fixed with paraformal-
dehyde and then exposed to LDL-ferritin, -70% of the

bound LDL-ferritin is localized in coated pits, even though
coated pits cover only -2% of the cell surface (4). Similar-
ly, on rat hepatocytes, 60% of the surface receptors for
asialoglycoprotein are clustered in coated pits (6). Recent
experiments (7) raise the possibility that to a lesser extent
the epidermal growth factor (EGF) receptor on human
fibroblasts also aggregates in coated pits in the absence of
the ligand.
At 37°C, the coated pit density remains constant. Gold-

stein and Brown (8) incubated human fibroblasts with
'25I-LDL for 30 h. They found that after an initial lag, the
rate of degradation of '251I-LDL was constant. (LDL is
degraded after it is internalized.) Three distinct models
have been proposed for the maintenance of the coated pit
density at a constant level.
The simplest one is that coated pits remain on the cell

surface indefinitely (9). Another possibility is that coated
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pits mediate receptor-ligand internalization by a recycling
process in which they round into closed coated vesicles
inside the cell, pinching off from the cell surface and
eventually returning to the surface at new locations (10).
Finally, coated pits may, as in the previous case, alternate
between periods when they are accessible for receptor
aggregation and periods when they are not, but they
always reappear in the same positions (9, 1 1).
The three models make different predictions for the

rates at which diffusing receptors hit coated pits. Adam
and Delbriick (12) and Berg and Purcell (13) showed how
to calculate the forward rate constant for the interaction of
diffusing particles with circular traps in two dimensions for
the first model, i.e., when the traps are infinitely long-lived.
Here we present the diffusion-limited forward rate con-
stant calculations for the other two models in which traps
disappear and reappear either at the original location
(model 2) or at a new location (model 3).
The differences in the rate constants arise because of

differences in the concentration distributions of receptors
about coated pits for the three models. These distributions
depend on whether and for what periods the coated pit site
has acted as a trap in the past. When the steady state
density of traps is the same for all three models, the rate at
which receptors hit coated pits should be smallest for
model 1, where the continuous presence of a sink (the
coated pit) at a given location depletes the receptor concen-
tration about the coated pit. For model 2, where traps
reappear at the same locations they occupied previously,
the hitting rate is somewhat faster because the coated pit
acts as a sink only part of the time. The hitting rate should
be greatest for model 3, where coated pits appear at
random locations and thus initially experience a uniform
distribution of receptors rather than a distribution with the
fewest receptors near the pit.
The differences between the forward rate constants for

the three models would be small if the diffusion coefficient
of the receptor were large enough to guarantee that the
receptor would be trapped rapidly by a coated pit. In
particular, if I44DPT >> 1 (where D is the lateral diffusion
coefficient for the receptor, P is the coated pit density, and
T is the mean lifetime of a coated pit), then we can treat
the coated pits for the purpose of calculating the diffusion-
limited forward rate constant as if they were infinitely
long-lived targets (14). On human fibroblasts at 37°C, P
0.31 /,gm2 and T 5 min; therefore, for receptors with
diffusion coefficients of >>3 x 10-'1 cm2/s, this inequality
is satisfied (for a discussion of the values of the parameters
P and T, see reference 15). Barak and Webb (16) have
measured the diffusion coefficient of mobile LDL recep-
tors on a mutant human fibroblast cell line at 280C and
found that D = 4.5 x 10-'l cm2/s. For receptors with such
a diffusion coefficient, the lifetime of the coated pits cannot
be ignored a priori.

Recent evidence (11, 17-19) has now shown that at

37°C coated pits are not infinitely long-lived but rather
leave the surface by rounding up into coated structures. A
hotly debated question is whether or not these coated
structures, referred to in Willingham et al. (I 1) as cryptic
coated pits, remain in contact with the surface through
narrow necks or whether they truly pinch off to form
vesicles (18-21). It is agreed, however, that even if the
coated structures remain attached, they cannot trap sur-
face receptors; the necks are functionally closed (11, 17,
19). As we have just noted, if the diffusion of the receptor is
rapid enough, the coated pits can be modeled as if they did
not recycle. For slowly diffusing receptors, the rate at
which they are trapped will depend on the lifetime of the
coated pit, on whether it recycles to a random location or
its original location and, in the latter case, on the mean
return time. There is no information to date on where
recycling coated pits reappear, so that both of the recycling
models are still possible.

THE FORWARD RATE CONSTANT

Estimate from Experiment
Before we attempt to calculate the diffusion limit of the
forward rate constant for the interaction of an LDL
receptor with a coated pit, we review briefly how, from
various experiments, the forward rate constant was esti-
mated by Goldstein et al. (14). They denoted the concen-
tration of LDL receptors in coated pits by Rp and the
concentration of LDL receptors out of coated pits by R,
where they defined concentration as the average number of
receptors per cell. They introduced the forward rate con-
stant k+ through the following rate equation for Rp:

dRp/dt = k+PR - k_Rp -XARp, (1)

where P is the surface density of coated pits, k_ is the
reverse rate constant for the dissociation of an LDL
receptor from a coated pit, and XI is the rate at which LDL
receptors in coated pits are internalized. The total flux, J,
of LDL receptors into coated pits is

(2)J+ = k+PR.

In the steady state, Eq. 1 can be solved to yield

k+ = ( p X) (Rp/R).

All the parameters on the right side of Eq. 3 except k_ have
been determined experimentally. Goldstein et al. (14)
therefore used Eq. 3 to obtain the following lower bound:

(4)

For human fibroblasts, the estimated values for the param-
eters in Eq. 4 are (15): XI = 0.19 ± 0.05 min-', P = 0.31 ±
0.09/,gm2, and (Rp/R) = 2.2 ± 0.8. Thus, on human
fibroblasts, for LDL receptors interacting with coated pits,
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the forward rate constant satisfies

k+ _ 2.3 ± 1.6 x1 '0 cm2/s. (5)

We now turn to calculating k+ for receptors that move
by pure diffusion on cell surfaces, for the various possible
types of coated pit behavior.

