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Supplemental Information S2: Information Measures of Stimulus Encoding 
(accompanying Butts and Goldman, PLoS Biology, 2006) 

 

Several information-based measures of how well stimuli are encoded by neural responses exist in the 
literature.  In the main text, we describe results obtained using the stimulus-specific information (SSI) (Butts, 2003).  
Below, we compare this result to those obtained with three additional information-based measures:  (1) the 
transinformation proposed by Theunissen and Miller (1991) and later renamed as the specific surprise by DeWeese 
and Meister (1999); (2) the local information proposed by Bezzi et al. (2002); and (3) the Fisher information, used 
by a variety of studies including several that specifically address the issue of tuning curves and information (Seung 
and Sompolinsky, 1993; Salinas and Abbott, 1994; Brunel and Nadal, 1998; Pouget et al., 1999; Zhang and 
Sejnowski, 1999; Bethge et al., 2002; Xie, 2002).   

Below we apply these measures to the generic tuning curve example of Figure 1.  These results are 
representative of all tuning curves examples considered in the main text (including those based on experimental 
characterizations considered in Figure 2). 

 

Transinformation (Theunissen and Miller, 1991) and Specific Surprise (DeWeese and Meister, 1999) 

 Transinformation was proposed originally as a measure of how well different wind directions are encoded 
by interneurons in the cricket cercal system (Theunissen and Miller, 1991).  It was later re-introduced under the 
name specific surprise and used as an alternative to specific information in associating a mutual-information-based 
measure with particular stimuli and responses (DeWeese and Meister, 1999).  It is defined as 

isur (θ ) = p(r | θ ) log2
p(r | θ )

p(r)r
∑  

Like the specific information and the SSI discussed in this paper, the average specific surprise across the stimulus 
ensemble is the mutual information: thus it can be viewed as a measure of the contribution of each stimulus to the 
total information.  The particular interpretation of the specific surprise as a measure of the information associated 
with particular stimuli is explicitly compared to that of the specific information and SSI in Butts (2003). 

 The specific surprise for the tuning curve example of Figure 1 (main text) is shown in Figure S2-1 below 
for the low and high noise cases: 

 

 
Figure S2-1: Comparison of the specific surprise and SSI for the tuning curve example described in Figure 1 
for low and high noise cases. 

 

While there are subtle differences between the information assigned to stimuli by the SSI (solid) and specific 
surprise (dashed), these two measures are in close agreement. 

The transinformation in the low noise case (left) was originally published in the study of Theunissen and 
Miller (1991), although the effects of changing the noise level in the system were not investigated. 
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Local information (Bezzi et al., 2002) 

 The local information was proposed by Bezzi et al. (2002) to provide a measure of the amount of 
information encoded by place cells in various regions of the hippocampus about an animal’s location.  It is defined 
as the mutual information between the response of a neuron and whether or not a particular stimulus θ is present.  
Specifically, it is defined as: 

iloc (θ ) = p(θ ) p(r | θ ) log2
p(r | θ )

p(r)r
∑ + p(~ θ ) p(r |~ θ ) log2

p(r |~ θ )

p(r)r
∑  

 

where   p(~ θ ) = p(~ θ | r ) p(r )
r∑  and p(r |~ θ )p(~ θ ) = p(r | θ ')p(θ ')

θ '≠θ∑ .  Note that if p(θ) is small, the 

expression in the logarithm of the second term is close to one, and the second term barely contributes to iloc(θ).  
Thus, as described in Bezzi et al. (2002), in the limit of small p(θ), iloc (θ ) ≈ p(θ ) isur (θ ) .  This limit applies in the 
tuning curve examples considered in this paper so that the local information is nearly identical to the specific 
surprise (compare Figures S2-1 and S2-2).  As a result, the local information also closely matches the SSI.  

 

 
Figure S2-2: Comparison of the local information and SSI for the tuning curve example described in Figure 
1 (main text) for low and high noise cases.  Here the SSI is scaled by p(θ) = 1/360 for a direct comparison 
with the local information. 

 

Fisher information (e.g., Seung and Sompolinsky, 1993) 

The Fisher information has been used in numerous studies of tuning curves (Seung and Sompolinsky, 
1993; Salinas and Abbott, 1994; Brunel and Nadal, 1998; Pouget et al., 1999; Zhang and Sejnowski, 1999; Bethge et 
al., 2002; Xie, 2002), because it is both an explicit stimulus-specific measure and easily applied to large populations 
of neurons.  The Fisher information J(θ) is defined as: 

J (θ ) =
∂

∂θ
log p(r | θ )





2

p(r |θ )

 

where p(r|θ) is the distribution of responses for a given stimulus parameter (i.e., the neural variability as discussed 
throughout this study) and ⋅  represents an average over these responses. The meaning of the Fisher information 
relates to the specific problem of decoding the stimulus from a neural response: 1/J(θ) sets a lower bound on the 
variance of any unbiased estimate of θ given the response distribution p(r|θ) (through the Cramer-Rao inequality).  
In this way, Fisher information is a measure of how well a particular angle can be decoded given the variability of 
the neural response. 

