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ABSTRACT A lattice random-walk model is used to simulate diffusion in a porous polymer. This model may be useful
for the practical design of drug-release systems. Both interacting and noninteracting particles (random walkers) were
allowed to diffuse through a pore with a single exit hole. It was found that the specific interactions among the diffusing
particles have little influence on the overall release rate. Diffusion through more complicated structures was
investigated by simulating the diffusion of particles through two pores connected by a constricted channel whose length
and width were varied. The overall rate of release was found to be proportional to the width of the constricted channel.
When the length of the channel was greater than or equal to the length of the pore, the rate of release was also inversely
proportional to the channel length. From a practical standpoint, release rates can be decreased (and times for release
increased) by one or two orders of magnitude by decreasing the width and expanding the length of the interconnecting
channels in the polymer matrix.

INTRODUCTION

Simulation of flow through porous media has seen applica-
tions to many fields. Recently, this approach has been used
to describe the controlled release of drugs from polymeric
systems (Siegel R., and R. Langer, manuscript submitted
for publication). Langer (1976, 1982) has reported a
method of incorporating powdered drugs during polymer
casting that creates a series of interconnecting chambers
(pores) and channels through which dissolved drugs can
then diffuse. The drugs are not able to diffuse through the
polymer backbone and the drug diffusion through the
porous media is observed to be extremely slow. The
significance of this method is that it extends the biological
lifetime of many drugs, in particular, polypeptides, from
minutes to days. For example, release for over 100 days
from 1 mm thick polymer-drug slabs has been demon-
strated for over 50 different drugs (Langer, 1982). (Identi-
cal release rates are observed whether these tests are done
in vitro or in vivo [Brown et al., 1983].) Such release is over
two orders of magnitude slower than would be predicted by
diffusion through simple porous structures. However, Sie-
gel and Langer (1984) have shown (via scanning electron
microscopy) that the pores are connected via narrow
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channels or constrictions, whose radii are small compared
with the pore radii but large compared with the dimensions
of the drug. Here we analyze the effect of some parameters
of the polymer matrix structure, such as the length and
width of the connecting channels (constrictions), that
contribute to the slowness of the transient kinetics.
To better understand the behavior of these systems, we

use a mathematical model. Our objectives are twofold; first
to validate (and hence understand) intuitive concepts of
how the release kinetics should depend on geometric
parameters (for example, pore size and channel length),
and second to discover the role of interparticle interactions,
specifically repulsive, excluded volume effects. Specifical-
ly, we have investigated the release rate for particles from a
variety of simple, model geometries: pores with various
exit-hole sites, and connected pores with a variety of
connecting channel sites and exit holes. If we were solely
interested in our first objective, the method that comes first
to mind is to solve the diffusion equation, with appropriate
boundary conditions to model walls and pores. Since
analytic solutions cannot be found for these complicated
geometries, it is necessary to proceed numerically (see
Crank, 1975, for example). However, because of our
second objective, understanding the role of interparticle
interactions, we have taken the approach of random-walk
simulations. The advantage of this microscopic approach is
that it avoids the question of the correct form of diffusion
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equation (i.e., how does the bulk-diffusion coefficient
depend on concentration, on walls, etc.) and that it permits
future re-refinement that includes other effects, e.g., spe-
cific chemical binding. The disadvantage of the simulation
approach is that one must average over many runs, hence
limiting the size and complexity that can be investigated.
An intriguing prospect is to combine this microscopic
modeling with the theory of random networks to model
macroscopic timed-release slabs.

In general, we find that the simulation results support
intuitive results concerning diffusive release. However, one
surprising feature is that the release-rate results for inter-
acting or noninteracting particles are very similar. We
comment on the reason for this similarity and note that
further work is needed to fully understand its generality.