THEORY

Geometry of the Models

Under experimental conditions where all coated pits are on
the cell surface, they take up only 2% of the surface area.
Thus, we are dealing with a dilute system of traps. In
modeling this system, we will follow Adam and Delbriick
(12) and Berg and Purcell (13) and consider a single
coated pit (or coated pit location) of radius a, with particles
diffusing about it in an annulus of outer radius b, which
assigns to the coated pit its share of the cell surface. For the
case they considered, where traps are infinitely long lived,
the outer radius b can be found from the relation

P= I/lrb, (6)

where P is the observed coated pit density on the cell
surface at 370C. They took the inner boundary of the
annulus, r = a, to be absorbing, and the outer boundary,
r = b, to be reflecting. The reflecting boundary condition
can be thought of in two ways, as an appropriate simplifi-
cation of the true many-trap problem in which the ligand
can diffuse away from one trap and be absorbed by
another. First, this condition amounts to saying that on the
boundary of a disk of radius b about one trap, just as many
particles are moving across the boundary toward the trap
as away from it. Another way to look at the reflecting
boundary condition is that a particle crossing the boundary
away from a trap sees the same picture on the other side,
that is, another trap centered b units away. The mean time
to diffuse to the second trap would be the same as the mean
time to diffuse to the first trap, if the particle were simply
reflected back into the original disk.

In the case where coated pits are assumed to recycle to
random locations on the cell surface, Eq. 6 gives the
appropriate relation between the coated pit density and the
outer radius of the annulus (14). The boundary conditions
are also unchanged.
When we develop the intermediate model, in which

coated pits alternate between accessible and inaccessible
states at fixed locations on the cell surface, we will consider
receptors diffusing in regions surrounding these locations.
In this case, the density of coated pit sites is greater than
the observed density P of accessible coated pits, and it
determines a reduced outer radius br of the annulus in
which receptors diffuse. The reflecting outer boundary
condition, which is appropriate for the other two models,
must also be modified, as we will see.

Calculation of Diffusion Limits for
Forward Rate Constants

There are two ways to calculate diffusion limits for
forward rate constants. One method involves a steady state
calculation of the flux of diffusing particles into a trap,
while the other involves calculating the mean time r for a
diffusing particle to hit a trap (mean capture time). The
mean capture time calculation yields k+ through the
relation

k+= 1/,rP, (7)

where P is the trap density.
Alternatively, k+ can be found as the flux of particles

into a trap divided by the mean particle concentration (C).
For a circular trap of radius a in two dimensions,

27rDa dC
(C) dr

-a
(8)

where C(r) is the particle concentration a distance r from
the center of the trap and D is the two-dimensional
diffusion coefficient of a particle. Eq. 8 modifies the
standard formulation of the flux method in three dimen-
sions. The classical way to calculate the diffusion limit for
the forward rate constant in three dimensions is to solve the
diffusion equation in the steady state,

V2C= O,

for C(r), the concentration of diffusing particles, for a <
r < oc. The steady state is achieved by holding the
concentration constant at infinity and setting it equal to
zero at the surface of the trap (22). The diffusion-limited
forward rate constant is then obtained as the flux into a
spherical trap, divided by C., the steady state particle
concentration at infinity. In two dimensions, there is no
solution to the steady state diffusion equation with these
boundary conditions when C,. # 0, and so this prescription
cannot be followed. However, when we consider particles
diffusing in an annulus about the trap, there is another way
to achieve a steady state. Since we are interested in
particles (LDL receptors) that are constantly being
inserted at random locations into the cell membrane, it is
natural to set up a steady state by having particles created
uniformly and at a constant rate S in the annulus. In
Wofsy and Goldstein (15), we showed that under this
assumption, Eq. 7 gives the result obtained by Berg and
Purcell (13) using the mean capture time method to
calculate k+ for infinitely long-lived traps in two dimen-
sions.

Fixed-Location Model
We will begin the calculations for the two recycling models
by considering model 2, where traps (coated pits) return to
their original locations. The equivalent three-dimensional
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problem has been treated by Szabo et al. (23) and we
model our problem in a very similar way. We consider a
circular trap of radius a that alternates between open and
closed states. The time a trap remains open (i.e., the time a
coated pit remains accessible on the cell surface) is
assumed to have an exponential distribution with mean
1 /XI, and the time the trap stays closed (inside) is exponen-
tial with mean 1/X2; i.e., the probability of an open trap
closing or a closed trap opening over a short time interval is
proportional to the length of the time interval. The con-
stants of proportionality or rates of closing and opening are
XI and X2.

About the trap (or more precisely, about the trap
location where the trap may be open or closed, present or
absent), particles diffuse, with two-dimensional diffusion
coefficient D, within a larger circular region of radius br.
To find br in terms of the other parameters, note that we
want to assign a region of area irb 2 to each trap location.
Then, if PT is the trap location density, br satisfies: PT =
1 /Irbr. We can also express PT in terms of the density P of
open traps. The fraction of coated pit locations occupied at
any time is the same as the fraction of time any given pit
spends on the cell surface; i.e.,

P/PT = (1/Xl) + (1/X2) (9a)

Then,

The condition on w2 says that a closed trap acts as a
reflecting boundary. Later, we will consider the case where
particles are free to diffuse into a closed trap while it is in a
nontrapping state.
The reflecting outer boundary condition suitable for the

case of infinitely long-lived traps must also be modified in
the present setting. If a particle is on the boundary r = b of
a trap in a random state [i.e., open with probability
X2/(X1 + X2) and closed with probability X1/(XI + X2)],
then its mean capture time w(r), defined by

w(r) = w2Aw(r) + XI W2(r),
Xi +X2 Xi +x12

(12)

is the same whether the particle diffuses back toward that
trap or crosses the boundary away from the trap. This leads
to the reflecting boundary condition:

dw
dr r-b

=0
(1 3a)

However, w, and w2 cannot be expected to satisfy reflecting
outer boundary conditions individually. Particles reaching
the outer boundary of a region about an open trap do not
see the same picture on both sides of the boundary. Rather,
across the boundary they see a fraction X2/(XI + X2) of
traps open and the remaining traps closed. Then we must
have w,(b) = w(b) or, equivalently,

wi(b) =w2(b). (13b)
br = [X2/(XA + X2)7rP] 1/2 (9b)

Mean Capture Time Method. It will be conve-
nient in the next few sections to denote br simply by b. Then
b will be assumed to satisfy Eq. 9b.
To calculate the mean capture time r, we consider a

particle starting a distance r from the center of the trap
location, a _ r _ b, at time t = 0. We define w1(r) to be the
mean capture time if the trap is open at t = 0 and w2(r) to
be the mean capture time if the trap is closed initially.
Then w, and w2 satisfy the following equations (see Appen-
dix A):

DV2w1(r) - Xlw,(r) + X1w2(r) = -1; (lOa)

DV2w2(r) + X2wI(r) - X2w2(r) = -1. (lOb)