We solve analytically for J(θ) for the bell-shaped tuning curve (Figure 1A of main text) with mean firing 
rate f(θ) and response variability given by σ(θ) = a + bf(θ) (with the values of a and b given in the Methods).  It is 
necessary in this case to allow for negative firing rates, which were verified to have an insignificant effect on the 
results of the other measures discussed (and thus are directly comparable to the measures described above).  In this 
case, the Fisher information is given by: 
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J (θ ) =
1 + 2b2

(∆θ )4







θ 2 [ f (θ ]2

[a + bf (θ )]2  

It is shown in comparison to the SSI in Figure S2-3 (where the SSI is scaled so that its mean value across angles 
matches that of the Fisher information). 

 

 
Figure S2-3: Comparison of the Fisher information and SSI for the tuning curve example of Figure 1 (main 
text) for low and high noise cases.  Here the SSI is scaled such that the mean SSI is equal to the mean J(θ). 

 

The peaks of the Fisher information and the SSI are in close agreement for the low noise case (left), 
although notably the Fisher information is zero at the peak of the tuning curve whereas the SSI at the peak is almost 
as large as the SSI at the maxima.  In contrast, despite the fact that neural variability is explicitly incorporated into 
the definition of Fisher information, the locations of the maximum values of Fisher information in this example are 
insensitive to noise level, although the overall magnitude of the Fisher information is scaled by the squared 
magnitude of the noise. 

This discrepancy between J(θ) and all other measures discussed here reflects the locality of the Fisher 
information metric, since it only takes into account the discriminability of neighboring stimuli and neglects the fact 
that many stimuli might evoke the same response (Kang et al., 2004; Dayan and Abbott, 2001).  This is related to the 
surprising result that the Fisher information is zero at the tuning curve peak (which implies that the lower bound of 
an unbiased estimator is ∞): although high firing rates are useful at distinguishing the subset of stimuli around the 
peak of the tuning curve from other stimuli (“coarse discrimination”), high firing rates are nearly useless at 
discriminating between neighboring stimuli at the peak (“fine discrimination”). 

However, as more neurons are used to produce an estimate of θ, the subset of stimuli that evoke the same 
multi-dimensional response becomes increasingly localized. Thus, in the limit of large populations with uniformly 
distributed tuning curves, the contribution of a single neuron’s response becomes completely local.  This is reflected 
in the SSI of the 4-neuron population where, in the low noise case (Fig. 3B), the marginal SSI of a single neuron all 
but disappears at the peak of its tuning curve, and the transition of stimuli with the highest SSI from high-slope to 
peak occurs at a higher noise level. 

As discussed in the main text, the Fisher information and the SSI are useful in different limits of population 
size.  The application of the SSI and the other Shannon-based measures discussed above is computationally limited 
to small populations, although analytic approximations may be applicable (Brunel and Nadal, 1998).  At the same 
time, recent studies (Bethge et al., 2002; Xie, 2002) have detailed the lack of applicability of Fisher information 
when the population size is smaller than a noise-dependent threshold (Xie, 2002).  With regard to this issue, it is 
important to note that the presence of noise correlations may raise this threshold significantly (Zohary et al., 1994; 
Sompolinsky et al., 2001; Averbeck and Lee, 2004). 

 



 

Supporting Information S2  Butts and Goldman, 2006 
 

4

References 

Averbeck BB, Lee D (2004) Coding and transmission of information by neural ensembles. Trends Neurosci 27:225-
230. 

Bethge M, Rotermund D, Pawelzik K (2002) Optimal short-term population coding: when Fisher information fails. 
Neural Comput 14:2317-2351. 

Bezzi M, Samengo I, Leutgeb S, Mizumori SJ (2002) Measuring information spatial densities. Neural Comput 
14:405-420. 

Brunel N, Nadal JP (1998) Mutual information, Fisher information, and population coding. Neural Comput 10:1731-
1757. 

Butts DA (2003) How much information is associated with a particular stimulus? Network 14:177-187. 

Dayan P, Abbott LF (2001) Theoretical Neuroscience. Cambridge, MA: MIT Press. 

DeWeese MR, Meister M (1999) How to measure the information gained from one symbol. Network 10:325-340. 

Kang K, Shapley RM, Sompolinsky H (2004) Information tuning of populations of neurons in primary visual cortex. 
J Neurosci 24:3726-3735. 

Pouget A, Deneve S, Ducom JC, Latham PE (1999) Narrow versus wide tuning curves: What's best for a population 
code? Neural Comput 11:85-90. 

Salinas E, Abbott LF (1994) Vector reconstruction from firing rates. J Comput Neurosci 1:89-107. 

Seung HS, Sompolinsky H (1993) Simple models for reading neuronal population codes. Proc Natl Acad Sci U S A 
90:10749-10753. 

Sompolinsky H, Yoon H, Kang K, Shamir M (2001) Population coding in neuronal systems with correlated noise. 
Phys Rev E 64:051904. 

Theunissen FE, Miller JP (1991) Representation of sensory information in the cricket cercal sensory system. II. 
Information theoretic calculation of system accuracy and optimal tuning-curve widths of four primary 
interneurons. J Neurophysiol 66:1690-1703. 

Xie X (2002) Threshold behaviour of the maximum likelihood method in population decoding. Network 13:447-
456. 

Zhang K, Sejnowski TJ (1999) Neuronal tuning: To sharpen or broaden? Neural Comput 11:75-84. 

Zohary E, Shadlen MN, Newsome WT (1994) Correlated neuronal discharge rate and its implications for 
psychophysical performance. Nature 370:140-143. 

 