Previous attempts to model drug diffusion in polymeric
systems have focused on flow through homogeneous mate-
rial in simple geometries (slab, cylinder, sphere) (Baker
and Lonsdale, 1974). Very little theoretical work has been
done on diffusion of drug through a porous polymer
(Peppas, 1983). Recently, however, Siegel and Langer
(manuscript submitted for publication) have computed
first-passage times via a Monte Carlo method for diffusion
through a single pore with connecting channels of variable
size. This model allows one to consider the complicated
geometries involved, as well as incorporate the non-
steady-state aspect of this problem, i.e., there is no continu-
ous influx of drug (only a finite amount is cast into the
polymer). In this report, we employ a simpler lattice
random walk that easily allows us to construct more
complicated geometries than previously considered.
To understand diffusion through porous media, one

needs to consider not only flow out of a single pore but also
flow between pores. Here, we examine the rate of diffusion
through two pores and the tunnel connecting them,
extracting generalizations that can characterize flow
through an entire porous network.
We note that aspects of the model may also be applica-

ble to other problems of biophysical interest. For example,
it may be useful in describing the mechanics of exocytosis,
i.e., the emptying of secretory vesicles such as the chromaf-
fin granules in the cells of the adrenal medulla. Here,
isolated intracellular secretory granules migrate and fuse
to the enclosing plasma membrane. At the site of attach-
ment, the fused membranes burst and thus create a site
through which the granule contents are released (Pollard
et al., 1979).

METHODS

Single Pore
Figs. 1 and 2 show models of the various structures we examined. The
single pore (Fig. 1) consists of a 10 x 10 lattice, bounded by four
reflecting walls. The dimensions were chosen to be an order of magnitude
larger than the particles, yet small enough to be computationally conve-
nient; in the Results section we briefly describe the effects of this choice.
One of these walls contains an absorbing hole, providing the site through
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FIGURE 1 A diagram of the single pore is shown.

which the walkers can diffuse out of the pore (and into connecting
channels). A variable number of particles (random walkers) are initially
placed on the lattice. The diffusion process is modeled by nearest-
neighbor hopping. At each time step there is a candidate move for each
particle (if we permit the walker to stay in place with probability [1/(Z +
1)], where Z is the number of nearest neighbors, the time scale will simply
be increased by a factor of [(Z + 1)/Z] or 5/4 for two dimensions.)
We adopt two sets of rules to govern the movement of each walker. In

the first case, the particles are noninteracting. Each particle can land on a

nearest-neighbor site whether that site is occupied or not. Hence, more

than one particle can occupy a given lattice site. In the second case, we

model interacting walkers with the following algorithm. At step n each
particle is assigned (randomly) a direction, and a list of new particle
locations is generated. If any particle attempts to move to an occupied site
(occupied at step n), the move is rejected and the particle does not move.

The list of new locations is then scanned to see if two or more particles are

attempting to move to the same site; all such moves are rejected. Certain
possible correlated motions of two or more walkers are not possible within
this rule, such as a string of adjacent walkers hopping in the same

direction. It is, however, the simplest possible scheme that allows interact-
ing random walkers to attempt to move at each time step. It is important
to stress that the algorithm we have adopted for interacting walkers is not
unique. The rules adopted here exclude particular moves depending upon
the location of all walkers prior to making the next step. An alternative
algorithm can be based on the sequential move of individual walkers,
which means that the configurations that arise depend upon the order in
which the moves occur. The observed difference between the dynamics of
interacting and noninteracting walkers will depend upon the precise
algorithm adopted for the interaction.
The sets of rules for interacting and noninteracting walkers we adopt

here can be thought of as corresponding to two different interpretations of
the lattice sites. If we regard the sites as cells with a large volume
compared with that of a molecule, clearly more than one particle may
occupy a cell. If the molecules are as large as the cells, then there is an
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FIGURE 2 The various two-pore geometrics are examined.
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excluded volume effect. The noninteracting case also corresponds to
running 100 single-particle simulations, averaging over all possible initial
locations.

In both cases, the number of walkers left in the pore after every
hundred steps (up to 10,000 steps) is calculated. This was done at
different degrees of lattice saturation (loadings), namely 100%, 67%, and
50% occupation. For the latter two cases, the particles were initially
randomly distributed and 500 runs were carried out for all of the above
loadings. Varying the initial concentration serves as a model for mixing
the drug molecules with some inert molecules in the initial construction.
Of further interest regarding the single-pore geometry is how the rate

of diffusion varies with the diameter, d (see Fig. 1), of the absorbing hole.
Although solution of the diffusion equation for a rectangular box with
variable hole width d is technically possible, it requires more numerical
work than simple simulation. Thus the simulations provide a valuable
methd of obtaining qualitative trends. Specifically, we allow d to vary
from 1 to 10 lattice sites (the latter corresponding to an entire wall). 500
iterations, with an initial loading of 100 walkers, were carried out for each
hole width d and the number of walkers remaining in the pore were
calculated.