Both the inner and outer boundaries present problems
that do not arise in the case of infinitely long-lived traps.
There are two reasonable possibilities for the behavior of
diffusing particles at the boundary of a closed trap;
particles may be excluded from the region or may be free to
diffuse into it. We will consider the former case first and
impose the inner boundary conditions:

w1(a) = 0;

dW2
= o.dr r-a

The solution to Eqs. lOa and 1Ob subject to the boun-
dary conditions 1la, 1lb, 13a, and 13b is outlined in
Appendix B. The mean capture time w(r) for a particle
starting a distance r from the center of a random trap is
given by Eq. B5. Then T, the mean capture time for a
particle starting anywhere between r = a and r = b, is:

a fb
Tr = (2 _2) Ja27rw(r)dr. (14)

Eq. 14 assumes that particles are equally likely to start at
any position in the annulus surrounding the trap. This
appears to be a reasonable assumption in the case where
the diffusing particle is an LDL receptor and the trap a
coated pit. After being internalized, LDL receptors recycle
to the cell surface rapidly (10, 24). They appear to recycle
separately from recycling coated pits (the relevant observa-
tions are that at 370C, only 60-70% of LDL receptors are
in coated pits at any time, and at 40C, 40-50% of coated
pits do not contain LDL receptors [4, 25]).

Substituting into Eq. 14 the expression for w(r) given by
Eq. B5, we obtain:

T = T, + Ta- (15)

(I la) Here,

(11 b)
TX= b4_ 3b2- a2
T= T, In (b/a) - 8

2D(b2 - a ) 8
(16)
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X, (1'- a') ___° (17)
aX2 2Daa

where

a = [(AX + X2)/D]'1/2; (18)

aij = I(ab)Kj(aa) + Ij (aa)Ki(arb), i, j = 0, 1; (19a)

bi6 = Ii(ab)Ki(aa) - Ii(aa)Ki(ab), i = 0, 1. (19b)

Io, II, Ko, and K, are the modified Bessel functions of the
first and second kind (26).
Then the diffusion limit for the forward rate constant is

found from Eq. 7, k+ = 1 /TP. Since the radius b = b, in the
expression for r, where the pit location density PT = 1 /7rbr,
it is convenient to express k+ as (1/-rPT) (PT/P), or

k = + ( A2) (20)

where r7. and Ta are given by Eqs. 16 and 17, with b = b,
given by Eq. 9b.
The first component of Eq. 15, r., is the mean capture

time for a particle diffusing in the presence of an infinitely
long-lived trap, first calculated by Berg and Purcell (13).
In the present setting, it is the mean time until a particle
first reaches the boundary of the trap whether the trap is
open or closed. The second component, Ta, is the probability
that the particle finds the trap closed, multiplied by the
mean capture time for a particle starting at the boundary
of the trap when the trap is closed; i.e., Ta = [Al/
(XI + X2)]w2(a). If XI = 0, which means that the trap is
infinitely long-lived, then we recover the Berg-Purcell
result X = T.

Other interesting limiting cases involve the diffusion
coefficient D. When D , oo, we expect and find that the
mean capture time T -- 0. Note that this is the same limit
approached by rT, the mean capture time for the model
where traps are infinitely long-lived. This is not surprising
since as D -- oo, particles can travel long distances during
the cycle time of a trap and, as indicated earlier, the
infinitely long-lived trap model suffices in this case.
As the diffusion coefficient D mp 0, the mean capture

time r tends, as expected, to infinity. When we consider the
recycling model where traps appear at random locations,
we will consider the possibility that traps appear where
particles are already present and capture those particles
instantly. Then even particles with a diffusion coefficient
D = 0 have a finite mean capture time.
The model breaks down if the trap locations are not

diffuse, in particular if X2 is small relative to XI. Then the
outer boundary about a trap location approaches the trap
itself (b -. a). Most trap locations correspond to closed
traps, and these stay closed a long time. But the outer
boundary condition wl(b) = w2(b) says that particles on the
boundary of a closed trap are trapped just as rapidly as
those on an open trap boundary. This results in Eqs. 15-17,

which give a faster mean capture time than is physically
reasonable. A sufficient condition for the applicability of
the model is that the spacing between traps be large
relative to the distance a particle diffuses during the cycle
time of a trap. The trap spacing is measured approximately
by 1/ vF/, where the trap location density PT is related to
the density P of open traps by Eq. 9a. The mean square
distance a diffusing particle travels in the mean cycle time
of a trap is 4D(1 /XA + 1 /X2). Then the model is valid
when:

1 >> /4DP/jA (XI + X2)/X2. (21)

This inequality holds when the effect of the opening and
closing of the trap is important, i.e., when the particle
"sees" the trap opening and closing many times before it is
trapped.

Inequality 21 is a sufficient but not a necessary condi-
tion for the applicability of the model. We have seen that in
some of the limits where inequality 21 fails to hold, i.e.,
D - cmor X, - 0, the model still works, in the sense that it
approaches the appropriate limiting model where traps
have infinite lifetimes.
Note that in the limit as P 0 (i.e., in the case of an

infinitely dilute system of traps), inequality 21 is satisfied
for all finite parameter values. Unfortunately, in two
dimensions one cannot go to this limit and still obtain
solutions to the steady state Eqs. 10a and 10b. In three
dimensions, the infinitely dilute case is the usual model
considered, and there is no problem in taking the limit of
k+ as b - cc. In Appendix C, we give the expression for X in
three dimensions and show that it leads to the same
expression for k+ obtained by Szabo et al. (23).

Steady State Flux Method. We define CI(r)
and C2(r) to be, respectively, the concentrations of particles
at position r with the trap open and closed, and S to be the
number of particles per second per unit area inserted into
the annulus between a and b. Then, in the steady state,

DV2C1(r) - XICI(r) + X2C2(r) = -X2S/(X1 + X2); (22a)

DV2C2(r) + XIC,(r) - X2C2(r) = -XAS/(XA + X2), (22b)

since Xi/(XI + X2) is the probability that a trap is open
(i = 2) or closed (i = 1). Again we assume that r = a is an
absorbing boundary when the trap is open, and a reflecting
boundary when the trap is closed. (The equations equiva-
lent to Eqs. 22a and 22b for three dimensions have been
obtained by Szabo et al. [23].) The outer boundary
conditions analogous to those derived for the mean capture
times are:

d [Cl(r) + C2(r)] -= 0;dr r-b

XAC,(b) = X2C2(b).

(23a)

(23b)
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To calculate k+ from Eq. 8, we need to find:

(C) = (2/b) fO rC(r)dr, (24)

where

capture times w, (r) and w2(r) for particles in open or closed
traps satisfy:

w1(r) = 0;

DV2w2(r)- X2w2(r) = - 1.

