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Appendix:  Instrumental noise in the analysis of granule motion 

The measurements of integrated intensity fluctuations observed frame-to-frame from 

individual granules are affected not only by the actual motion of granules but also by 

instrumental noise, mainly photon shot noise and CCD camera readout noise and dark count 

noise.  The instrumental noise has two effects on the estimation of <(Δz)2> or <(ΔR)2>, which are   

measures of the amount of z-motion or R-motion in the time duration of a camera frame interval.  

The first effect is an overestimate of <(Δz)2> or <(ΔR)2>, because some part of the fluctuations 

arise purely from instrumental noise: even an absolutely fixed granule would appear to be 

moving.  This overestimation bias can be corrected as described below.  The second effect is an 

increase in the statistical uncertainty of results for <(Δz)2> or <(ΔR)2> , even after correction for 

the overestimation bias.  This effect is also evaluated below.  Any quantitative conclusions based 

on noise analysis of intensity data must take these two effects into account, in order to correctly 

report unbiased results and also to correctly evaluate whether values for motions under different 

biological conditions are significantly different from each other or from zero.  

The correction and assignment of uncertainties for <(Δz)2> and for <(ΔR)2> are 

somewhat different from each other so they are described separately. 

 

Overestimation correction for <(Δz)2> 

The primed variables here refer to the observables (i.e., before correction for instrumental 

noise) and the unprimed variables refer to actual motion.  The intensities in successive frames I1 

and I2 are already assumed to be background-subtracted. 
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At any time i, 
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where zi’ is the apparent z-position.  In terms of the actual z-position, we have: 
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where α is a random variable representing instrumental noise that fluctuates around <α>=1 at 

any particular intensity.  The statistical behavior of random variable α in general is a function of 

mean intensity;  its value and statistical behavior is essentially the same as the normalized 

intensities seen in the experiments on immobilized debris or beads, samples which have no 

actual motion.  From Eq. A1 and A2 evaluated at the times i=1,2 of two successive camera 

exposures and taking the ratio, we get 
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where Δz ≡ z2−z1 and likewise for Δz’ .  Taking the log of Eq. A3 gives 
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The three terms on the right are all random variables that are completely independent of 

each other.  In such a situation, the variance of a sum (or difference) is the sum of the variances.  

Therefore, their variances all add to produce the variance of the quantity on the left: 
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Note that in general 22var z z zΔ = Δ − Δ , and likewise for var z′Δ , so 
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If any unidirectional motion (say, favoring motion toward the membrane) underlies the random 

motions, the last two terms on the right each may be nonzero.  However, the difference between 

them is very small, as can be shown by taking the mean values on each side of Eq. A4 and 

examining 2 1ln lnα α− .  The extreme maximum value of 2 1ln lnα α−  for any two 

intensity ranges, as calculated from noise read on immobilized beads of varying intensities with 

our CCD detector system, is less than 0.06.  This means that the misreporting of any mean 

unidirectional motion zΔ  due to CCD instrumental noise will be less than 6% of the 

characteristic depth d.   Consequently, the last two terms on the right side of Eq. A6 almost 

cancel each other and can be safely ignored, even in the presence of unidirectional motion. 

Eq. A6 can be further simplified in the case where the fluctuations in α around its mean 

value of unity are small, as can be checked from the relative size of frame-to-frame intensity 

fluctuations on immobile debris or beads. In that case, ln α ≈ α −1,  and the last term in Eq. A6 

becomes var α, giving the approximate result: 

( ) ( ) ( )2 2 22 varz z d α′Δ = Δ +    (A7) 

Therefore, to calculate a particular granule’s corrected <(Δz)2> from the uncorrected <(Δz’)2> , 

we measure a sequence of intensities on a debris/bead sample, normalize the sequence to the 

average intensity, calculate the variance, multiply by 2d2, and subtract this value from the 

uncorrected <(Δz’)2>.  Note that this procedure must be done with α values measured on a 

debris/bead sample that has the same mean intensity as the granule. 