Two Pores
We have also considered the case of two pores connected by a tunnel
whose length and width are varied (see Fig. 2). The pores themselves are
kept the same size as in the previous single-pore example, 10 x 10 lattice
units. The first case considered is two pores connected by a tunnel whose
length is 1 lattice spacing. The openings at di and d2 are varied in size in
the following manner. (a) di is equal to 1 lattice spacing, whereas d2 varies
from 1 to 8, and (b) d, equals d2 and both vary from 1 to 8 (Fig. 2 a).
Example (a) mimics the situation where networks of pores empty and
interconnect through tunnels of different width. Note that the direction of
flow is predominantly from chamber B to chamber A; chamber B would
correspond to a pore at the innermost layer of the polymer matrix.

Next we consider two pores connected by a channel whose width is 1
lattice spacing and whose length is varied from 1 to 30 lattice units
(Fig. 2 b).
The final case considered has two pores interconnected by a tunnel 7

units long, but whose width varies from 1 to 10 lattice spacings (Fig. 2 c).
All calculations were carried out on fully saturated lattices (100 walkers
in each pore); in addition, all available lattice sites in the tunnels were
occupied. Here, 100 iterations were performed on each configuration
examined. This corresponds to -10,000 iterations for a single random-
walk particle.
We have investigated the simplest two-dimensional (planar) models. In

general, there are certain pathological aspects of two-dimensional random
walks [such as log(n) corrections] (Barber and Ninham, 1970) that could
cause problems in applying the results of the two-dimensional model
directly to three-dimensional systems. We do not believe there will be
significant qualitative differences in our conclusions between two and
three dimensions. Any results that we believe will be significantly
different, we will comment directly on here. Finally, this model is only
applicable to circumstances where the diffusing species are small com-
pared with the characteristic pore structure. When this is not the case,
other approaches such as the reptation method (de Gennes, 1971) may
serve as more appropriate models for the diffusion.

RESULTS

Single Pore
Fig. 3 presents the number of particles remaining in the
10 x 10 pore, N(t), (with 1 exit hole, 1 lattice-spacing
wide) as a function of time for both interacting and
noninteracting species; we see that both the interacting and
noninteracting case lead to almost identical decay in total
population N(t). The apparent origin of this surprising
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FIGURE 3 N(t) vs. t for both interacting (solid line) and noninteracting
(dashed line) species are shown. The degree of lattice saturation equals
50%.

result is that on the average (averaging over many runs),
the probability that a given site is occupied at a given time
does not depend strongly on the movement rules, and
properties such as N(t) only depend on the probability that
sites are occupied. A mathematical explanation for this
behavior is offered in the Appendix. Other properties, such
as tagged-particle (tracer) diffusion coefficients may be
expected to be different for the two cases. Another surpris-
ing feature of these simulations is displayed in Fig. 4. The
concentration of drug decays exponentially with time over
the entire time range of our simulations, indicating an
effective first-order release rate.

Another question of importance concerning the single-
pore model is how this first-order release rate varies with
the aperture or exit hole size. Fig. 5 reveals the normalized
rate of release vs. the hole diameter. The release rate is

4
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FIGURE 4 The ln N(t) vs. t for an original configuration of 100 random
walkers in a 10 x 10 pore with an exit hole 1 lattice-unit wide is shown.
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FIGURE 5 The magnitude of the release rate, k, vs. the hole size for a single pore, where the hole size was varied from 1 to 12 lattice units is
shown.

seen to increase approximately k a nW, where n is the
number of lattice spacings in the hole and f3 is found to be
-0.67. If the hole were behaving as n independent small
holes, we would simply find k proportional to n. Clearly
there is a screening effect; two adjacent traps screen the
number of walkers that fall into the other (Samson and
Deutch, 1977). This exponent can be expected to depend
on the dimensionality of the system, and hence may not be
what would be observed in a three-dimensional timed-
release experiment.