(27a)

(27b)
C(r) = C1(r) + C2(r). (25)

In the steady state, the total flux at the trap location
equals the total number of particles inserted per second
between a and b, i.e., flux = ir(b2 - a2)S. To obtain the
flux per open trap, the flux per trap location must be
multiplied by PT/P = (XI + X2)/X2. Then k+ is found,
following Eq. 8, as the flux per open trap divided by the
average particle concentration (C):

XI + X2 w(b2- a2)S
X- (C)

(26)

When the equations for C, and C2 are solved subject to the
appropriate boundary conditions and Eq. 26 is evaluated at
b = br) the resulting expression for k+ is the same as that
given by Eq. 20, using the mean capture time method.
The equivalence between the two methods for calcu-

lating k+ can be demonstrated without solving any equa-
tions by noting that Eqs. 22a and 22b and the boundary
conditions for these equations can be transformed into Eqs.
10a and 10b and the appropriate boundary conditions for
those equations, by letting

Cl (r)/S = X2wI(r)/(X1 + X2);

C2(r)/S = X1w2(r)/(X1 + X2) -

With these identities, it follows from Eq. 14 that T =
(C)b2/S(b2 - a2), and therefore that Eqs. 26 and 20 for
k+ agree.

Fixed-Location Model with Diffusion into
Closed Traps. In the preceding sections, the diffusion-
limited forward rate constant for the interaction of diffus-
ing receptors with traps alternating between closed and
open states was calculated under the assumption that the
particles were excluded from closed traps. The boundary of
a closed trap was taken to be reflecting. We now consider
the case where particles may diffuse over the surface of a
closed trap; i.e., we assume that when the trap is closed, the
membrane surface between r = 0 and r = a is identical
with the surface between a and b. We further assume that
particles in a closed trap are captured when the trap opens.
We still assume that particles are created uniformly and at
a constant rate S in the annulus about a trap but not in
closed or open traps. Then the equations and outer boun-
dary conditions used to find the mean capture time w(r) or
the particle concentration C(r) remain valid for a < r _ b,
but we must now give equations for w1 and w2 or Cl and C2
inside a trap, i.e., for 0 _ r _ a, and impose appropriate
continuity conditions at r = a. For 0 _ r < a, the mean

Eqs. 1Oa, 10b, 13a, 13b, 27a, and 27b for w, and w2 have a
unique solution for 0 _ r _ b under the additional
assumptions that w,, w2, and dw2/dr are continuous at r =
a and that w2 is finite at r = 0. The mean capture time r for
particles starting at random locations between r = a and
r = b is:

T = 1T + T2 (28)

where

12 = X+X W2(a);XI + X2

W2a [=(b2 - a2) Io(a2a)+ Il
w2(a) = [ 2Daa2 1 (a2a) X2J1

[I + )2 1O(a2a) ao 1
1 I + \2 I (a2a) booJ'

a2=(=2/D) 12;

(29a)

(29b)

(30)

and T., co,, and 6bo are given by Eqs. 16, 19a, 19b. Then the
diffusion-limited forward rate constant k+ is given by k+ =
1 /-rP, evaluated at b = br.
The same expression for k+ can be derived using the flux

method. For 0 _ r < a, the concentrations C,(r) and C2(r)
of particles in open or closed traps:

C,(r) = 0;

DV2C2(r) - X2C2(r) = 0.

The right side of the above equation equals zero because we
assume particles are only inserted into the membrane at a
constant rate S between a and b. The only source of
particles between 0 and a is from diffusion across the
boundary r = a when the trap is closed.

Random Reappearance Model
We now know the diffusion-limited forward rate constant
for the interaction of a diffusing particle with an infinitely
long-lived trap (model 1, reference 13), and with a trap
that disappears and then reappears at the original location
(model 2). We turn next to model 3, in which traps
disappear from one location and then reappear at a random
location.
We assume that when traps appear at random locations,

the initial particle distribution is uniform. We can envision
at least two possible ways to model the uniform particle
distribution a trap encounters when it appears. One possi-
bility is that when a trap first arises, particles are distrib-
uted uniformly in an annulus about the trap, but not inside

BIOPHYSICAL JOURNAL VOLUME 46 1984578



it. Here we picture the return of the trap as the insertion of
both a clathrin coat and, above it, new membrane from 0 to
a that is devoid of receptors. Alternatively, we can assume
that initially particles are distributed uniformly in a region
including the trap itself, and the particles inside the trap
are captured instantly. Here we picture the clathrin coat
rapidly forming between 0 and a below a randomly
selected piece of plasma membrane that already contains
diffusing receptors. These receptors are instantly trapped
by the formation of the clathrin coat. Below, we will
calculate, for both cases, the diffusion-limited forward rate
constant.

In both cases, we assume that traps remain at a location
for an exponentially distributed length of time with mean
1/X, (i.e., they disappear at rate XI). Also in both cases,
particles are created only outside of traps, at a rate S.

Traps Empty Initially. As before, particles are
assumed to diffuse with two-dimensional diffusion coeffi-
cient D in an annulus of outer radius b about a trap of
radius a. In this case, the outer radius b is related to the
trap density P by Eq. 6; i.e., P = l/Irb2.

Again, the diffusion-limited forward rate constant can
be calculated either by the flux method or by the mean
capture time method. The flux calculation begins with the
following equation for the concentration of particles a
distance r (a _ r _ b) from the trap center, at time t
(t _ 0) after the pit appears:

= DV2C-XIC + S. (31)
at

The second term of Eq. 31 reflects the effect of the
disappearance of traps. When a trap disappears, particles
that were a distance r from its center are no longer a
distance r from the center of a trap. In effect, these
particles are redistributed, since they are now located
randomly with respect to the other traps. The other terms
in Eq. 31 reflect changes in particle concentration caused
by particle diffusion and creation. The creation rate S
includes the replenishment of particles that are redistrib-
uted after traps disappear.