 

Overestimation correction for <(ΔR)2> 
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 The values for ΔR’ are determined by quadrature from the component measurements of 

ΔX’ and ΔY’ .  Each of those readings contains a “real” motion (ΔX, ΔY) denoted as unprimed, 

and a ‘noise’ motion (Δβx, Δβy).  The noise motion is the motion inferred from measurements on 

immobilized beads of similar size and intensity to a granule. 
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    (A8) 

The frame-to-frame fluctuations in ΔX and ΔY are presumed to be uncorrelated with each 

other, and also uncorrelated with the two uncorrelated instrumental noise fluctuations Δβx 

and Δβy.  Therefore,  
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 Since the means of each of the random variable distances are zero, we have 
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The sum of these two equations is <(ΔR’)2>, giving 

( ) ( ) ( )2 2 2R R β′Δ = Δ + Δ    (A11) 

Therefore, to calculate a particular granule’s corrected <(ΔR)2>  , we subtract the average radial 

motion <(Δβ)2> measured on a bead of similar size and intensity from  <(ΔR’)2> measured on a 

granule.  

 

Statistical accuracy of corrected <(Δz)2> 



 41

 After correction for instrumental noise as above, the now-unbiased estimates for  <(Δz)2> 

vs. z (or intensity) still contain an uncertainty which arises from the random nature of z 

compounded by random instrumental noise.  We estimate this uncertainty by a simulation 

program with random number generation. 

 The first step is to simulate the instrumental noise in intensity as a combination of photon 

count-independent CCD camera readout noise and photon count-dependent shot noise.  The 

parameters describing this combination are phenomenologically set to produce photon count 

histograms that agree with the series of histograms observed experimentally on debris/bead 

samples.  

Next, actual “granule” motions are simulated by generating a series of Δz values where 

the z-motion steps are assumed to be Gaussian-distributed variables with variances 

corresponding to the corrected values found in the experiments at each particular mean intensity 

(or z) range.  These simulated positions are converted to intensity, at which point simulated 

readout and shot noise are folded in according to the phenomenological parameters determined 

as in the above paragraph, and then converted back to Δz’, the set of which is now even noisier 

than the original Δz.  The number of motions simulated at each mean intensity is set to be the 

same as the number that were actually accumulated at that intensity range in the experiments on 

chromaffin cell granules.  With this set of simulated Δz’ values, the corresponding simulated 

<(Δz’)2> could be calculated.  Then the simulation is repeated again and again, each time giving 

new <(Δz’)2> values (because the average is over a finite number of random values).  The 

variance of this set, var <(Δz’)2> , could then be evaluated.  The square root of this variance is 

the standard error (SE) in <(Δz)2>.  Twice that SE represents the 95% confidence range shown in 

Fig. 1. 
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An alternative method that does not use simulation is based entirely on the variability in 

set of experimental Δz’ values at each intensity, using the definition of variance of the mean: 
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where n is the number of  experimental Δz’ values that fall into a particular range of intensities.  

This method is only useful if there are enough such values in the intensity range to produce 

reliable statistics. 

 

Statistical accuracy of corrected <(ΔR)2> 

Actual granule motion steps in the x and y directions are each simulated as a Gaussian 

distributed variable with a variance corresponding to the corrected values found in the 

experiments at each particular intensity (or z) range.  To this is added a random Gaussian-

distributed step with a variance corresponding to the apparent “motion” of an immobile 

experimental bead arising from instrumental noise.  From this sum, a ΔR’ step is generated.  The 

number of ΔR’ motions simulated at each mean intensity is set to be the same as the number that 

were actually accumulated at that intensity range in the experiments on chromaffin cell granules.  

From this point on, the protocol for estimating the SE of the simulated values for  <(ΔR)2> is 

analogous to that for  <(Δz)2>  described above.  The alternative method, based on actual 

variability in the set of experimental  ΔR’ values and an analogy to Eq. A11, can also be used. 