Two Pores

We next present the results for two pores connected by a
constricted channel whose length is 1 lattice unit. Fig. 6
contrasts the population vs. time for 200 particles leaving a
single large (12 x 24) chamber (through an aperture 1
lattice-unit wide) with these results for 201 particles
leaving from chambers interconnected by a tunnel 1
lattice-unit long. Here, the tunnel width, d,, and exit hole
diameter, d2, are also equal to 1 lattice spacing (Fig. 2 a).
It is apparent that even this single, short channel retards
the rate of drug release. By examining the slope of lnNvs. t
for both configurations, we see the release rate has been
retarded by approximately a factor of two-thirds due to the
presence of the constricted channel.
We next consider the case where d, = d2 and both are

varied from I to 8 lattice units. Here we have labeled the
particles originally in the chamber containing the exit hole
as species 1 and those located in the other chamber as type
2 particles. Fig. 7 reveals N(t) vs. t for both species. The
most striking feature of this result is that <10% of the type

2 species leave through the exit hole before 90% of the type
1 particles exit. This is true over the range of d, = d2 values.
Thus, there is little mixing of the two species and subse-
quently little competition between the different particles
for positions near the exit hole. Hence, it appears that
chambers connected by a constricted tunnel act sequential-
ly. Note that though type 1 particles decay exponentially,

t/100

FIGURE 6 N(t) vs. t for 200 particles leaving one large (12 x 24)
chamber (dashed line) and for 201 particles leaving from two chambers
interconnected by a tunnel a single lattice-unit long (solid line) are
shown.
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FIGURE 9 The magnitude of the release rate, k, vs. the width of the
interconnecting tunnel for d, = d2 is shown.

10 '\If we consider the case where d, $ d2, it is evident that if
' >d, d2 (the exit aperture is greater than the tunnel width),

t/1oo 10 20 30 40 50 60 70 the flow rate from the second pore is still the rate-limiting
step and, as above, the release rate will scale linearly with

N(t) vs. t for both type I (dashed line) and type 2 (solid line) the width of the tunnel, d2. If, on the other hand, d, < d2
are shown. Here d, = d2=1 and L, the length of the tunnel, (the exit aperture is less than the tunnel width), there is a

bottleneck effect. Type 2 species flow into the first cham-
ber, which still contains a significant number of type 1

long time behavior of type 2 particles is character- species. Thus, release from the first chamber is the rate-
exponential decay. limiting step and hence, the overall release rate no longer
ly, as expected, faster release rates are obtained for scales with the width of the interconnecting tunnel.
figuration when the diameter of both the exit hole We note that as the width of the tunnel is increased
interconnecting tunnel are increased. Fig. 8 shows beyond 8 units (4/5 of the available hole space), the struc-
t for the following cases: (a) d, = d2 = 1 and (b) ture can no longer be considered as two pores intercon-
= 7 lattice units. Since the majority of the type 1 nected by a constricted channel. In fact, when the tunnel
have left the system in a short time, the rate of width becomes comparable to the diameter of the pore, the
at long times will be characterized by the exponen- results converge on the value obtained for flow from one
Say of the type 2 species. In this time region large pore. In the next simulation, the channel length was
imately after 1,000 steps), there exists a linear increased to 7 lattice units, whereas d, = d2 were varied
ship between the release rate and the width of the from 1 to 8 lattice spacings. All the results obtained from
necting tunnel (for tunnel widths >2 lattice units). the tunnel of unit length persist in this configuration as
. 9). Thus, when d, = d2, flow from the second pore well.
Lte-limiting step. The dependence of the release rate (k) on the length of

the constricted tunnel between the pores is of particular
50- interest. Here again, one finds that the chambers act

sequentially; the long-time behavior of the system is domi-
10 nated by flow from the second pore. Though k always

decreases with increasing tunnel length, distinctly different
s0 results are observed for the following two cases. (a) The

length of the connecting tunnel is less than the length of the
0- \ pore, and (b) the length of this tunnel is greater than or
\" equal to the length of the pore. For tunnel lengths of I to 9

50- lattice units (case a above), Fig. 10 shows a linear relation-
ship between the square root of time (the inverse of the

0- 20==- release rate) and L, the length of the tunnel. More
0 2040 50 80 specifically, one can deduce from this graph that the
t/100 inverse of the release rate, t, is proportional to the factor

