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Sequences

The transcribed sequences of the various templates used in the paper are given below.

seq10:

AUCGAGAGGGACACGGCGAAUAGCCAUCCCAAUCGACACCGGGGUCCGGG

AUCUGGAUCUGGAUCGCUAAUAACAUUUUUAUUUGGAUCCCCGGGUACCG

AGCUCGAAUUCACUGGCCGUCGUUUUACAACGUCGUGACUGGGAAAACCC

UGGCG

seq11:

AUCGAGAGGGACACGGCGAAUAGCCAUCCCAAUCCGACACCGGGGCAUCGA

GUGGGACACGGCGAAUAGCCAUCCCAAUCGACACCGGGGUCCGGGAUCUG

GAUCUGGAUCGCUAAUAACAGGCCUGCUGGUAAUCGCAGGCCUUUUUAUU

UGGAUCCCCGGGUA

seq12:

AUCGAGAGGGCCACGGCGAACAGCCAACCCAAUCGAACAGGCCUGCUGGUA

AUCGCAGGCCUUUUUAUUUGGAUCCCCGGGUA

seq13:

AUCGAGAGGGCCACGGCGAACAGCCAACCCAAUCCGAACAGCCAUCAUCCU

CAGUAUUCAGGUAGCUGUUGAGCCUGGGGCGGUAGCGUGCUUUUUUCGAA

UUCACUUAAUGGUAAUCUCG

D123:

AUCGAGAGGGACACGGCGAAUAGUGAGAACUUGGCGAGAGAACAACCUCG

AACGCCGCAAGGCACAAGAGAGGGCGGCGUGGCAUAGACGAAAGGAAAAG



GUUAAAGCCAAGAAACUCGCCGCACUUGAACAGGCACUAGCCAACACACUG

AACGCUAUC

D167:

AUCGAGAGGGACACGGCGAAUAGCCAUCCCUAACGUCUACGAUGUACAGC

GCCACGCUGGAUGCUAUACGGUGGUACUUGACGCACUUAAGGAUUGCGAG

CGUUUCAACAAUGAUGCCCAUUAUAAAUACGCUGAGAUUGCAAGCGACAU

CAUUGAUUGC

D111:

AUCGAGAGGGACACGGCGAAUAGCCAUCCCAAUCCACACGUCCAACGGGGC

AACCGUAUGUACACCUGAUGGGUUCGCAAUGAAACAACGAAUCGAACGCC

UUAAGCGUGAACUCCGCAUUAACCGCAAGAUUAACAAGAUAGGUUCCGGC

UAUGACAGA

D112:

AUCGAGAGGGACACGGCGAAUAGCCAUCCCAAUCGACACCGGGGUCAACCG

GAUAAGUAGACAGCCUGAUAAGUCGCACUAGAACAGGCACUAGCCAACAC

ACUGAACGAUAUCUCAUAACGAAGAUAAAGGACACAAUGCAAUGAACAUU

ACCGACAUC

D104:

AUCGAGAGGGACACGGCGAAUAGCCAUCCCAAUCGACACCGGGGUCAACCG

GAUAAGUAGACAGCCUGAUAAGUCGCACGACAGAAAGAAAUUGACCGCGC

UAAGGCCCGUAAAGAACGUCACGAGGGGCGCUUAGAGGCACGCAGAUUCA

AACGUCGCA

D387:

AUCGAGAGGGACACGGCGAAUAGCCAUCCCAAUCGACACCGGGGUCAACCG

GAUAAGUAGACAGCCUGAUAAGUCGCACGAAAAACAGGUAUUGACAAGCG



UCAAGGUAUGCUUAUCGACUUACUGGUCGAGAUGGUCAACAGCGAGACGU

GUGAUGGCG

Equilibrium and Kinetics Results on All Templates

Tables 1–10 summarize our results on all 10 templates using the four thermodynamic

models (i) single bubble (2,9,1), without RNA folding (SBNF); (ii) single bubble with

RNA folding (SBF); (iii) multiple bubbles without RNA folding (MBNF); (iv) multiple

bubbles with folding (MBF); and (v) kinetics.

Dot-Product Overlap

The difference in pause cluster patterns between the actual and randomized templates can

be quantified by measuring the dot-product overlap between the two patterns associated

with sequence S,  d[S,S '(S)] =
r
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S ' , here S’(S) is the randomized sequence

obtained from S. Table 11 lists the dot-product overlap between pause clusters calculated

with MBF using our pausing criterion on the actual and randomized templates for all ten

sequences. A lower overlap indicates a larger dissimilarity between the pause cluster

patterns.

Discussion of the Algorithm of Bai et al. (1)

We expect that the assumption of much faster equilibration rates between states 0 and +1,

is motivated by the discussion of translocation rates in the context of T7 transcription (2).

In that case the apparent absence of a sufficiently well defined secondary channel implies

that backtracking is strongly suppressed by steric clashes between the 3’end of RNA and

RNAP (W. McAllister, personal communication), a situation not met in the case of E.

coli transcription (3, 4). The second issue, related to the extremely high values of the

backtracking and hypertranslocation barriers required to fit experimental gels, maybe



related to the fact that the simplified parameterization of kinetics in ref. 1 attempts to

mimic the presence of  RNA folding barriers not explicitly included in the model.