In Wofsy and Goldstein (15), we find a steady state
solution C(r) to Eq. 31 subject to the boundary conditions

C(a) = 0;
ac
clr ,-b=°

and use it in connection with Eq. 8 to calculate k,. We will
focus here on the mean capture time calculation, because
the methods differ from those used in the cases already
presented and are most easily extended to the next case,
where traps reappear at random locations and capture
particles already present at the trap site.
To calculate k+ by the mean capture time method, we

find:

T (b2 a2) fb 2r th(r, t)dtdr, (32)

where for each r (a _ r _b), h(r, t) is the probability
density for the capture time t of a particle starting a
distance r from the center of a trap. Eq. 32 averages the
mean capture times given fixed starting positions r, over a
uniform distribution of starting positions in the annulus
between r = a and r = b.
The density h(r, t) is related to the probability density

p(r, t) for the time t that a particle takes to reach the trap
when it starts a distance r from an infinitely long-lived
trap. In the case of the transient trap, p(r, t)dt can be
thought of as the probability that a particle initially at r
reaches the trap location between times t and t + dt. The
probability that the trap is still there at time t is e-'. It
follows that:

h(r, t)dt = p(r, t)e-X" dt

+ 1Xle X [1 - xp(r, u)dul] f
[2r'h(r', t - x)dr'/(b2 - a2)]dx dt.

That is, a particle will be captured at time t if it reaches the
trap's location and finds the trap still there; or if the trap
disappears at some time x < t, before the particle reaches
it, and the particle, starting fresh at a random position r'
with respect to some other trap, takes the remaining time
t - x to be captured.' Averaging Eq. 33a over r, a _ r _ b
yields:

h(t) = p(t)e-"

+ 4 X,e-XxI - pp(u)du] h(t - x)dx, (33b)

where h(t) and p(t) denote the spatial means of h(r, t) and
p(r, t) when particles are distributed uniformly over the
annulus between r = a and r = b. Then, taking Laplace
transforms in Eq. 33b and evaluating the mean capture
time T as the negative of the derivative at 0 of the Laplace
transform of h, we find:

T=(1 -f)/(AXI ), (34)

wheref is the probability that a particle starting a random
distance from a trap will hit the trap before it disappears;
i.e.,

f= b 2r4 p(r, t)e-xdt dr/(b2 - a2). (35)

'In reference 14, we attempted to calculate r and k+ for the random
reappearance model. However, that calculation is in error because we
calculated the conditional mean capture time for those receptors captured
by a single coated pit before it disappears; i.e., we did not include the
second term in Eq. 33a.

(33a)
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In reference 14 we showed that:

fp(r, t)e- A'dt= [I(ab)KO(ar) +Kl(ab)IO(ar)]/fo1, (36)

where lo is given by Eq. 19a and a = lX7Iii. Therefore,
from Eqs. 35 and 36, we find that

f = 2ab,,/[(b2 - a2)aao0]. (37)

Substituting into Eq. 7 the trap density P = 1 /7rb2 and the
mean absorption time r given by Eq. 34, we obtain

k+ = rb2X1f/(1 -f). (38)

Traps Capture Particles Initially. Now we con-
sider the possibility that the trap forms in a region where
diffusing particles are already present and captures these
particles instantly (e.g., if coated pits are formed by the
rapid assembly of a clathrin coat below a portion of the
plasma membrane containing diffusing receptors). We still
assume that particles are created only outside traps. Then
Eq. 33b for the mean capture time density h(t) of a particle
starting at a random location in the annulus about a trap is
replaced by:

h (t) = p(t)e ' + b2Xe-" 1[ f p(u)du]

( 2- Xle) [-x[ p(u)du]h(t - x)dx. (39)

The first term of the right side of Eq. 39 is associated with
the probability that a particle will reach the trap at time t,
before it has disappeared. The second term reflects the
probability that the particle will not reach the trap it sees
initially, but will be absorbed instantly at time t when the
original trap disappears and the next trap appears over the
particle's location. The final term reflects the probability of
the alternative; i.e., the particle does not reach the first trap
before it disappears and is not covered by the next trap
when it appears, but reaches some trap by some route at
time t.
The Laplace transform procedure used to find the mean

capture time r in the preceding section now yields:

1 -f
XI [f + b2( - f)

wheref, given by Eq. 37, is the probability that a particle
reaches the original trap before it disappears. Then

k+ = ira2X1 + irb2XIfl(If ). (41)

Note that as D -- 0,f- 0, and k+ -- ra2X1. Since in
this limit particles are stationary, the only particles that are
trapped are those between 0 and a when the trap appears.
The flux into a single trap is therefore lra2( C) X,; i.e., every
1/A, min, ra2(C) particles are trapped, and therefore

k+ = 7ra2'X is what we expect in this limit. From Eq. 41 we
see that k+ is the sum of two terms, the flux caused by
particles captured when the trap appears, ira2XI, and the
flux caused by particles diffusing into the trap, given by
Eq. 38.

In the same limit, the fraction X of particles in traps can

be found directly in terms of average particle concentra-
tions or indirectly in terms of k+, providing an additional
check on the consistency of the model. When D = 0, the
number of particles in a trap at any time is the number
captured initially, 7ra2( C). The total number in the trap
plus surrounding annulus, when the trap has been present
for a time t, is the initial number irb2( C) plus the number
synthesized in time t: 'r(b2 - a2)St, where S = a2( C)X1/
(b2 - a2). Averaging the total number of particles in and
about a trap with respect to the trap lifetime distribution,
we obtain:

(wrb2(C) + 7ra2(C)XAt) (Xie-xA')dt = 7r(b2 + a2)( C).

Then, when D = 0, the fraction of particles in traps is + =

7ra2(C)/7r(b2 + a2)(C), or

a2

b2 + a2
(42)

The other way to obtain Eq. 42 is to calculate 0 as the ratio
of the average time a receptor spends in a trap to the
average time a receptor spends on the cell surface; i.e.,

(I(1/A) + (/Xk+P)
(43)

Substituting into Eq. 43 k+ = ira2X1 (when D = 0) and P =

1 /7rb2, we obtain Eq. 42.

RESULTS

In the preceding section, for various models of coated pit
dynamics, we have obtained expressions for the forward
rate constant and the mean capture time, i.e., the average

time it takes a recycling receptor molecule, once it appears
on the cell surface, to encounter a coated pit. We now

evaluate these expressions for typical parameter values and
discuss the implications of the numerical values we obtain.
We will concentrate on the endocytosis of LDL receptors
on human fibroblasts, since all the parameter values we

need for our calculations have been determined for this
system. These values are summarized in Table I.