N(t) vs. t for the sum of type 1 and type 2 particles for (a) (L + 18).2 (The actual equation obtained from the graph
1 (dashed line), and (b) di = d2= 7 (solid line), and L = 1 are is t = [L + 17.812/138.4). Since each pore is 10 lattice

units long, this result indicates that the time (or I/k) is

BALAZS ET AL. The Role ofPolymer Matrix Structure in Drug Release

l IX

.I

k

k

25

2C

15

IC

5

101



N

I-

0
*

2.3 ,

2. 1-

1. 9

1. 7 -

1.5 2 4 6 1
0 2 4 6 8 10

Length

FIGURE 10 The square root of 1/k (the inverse of the release rate) vs. L,
the length of the tunnel is shown. The length was varied from 1 to 9
units.

approximately proportional to the square of the length of
the entire system (two pores and the interconnecting
tunnel). On the other hand, Fig. 11 shows a linear relation-
ship between the release rate and the inverse of the tunnel
length (1/L), for tunnels .10 units long. (For both the
above cases, d1 and d2 are fixed at 1 lattice spacing).
Though the initial choice of 10 x 10 arrays for the pore

sizes was arbitrary, the above indicates how the results
would scale with variations in the length of either the pores
or channel. Furthermore, changing the ratio of the width of
the pores to the width of the channel will not make a
qualitative difference to our results in those cases where
transport through the narrow channel is rate limiting.

DISCUSSION

These simulations have yielded several noteworthy results.
First, it has been shown that the specific interactions
between the diffusing particles play little role in the overall
release rates (at least for repulsive interactions). Second,
the calculation on the single pore demonstrates the popula-
tion of particles remaining in the chamber decays exponen-
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FIGURE 11 The magnitude of the release rate, k, vs. 1 /L of the
interconnecting tunnel is shown. Here, the length was varied from 10 to
30 lattice units.

tially with time. Third, we see that when- two pores are
interconnected by a constricted tunnel, whose width is
equal to or less than the diameter of the exit hole, the
chambers act almost independently and sequentially.
When the exit aperture is greater than or equal to the
width of the interconnecting tunnel, the overall release rate
is proportional to the width of the channel (d2). Fourth, for
the case where the length of the interconnecting tunnel is
less than the length of the pore, the release rate, k, is
proportional to the factor 1/(L + 18)2, where L equals the
tunnel length. (From the previous section, we see that k =
138.4/[L + 17.8]2). However, when the tunnel length is
greater than or equal to the length of the pore, the rate of
release is found to be inversely proportional to the length of
the tunnel.

All of these results seem intuitively correct. For the case
where the length of the tunnel is less than the length of the
pore, 1/k or the time is found to be approximately propor-
tional to 12, the square of the length of the entire system.
This result is consistent with non-steady-state diffusion
from a rectangular slab of length 1 (Crank, 1975). How-
ever, this is not the situation when the length of the tunnel
equals or exceeds the length of the pore. A flux propor-
tional to 1/L is obtained for one-dimensional diffusion
along a length L, subject to steady-state conditions (Crank
and Park, 1968). Since the particles in the constricted
tunnel can move only backwards or forwards and since the
number of particles in chamber 2 is greater than the
number of particles in the tunnel, at all but long times, the
one-dimensional analogy is plausible for determining the
rate-limiting behavior. In summary, when the ratio of the
length of the tunnel to the length of the pore is <1, the
system displays approximately the characteristics of non-
steady-state diffusion from a rectangular slab, whose
length is equal to the sum of the lengths of the pores and
the interconnecting tunnel. However, when the ratio of the
length of the tunnel to the length of the pore is .1, flow
through the tunnel becomes the rate-limiting step. The
system displays the characteristics of steady-state one-
dimensional diffusion along a length equal to the length of
the interconnecting tunnel. It is also reasonable that the
rate should vary linearly with the tunnel width if we think
of the tunnel as a set of W-independent narrow tunnels. We
note this result is consistent with a characteristic first
passage time proportional to W, the result found by R.
Siegel and R. S. Langer (unpublished results). Thus, for
the case where the length of the tunnel is greater than or
equal to the length of the pore, we arrive at the simple
relation for the first-order release rate k: k a w/L.
From the equation above, it is easy to see that the release

rate can be significantly reduced (and consequently the
time for release significantly increased) by increasing the
length and decreasing the width of the connecting channel.
The intuitive validity of our results gives us confidence in
applying the two-dimensional simulation results to the
three-dimensional world. The argument given in the
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Appendix explaining the lack of importance of repulsive
interactions is independent of dimension. Because we see
steady-state (first-order) behavior in the population decay
and not any complicated time dependence typical of two
dimensions, the mathematically more well-behaved three-
dimensional cases can be expected to be similar.
The first-order behavior we have observed, in addition to