 

Shot noise artifact in the estimation of sequential motions 

 To determine whether the motion of a granule is directed rather than completely random, 

the interframe granule motion measured between two successive frames at times t and t+1 ideally 
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should be correlated with the immediately successive interframe motion measured between 

frames t+1 and t+2.  In principle, a positive correlation shows that the motion persists in the 

same direction; a negative correlation shows that the motion tends to reverse itself; and a zero 

correlation indicates a random walk.  In practice, however, a complication arises due to shot 

noise, which adds a randomness to the position measurement at any particular time, even if the 

granule is not moving at all.  This complication gives rise to an apparent negative correlation in 

inferred granule motion between successive interframe intervals, even where one does not really 

exist.  This effect occurs for both Δz and ΔR motions; the discussion here will refer to Δz for 

concreteness but it could be replaced by ΔR throughout. 

 First, assume shot noise is the only source of fluctuations in z.  Given a shot noise 

generated “up-fluctuation” in the estimation for z at time t+1, the measured Δz1 [≡ z(t+1)-z(t)] in 

the (t,t+1) interval will tend to be positive because the immediately prior z(t) measurement is 

equally likely to be an “up” or a “down” fluctuation.  The immediately subsequent measured Δz2  

[≡ z(t+2)-z(t+1)] then will tend to be negative because z(t+2) is equally likely to be an “up” or a 

“down” fluctuation.  An analogous argument applies given a shot noise generated  “down-

fluctuation” in z(t+1), with the “positive” and “negative” words reversed.  Therefore, Δz1 and Δz2 

are negatively correlated.  Qualitatively, the negative correlation arises because calculation of 

Δz1 and Δz2 both share the same input measurement z(t+1), one with a plus sign and the other 

with a minus sign.  This artifact does not occur in comparing Δz3 [≡ z(t+3)-z(t+2)] with Δz1, nor 

in comparing Δz4 [≡ z(t+4)-z(t+3)] with Δz2. 

 The same conclusions apply even if the shot noise is mixed with actual motions in z.  We 

assume that the measured Δz’ is composed of two independent parts: an actual z motion Δz and a 

shot noise contribution Δs: 
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    z z s′Δ = Δ + Δ        (A12) 

The temporal autocorrelation function GΔz’  for Δz’ is: 
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The cross terms in Eq A13 are zero since the actual motions and shot noise are uncorrelated.  

Variable s is the deviation from the actual z at any particular frame due to shot noise, and can be 

positive or negative.   The autocorrelation of the interframe shot noise is:  

   

[ ][ ]
( ) ( )

( 1) ( ) ( 1) ( )

( 1) ( 1) ( ) ( 1) ( 1) ( ) ( ) ( )
( ) ( 1) ( 1) ( )

2 ( ) ( 1) ( 1)

s

s s s s

s s s

G s t s t

s t s t s t s t

s t s t s t s t s t s t s t s t
G G G G

G G G

τ

τ τ

τ τ τ τ
τ τ τ τ

τ τ τ

Δ = Δ + Δ

= + + − + + −

= + + + − + + − + + + +

= − − − + +
= − − − +

    

            (A14) 

 

  Gs(τ) has the well-known form of a positive delta function spike at τ = 0; shot noise 

exhibits no correlation with itself from one instant to the next.  The second term and the third 

term in Eq. A14 produce negative spikes at τ = 1 and τ = -1, respectively.  It is these terms that 

represent the artifactual negative correlation at τ = ±1 in ( )zG τ′Δ  in Eq. A13.  There is no artifact 

at any other nonzero τ value. 

 Johns et al (2001) show ( )zG τ′Δ  curves for z motion of secretory granules that display the 

negative correlation spike at τ = 1.  These were misinterpreted as being representative of actual z 

motions, but they are in fact shot noise artifacts.  However, whether the artifact actually appears 

depends on whether shot noise in intensity measurements is significant compared to the “noise” 
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in intensity measurements generated by actual z motions.  In the case of very bright objects, 

where the relative size of shot noise is small, the negative artifact at τ = 1 may not be noticeable.  

In principle, the problem can be surmounted by calculating an autocorrelation of a modified Δkz’   

([≡ z’(t+k)-z(t)]  so that the negative spike artifact occurs at τ = ±k, where k represents a jump of 

many frames rather than just a single frame.  If k is large enough, the artifact could be positioned 

beyond the temporal zone where actual z motions are correlated, and thereby its contribution 

could be quantified. 

 
 