We compare in Fig. 1 how the predicted mean capture
time changes with the receptor diffusion coefficient for (a)
infinitely long-lived traps (Eq. 16 with b given by Eq. 6),
(b) traps that disappear and reappear at the same location
(Eq. 28), and traps that disappear and reappear at random
locations (Eq. 40). For models 2 and 3, we assume that
when a trap forms in a region where there are diffusing
receptors, it captures these receptors instantly. For rates of
trap opening and closing estimated from experiments with
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TABLE I
PARAMETER VALUES FOR LDL RECEPTORS AND

COATED PITS ON HUMAN FIBROBLASTS

Parameter Symbol Value

Percentage of LDL recep-
tors in coated pits at 40C 04,C 69 + 7%

Ratio of LDL receptors in
coated pits to LDL re-
ceptors out of coated
pits at 40C P4c 2.2 ±0.8

Surface density of coated
pits at 40C P4-C 0.58 ± 0.05/,Mm2

Ratio of the number of
coated pits on the cell
surface at 370C to the
number at 40C r 0.53 ± 0.10

Surface density of coated
pits at 370C P 0.31 ± 0.09/MAm2

Characteristic radius as-
sociated with the coated
pit density b 1.0 ± 0.2 ,um

Radius of a coated pit a 0.10 0.05Mm
Fraction of surface area

covered by coated pits
at 370C A 0.01

Diffusion coefficient of
LDL receptors between
27-280C D (4.5 ± 1.5) x 10-" cm2/s

Rate constant for the in-
ternalization (closing)
of coated pits at 370C XI -0.19 ± 0.05 min-'

Rate constant for the re-
cycling (opening) of
coated pits at 370C X2 '0.17 ± 0.10 min-'

We obtained 04. by averaging (+ SEM) the eight published measure-
ments given in the literature, which ranged from 49 to 95% (4, 27-29).
We obtained p4.C = Rp/R from the formula p4eC = 04.c/(I - 4.). Note
that small changes in 04. can lead to large changes in p4c. We assumed
0 = k4.C and p = p4.c, where 4 and p are the 370C values of these
parameters. (For a discussion of this point see reference 14.) P4.C was
determined by Orci et al. (28) to be 0.52 + 0.05/Mm2 for human
fibroblasts from a normal individual and 0.63 + 0.06/,Mm2 for human
fibroblasts from a patient with the receptor-negative form of homozygous
FH. 50 cells were sampled in each determination. We took P4.C to be the
average of these measurements. r is the average of the determinations of
two different experimental groups (24, 25). P = rP4ec and b - 1/ vRirP. On
human fibroblasts, a has been reported to range from 0.05 to 0.25 MAm
(4,28, 30, 31). The most complete study was performed on mouse
fibroblasts by Heuser (31), in which a ranged from 0.05 to 0.15 gm with
an average value of 0.11 m and a median value of 0.095 Mm. A was
calculated by taking A4.c = wra2P. Barak and Webb (16), from fluores-
cence photobleaching measurements, determined that D, the average
diffusion coefficient of a bound LDL receptor on the surface of a JD
mutant human fibroblast between 27 and 280C was = (4.5 ± 1.5) x 10-"
cm2/s. The LDL receptors on JD cells lack the ability to incorporate into
coated pits (32). A detailed discussion of how we estimated X, and A2
appears in reference 15. Briefly, X, was estimated in two ways, from
experiments where the number of coated pits was measured as a function
of time after cells were warmed from 4 to 370C (24, 25), and from
experiments at 370C where both the total amount of '25I-LDL internal-
ized in 5 h and the total amount of '"I-LDL bound to the cell surface were
determined (32, 33). We estimated X2 by assuming that the reason there
are more coated pits on the surface at 4 than at 37°C is that the stable
state of all coated structures at 40C is the open structure, the coated pit.
Then X2 = X,(I - r)/r (33).
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FIGURE 1 The mean capture time T as a function of the receptor
diffusion coefficient D as predicted by model 1: infinitely long-lived traps;
model 2: traps that disappear and reappear at the same location; and
model 3: traps that disappear and reappear at random locations. For
models 2 and 3, we assume that when a trap of radius a forms, it instantly
captures all receptors in the region between r = 0 and r = a. The values of
parameters used in calculating these curves are characteristic of human
fibroblasts: AX = A2 = 0.2 min', a = 0.10 Mum, and b = 1.0 gm. This value
of b corresponds to P = 0.31/Mm2.

human fibroblasts, X, = X2 = 0.2 min-', we see from Fig. 1
that for D _ 1 x 10-1' cm2/s, the predictions of the three
models differ by < 12%. This is because receptors are
trapped in times that are shorter than the lifetime of a
coated pit (1 /XA = 5 min), and therefore the dynamics of
the coated pits have little influence on the rate at which
receptors are trapped.

For most mobile cell surface receptors, D (5 x
10-'° - 5 x 10-") cm2/s. We predict for this range
of D values that the mean capture time Tr =

(1.6 x 10' - 1.6 x 102) s, providing that the capture pro-
cess is diffusion limited. For the LDL receptor on JD cells,
a mutant human fibroblast cell line, D = (4.5 ± 1.5) x
10-" cm2/s (16). Model 1, infinitely long-lived traps,
predicts thatr = 1.78 x 102s and k+ = 1.82 x 10'°cm2/s,
while model 3, traps that disappear and reappear at
random locations, predicts that r = 1.73 x 102 s and k+ =
1.88 x 10-10 cm2/s. These theoretical values for k+ are
consistent with the experimental estimate given in Eq. 5 of
k+ > 2.3 x I010 cm2/s.

Although the details of coated pits recycling on human
fibroblasts have little effect on the trapping rates of mobile
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receptors (D - 1 x 10-' cm2/s), when diffusion coeffi-
cients of receptors are measured by fluorescence photo-
bleaching recovery techniques, almost always a fraction of
the receptors are found to be "immobile." Here "immo-
bile" means that their diffusion coefficients are smaller
than some critical value, below which their motions cannot
be detected in the time of the experiment. For example,
Barak and Webb (16) found that at 27-280C, 40 + 20% of
the LDL receptors on JD cells were immobile in the sense

that D ' 2.0 x 10-" cm2/s for these receptors. -As D
approaches zero, r becomes infinite for models 1 and 2, but
approaches a finite value for model 3. In model 3, coated
pits return to random locations; if a receptor cannot diffuse
to a coated pit, a coated pit can still go to (grow up around)
the receptor. For human fibroblasts, i.e., XA = 0.2 min-,
model 3 predicts that r = 7.9 h for a receptor with D = 0

that is recognized by a coated pit. (See the discussion
following Eq. 41.)