similarity between interacting and noninteracting walkers,
suggests that to simulate the entire network of pores, one
can combine rates from detailed calculations such as this
one, with percolation models of randomly connected
nodes.
We have shown that our lattice random-walk model

yields a simple way to incorporate various structural
features of a porous polymer and provides a good way to
evaluate how these features affect the release rates of the
diffusing drug molecules. From a practical standpoint, the
model will be useful for providing guidance in the develop-
ment of delivery systems with desired release rates. Since
some drugs are very potent and need to be released daily in
microgram or nanogram quantities, whereas others need to
be administered daily in milligram dosages (Langer and
Peppas, 1981), it would be useful to be able to design
systems to accommodate these different regimens, a pro-
cess that is now done solely by trial and error. The model
can tell us, however, the effect of the number of pores and
the size of the constrictions on release rates. Since these
parameters can be experimentally controlled by varying
drug particle numbers, size, and shape (Rhine et al., 1980),
guidance could now be provided and predictions made on
how to control the above experimental parameters to
achieve desired release rates.

APPENDIX

In the text, it was stated that there was little observed difference between
models that include the excluded volume effect of multiple random
walkers and those that do not. Here we show why, at the master equation
(ME) level of description, this seems to be so.

For noninteracting random walks on a simple lattice, the probability of
being at site i after n steps, P1(n) obeys aME

Pi(n) = Pi(n- ) ijPj(n- 1)-E Wji P;(n- 1), (Al1)

where Wij is the probability of hopping from site j to site i. This equation
simply states that the probability of being at site i is the probability the
particle was there the previous time step, plus the probability of hopping
onto the site from elsewhere, minus the probability of hopping away. The
vector i designates the location on the hypercubic lattice. As discussed in
the text, the inclusion of excluded volume modified the hopping rules in
two ways; this requires the addition of two terms to the right-hand side of
Eq. Al. First, walkers cannot hop onto a site that was already occupied.
This is reflected in ME by modifying the hopping terms

Pi(n) = Pi(n --) + E Wjj[1 - Pi(n - 1)]Pj(n - 1)

-E Wji[1-Pj(n -1)]Pi(n -1). (A2)

LTh2 i step n-I

NONINTERACTING INTERACTING

a 12 |I I| || 2

b 2|| |2 | |
step n

c I i [lIED12]
d |I, T|21 l| 2]

TOTAL 11/2 1/2|1/2 II/22I

FIGURE 12 Two walkers, labeled I and 2, are at adjacent sites at step n
(top line). The four possible moves for noninteracting and interacting
walkers are shown on lines a, b, c and d. The average occupation
probability for both cases is the same, as shown on the bottom line. We
note that when two walkers are separated by an empty site, the simulation
includes the possibility of multiple occupancy for the noninteracting case
and does not permit multiple occupancy for the interacting cases.

The probability of hopping from site i to j is now proportional to the
probability that site j is empty, 1 - Pj [n - I], one minus the probability
it is occupied. Eq. A2, is, however, the same as Eq. Al (when the hopping
rate is symmetric, Wij = W,i), since the quadratic terms cancel. Physically
this result arises because the probability that appears in the ME refers to
the probability of occupancy of a given lattice site irrespective of the
identity of the walker. Fig. 12 demonstrates the type of motion that these
terms describe, in this example, for the two walkers adjacent to each other
on a one-dimensional lattice. The four equally probable moves for the
interacting and for the noninteracting walkers are shown. The total
probability that a given site is occupied is 1/2 regardless of the rule. The
same figure illustrates that there will clearly be a difference for tagged
particle diffusion.
The second modification due to excluded volume is the bounce rule,

where two or more particles attempting to move to an open site bounce
back and are not moved. This introduces higher order (such as cubic)
terms in the ME, which do not cancel; the corresponding occupation
probabilities after the move are not the same for interacting and
noninteracting walkers (as the interested reader can easily see by
constructing a figure similar to Fig. 12). However, a simple numerical
examination of the importance of these terms for a one-dimensional chain
showed them to be of little significance. This is in keeping with our
simulation results where these events are relatively infrequent and seem to
have little effect on the results. This problem will be discussed in more
mathematical detail in a forthcoming note.
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