Willingham and Pastan (20) have suggested that coated
pits close and open much faster than the rates given in
Table I. They estimated that coated pits stay closed for -7
s, and that in the steady state, two-thirds of the coated
structures are open and one-third are closed. Thus, if the
closed state has a lifetime of 7 s, the coated pit has a

lifetime of 14 s. This corresponds to X1 = 4.29 min-1 and
X2 = 8.57 min-' In Fig. 2 we present the model predictions
for these parameters. Model 3 now predicts that r = 22
min for a receptor with D = 0. Because the lifetime of the
coated pit is so short, for D < 10- '0 cm2/s, the dynamics of
coated pit recycling strongly influence the predicted mean
capture times. Model 2 looks very much like model 1,
infinitely long-lived coated pits, because the coated pits
stay closed for such a short period of time (7 s) that there is

little change in the distribution of receptors around the
coated pit during the time it is closed.
One of the most striking observations about LDL recep-

tors is that on human fibroblasts =70% of the receptors are

found in coated pits in the absence of LDL (4, 27-29). In
Fig. 3 we show the theoretical prediction for the fraction of
receptors in coated pits as a function of the rate at which
coated pits are internalized, XA, for three different receptor
diffusion coefficients. We assume that when a receptor hits
a coated pit, it is trapped and remains trapped for the
lifetime of the coated pit; the longer a coated pit stays open
(the smaller XI), the larger the fraction of receptors that
will be found in coated pits. The curve with D = 4.5 x

10-" cm2/s corresponds to the LDL receptor. For XA
0.19 min- 1, the estimated value for human fibroblasts (see
Table I), the predicted fraction in coated pits is 65%, which
is very close to the experimentally determined value of
69 ± 7%. If on human fibroblasts X, were much larger than
0.19 min-', so that the lifetime of a coated pit were much
shorter than 5 min, then the predicted fraction of LDL
receptors in coated pits would be much smaller than 65%;
diffusion would be unable to account for the observed high
fraction of LDL receptors in coated pits.
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FIGURE 2 The mean capture time T as a function of the receptor
diffusion coefficient D as predicted by model 1: infinitely long-lived traps;
model 2: traps that disappear and reappear at the same location; and
model 3: traps that disappear and reappear at random locations. For
models 2 and 3, we assume that when a trap of radius a forms, it instantly
captures all receptors in the region between r = 0 and r = a. The rates of
opening and closing of the traps were taken to be much faster than for
human fibroblasts. For the calculation, we took X, = 4.29 min-',X2 = 8.57
min-, a = 0.10 ,um, and b = 1.0 ,um. This value of b corresponds toP =

0.31/IAm2.

A more typical value for the diffusion coefficient of a

receptor is -5 x 10- 1 cm2/s. For example, D = (3 -5) x

10-'1 cm2/s for the EGF receptor at 280C on 3T3 mouse

fibroblasts (34). From Fig. 3 we see that if receptors with
this value of D are irreversibly trapped when they encoun-

ter a coated pit, 95% of them will be in coated pits on

human fibroblasts (Xi = 0.19 min- ). Since there is no

evidence that EGF receptors aggregate in coated pits to
this extent in the absence of EGF, they must not be
irreversibly bound when they encounter a coated pit.
The bottom curve in Fig. 3 illustrates what we would

expect for receptors in the immobile fraction with D =

1.0 X 10-12 cm2/s. For XI = 0.19 min-', only 7% of the
receptors would be in coated pits.

In Fig. 4 we illustrate how increasing XA, or equivalently
decreasing the lifetime of a coated pit, increases the
forward rate constant when coated pits recycle to random
locations (model 3). The slower the diffusion coefficient of
the receptor is, the greater the effect of decreasing X, is on
k+. When XI = 0.2 min-', k+ is twice as great as it would be
if the coated pit were infinitely long-lived when D = 1 x
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FIGURE 3 The predicted fraction of receptors in coated pits, 4, as a function of the rate of internalization of coated pits, A,, for three values of
the receptor diffusion coefficient D. We assume that when a receptor reaches the outer radius of a coated pit, it is trapped and remains trapped
for the lifetime of the coated pit. 4 was calculated from Eqs. 41 and 43 for model 3, traps that disappear and reappear at random locations. We
took a = 0.10,m and b = 1.0 ,im. For D = 5.0 x I10-' cm2/s and D = 4.5 x 10-" cm2/s, models 2 and 3 make essentially the same predictions
for A2 = 0.2 min-' (not shown).

1012 cm2/s, but only 2% greater when D = 4.5 x 10-"
cm2/s. The predicted values of k+ for model 2 (not shown)
are always less than the predicted values for model 3 and
greater than model 1. As X2 -- 00, any coated pit that closes
instantly returns to the surface; model 2 becomes equal to

5.0

4.0-

D=. Xl0-12 cm2/s

' 3.0 _

+/
2.0

1.0
0.1 1.0 10.0
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FIGURE 4 The effect of the rate of coated pit internalization, A,, on the
diffusion-limited forward rate constant k+(A,) for the interaction of a
receptor with diffusion coefficient D, with a coated pit. k+(O) is the value
of k+ when the coated pits are infinitely long-lived, A, = 0. The
calculations are for model 3, Eq. 40, traps that disappear and reappear at
random locations. We took a = 0.10gm and b = 1.0 gim. For D = 4.5 x
10-" cm2/s and A2 = 0.2 min-', there is very little difference in the
predictions made by models 2 and 3.

model 1. As X, -- 00, the probability of a coated pit closing
and then reopening at the same location becomes negligi-
bly small; model 2 should become equal to model 3.
However, in this limit, the inequality given in 21 is not
satisfied and our analytic results for model 2 are no longer
valid.

CONCLUSION

Coated pits trap receptors and then close off to transport
them across the plasma membrane. Most of the details of
how the coated structure recycles to maintain a steady
state concentration of coated pits are unknown. As viewed
from the surface, recycling coated pits can only do two
things: disappear and then at a later time reappear at
approximately the same location, or disappear and then at
a later time reappear at a different location. We have
investigated theoretically the consequences of those two
possibilities by deriving for both recycling strategies ana-
lytic expressions for the mean capture times, r, and
forward rate constants, k+, for the trapping of cell surface
receptors by coated pits. We have found that for parameter
values characterizing human fibroblasts (Table I), the way
in which the coated pit returns to the surface has a
negligible effect on the values of r and k+ for mobile
receptors (D _ 1 x 10" cm2/s). This is because the life-
time of a coated pit is -5 min on these cells, while the
average time a receptor spends on the cell surface before
being captured is somewhat less. Thus, an "average recep-
tor" never gets to experience the effects of the coated pit
recycling. We predict, for example, that on human fibro-
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blasts, for D = 5 x 10-'° cm2/s, r = 16 s, while for D = 4.5
X 10 cm /S, the measured value of the LDL receptor, r =
2.9 min.

For immobile receptors (D < 1 x 10-" cm2/s), how-
ever, the two types of coated pit recycling strategies make
substantially different predictions. We predict that on
human fibroblasts, for a receptor with D = 1.0 x 10-12
cm2/s, r = 68 min if coated pits recycle to random
locations, and r = 79 min if they return to the same
locations. If the lifetime of the coated pit were smaller, as
may be the case on some cell types (20), the differences
would be more pronounced. For example, if the lifetime of
a coated pit were 1 min rather than 5 min, for D = 1.0 x
10-12 cm2/s, r = 31 min for coated pits that recycle to
random locations and r = 63 min for coated pits that return
to the same location.
On human fibroblasts, -70% of the LDL receptors are

in coated pits (4, 27-29). We predict for the parameter
values of Table I that if LDL receptors are trapped when
they encounter a coated pit and remain trapped for the
lifetime of the pit, this fraction should equal 65%. Consid-
ering the range of errors in the parameter values of Table I,
theory and experiment are in good agreement. This means
that the experimental observations are consistent with a
model in which LDL receptors are randomly inserted into
the cell membrane, move by pure diffusion to coated pits,
and are irreversibly trapped by the coated pits. Since LDL
has a much lower diffusion coefficient than most other
mobile receptors, pure diffusion as the mechanism for a
receptor getting to a coated pit is consistent with the
observed rapid rates at which receptor mediated endocyto-
sis takes place in general.

APPENDIX A

Here we outline a heuristic derivation of Eqs. lOa and lOb based on a
random walk approximation. The equations can be derived rigorously
using the theory of operators characterizing Markov processes. (Szabo et
al. [35] discusses the general forms of the operators characterizing
diffusion processes. The joint process consisting of the position of the
diffusing particle and the state of the trap is a random evolution. The
operator theory for random evolutions was developed by Griego and
Hersh [36].)
We consider a symmetric random walk on a square lattice with a step

size 6 and a time unit At. As 6 and At approach 0 in the relation 62 = 4DAt,
the corresponding random walks converge to the two-dimensional diffu-
sion process with diffusion coefficient D under investigation. Then
w,(x, y), the mean capture time for a diffusing particle starting at position
(x, y) with the trap open, is approximately equal to the duration At of the
first step in the random walk plus the remaining time until the particle is
captured, averaged over the particle's position and the state of the trap
after the first step. Since the probability that the trap closes in a small
time At is approximately X,At and the particle is equally likely to move to
any of its four nearest neighbors, we find:

wI (x,y) AAt + (1 - X,At) - [wI (x + 6,y)4

+ WI (x - 6,y) + WI (X,y + 6) + WI (X,y - 6)]

+ X,At
I

[w2 (x + 6,y) + w2 (x - 6,y)
4

+ W2 (x, y + 6) + W2 (x, y-)],

where w2(x, y) is the mean capture time for a particle at position (x, y)
with the trap closed. Expanding w, and w2 in Taylor series about (x, y), we
obtain

0 At
12[602w, (x, y) a2w2 (X, Y)] X,Atw (x y)
4 X2 + y02 J

+ X,Atw2 (x, y). (Al)

Using the relation 62 = 4DAt, dividing by At and taking the limit in Eq.
Al as At approaches 0 yields Eq. lOa:

DV2w, - XIw, + X,w2 + 1 = 0.

Similar arguments lead to Eq. lOb.

APPENDIX B

In this section, we outline the solution of Eqs. 1Oa and 1Ob for mean
capture times w, and w2 for particles starting about open and closed traps
subject to the boundary conditions Eqs. 1 la, 1 I b, 13a, and 13b.

Multiplying Eq. lOa by X2/(X, + X2) and Eq. lOb by XA/(X2 + A2) and
adding the resulting equations leads to the following equation for the
mean capture time w(r) for particles starting a distance r from a trap in a
random state:

DV2w(r) = -1. (BI)

Subject to the boundary condition Eq. 13a, i.e., dw/dr = Oat r = b, Eq. Bl
has the solution:

w(r) = w(a) + (2bIn -_ + a2). (B2)

To find w(a), we solve for w,, using the fact that X,w2 =
(X, + X2)w - X2w,. Then Eq. lOa can be written as:

DV2w, (X, + X2)w, =-(A, + X2)w(r) - 1, (B3)

where w(r) is given by Eq. B2. The homogeneous equation

V2y- (X + X2)y/D = 0

has the general solution:

y(r) = AIO(ra) + BKO(ra),

where a = [((X + X2)/D] /2 and A and B are arbitrary constants. The
general solution to Eq. B3 subject to the additional boundary condition
1 la, i.e., w,(a) = 0, is

2 r 2 2w,(r) -I2b In-- r + ai + A [I0(ra) - (a)4D [ a

+ B[KO(ra) - KO(aa)]. (B4)

An expression for w2 can be found from the relation between w,, w2, and
W.

Imposing the remaining boundary conditions, given by Eqs. llb and
1 3b, to determine A and B, and using the resulting expressions for w, and
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w2 to find w(r), we obtain

w(r) = - 2b2 1n--r 2+ a2 + -a (B5)4D a / 2 2Daa a01

where boo and a01 are as defined by Eqs. 19a and 19b.

APPENDIX C

In three dimensions, the solution to Eqs. lOa and lOb, subject to the
boundary conditions Eqs. 1 la and 1 ib, yields the following expressions
for w(r):

w(r) =Tra + (r - a2) (Cl)() a 3D(a b) 6D( ' (1

where

XI (b3 - a')[
Ira - a= [(aab - 1)ea(b-a) + (ab + I)e ]b |

[(aa + 1)(ab - I)e(b-a) - (aa - 1)(ab + I)e-a(b-a)] (C2)

and

a = [(XI + X2)/D]

Averaging w(r) over r, we find that r = Ta + r_, where

b3 a2 b3(b2 - a2) (b5 - a5)3Da + 3 (C3)r3Da 6D 2D(b3- a3) OD(b3- a)

In three dimensions, P = 3/4irb3 and, therefore, from Eq. 7,

k+' = (3/47rb3) (T_ + Ta). (C4)

In the infinite dilution limit, we have that

Jim k+' = k [1I+ (1 + aa) (C5)
b-X

+

A2

where kD = 4rDa. Eq. C5 agrees with the results of Szabo et al. (23). (In
their notation, X, = a, X2 = b, and a = R.)

This work was performed in part under the auspices of the U. S.
Department of Energy.

Received for publication 20 December 1983 and in final form I May
1984.
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