We implement a Monte Carlo (MC) version of the algorithm in ref. 1, with the fit

parameters given in ref. 1 at 24°C, on the same templates considered in the main text (3,

5) with no contribution from RNA folding as in ref. 1.

We use NTP concentrations appropriate for each experimental condition (10 µM for

Chamberlin’s data, 40 µM for sequence seq10, and 30 µM for sequences seq11–seq13).

(Application of our approach at 24°C, instead of 37°C, shows little change in the

statistics of our predicted pause positions, in agreement with the lack of temperature

dependence of backtracked pause patterns found in ref. 5.) We classify as pauses those

transcript lengths for which the pause duration is above τ and the pause probability is

above Pthresh. The pause probability is defined as the fraction of MC trajectories which, on

reaching a given transcript length, pause for at least a time τ.

Since the shortest pause identified in ref. 1 has a duration of at least 15 s we first chose

the cutoff τ = 15 s. Even when we use a very liberal value of 0.95 for the threshold

probability the resulting positive predictive value (PPV) is 49% with a sensitivity (σ) of

21% (Bai I in Fig. 3), implying that, even for this rather liberal way of defining pauses,

the algorithm in ref. 1 misses most of the experimentally observed sites.

We further relax the definition of a pause by choosing τ, the cutoff on the pause duration,

to be only five times the shortest possible pause duration, namely the inverse of the

maximum elongation rate at each NTP concentration. From the Michaelis–Menten form

for the latter,

(kmain
max )−1 =

Kd + [NTP]
kmax[NTP]

,

we estimate τ = 0.3 s for seq10–13 and τ = 0.5 s for the templates used in ref. 3. Defining

pauses by requiring that complexes pause with probability Pthresh = 0.5 for at least τ

seconds results in a PPV of 50% and a σ of 24% (Bai II in Fig. 3).  To increase the



predictive power of the model such that it outperforms the average over many random

assignments of pauses, we must increase the threshold probability to around 0.9 in which

case the PPV is 52% and the σ is 70% (Bai III in Fig. 3). The fact that such a relaxed

(and difficult to justify) definition of pausing is required is related to the extremely large

barriers for backtracking implied by the algorithm presented in ref. 1.

In our MC implementation of the algorithm of ref. 1 we have treated the states (m, 0), (m,

1) and (m, 1)* (see Fig. 5) as a single composite state in order to have explicit

instantaneous equilibration between these three states at each iteration. The probability of

translocating forward (hypertranslocation) out of the composite state, (m; (0, 1, 1*)), is

almost always larger than the probability of backtracking, this can be seen by calculating

the effective rates of leaving the composite state. As found in ref. 1 the effective

elongation rate out of the composite state is

kmain =
kmax[NTP]

Kd (1+ Ki ) + [NTP]
, where Ki = e(Gm ,1 −Gm ,0 )/kBT .

We can find the effective rates for hypertranslocating to +2 and backtracking to –1 in a

similar fashion:

kforward =
km,1→2Kd

Kd (1+ Ki ) + [NTP]
and kback =

km,0→−1KdKi

Kd (1+ Ki ) + [NTP]
.

Starting in the composite state, the probability of going forward is simply Pforward =

kforward/(kforward + kback + kmain) and the probability of going back is Pback = kback/(kforward +

kback + kmain). Since Gm,1 is usually larger than Gm,0, when RNA folding is absent and, as

the absolute scale of the barrier between translocation states +1 to +2 is 40 kBT, which is

smaller than the absolute scale of the barrier from 0 to –1 of 46.2 kBT, we find that k1 → 2

will usually be much larger than k0 → –1. This makes kforward much larger than kback in most

cases, which leads to Pforward being much larger than Pback. For example, for transcript

length 32 on seq11 Pforward = 6.5 × 10–1 and Pback = 7 × 10–4. These frequent

hypertranslocation attempts are artifacts of the model and would not occur if the forward

barriers were made higher than the backtracking barriers.



Kinetic Model Discussion

Here we give a brief description of the details of the kinetic algorithm. A more complete

description will be given in a future publication (6). As discussed in the main text, we

evolve the components of the equilibrium distribution where we include RNA folding in

the free energy (Eq. 2). We equilibrate around the local minimum in the free energy

landscape. The local minimum is defined as a minimum closest to translocation state 0,

where moving either forward or backward increases the free energy by more than 2 kBT.

This is only one way to determine the range over which to equilibrate; in practice this is

dependent on both the free energy landscape including RNA folding and the RNA-

folding barriers. The components of this initial distribution are given by Eq. 1, where b =

(2,9,1) is the only bubble configuration used. An example of a free energy landscape

including RNA folding (green curve) and the corresponding initial distribution (red

histogram) are shown in Fig. 4.

Each component is evolved separately in a landscape without additional RNA folding

from that provided by the initial state (blue curve with an additive constant corresponding

to the initial RNA fold, Fig. 4). Adjustments to the backtracking rates are made at

translocation positions where additional backtracking of the enzyme would require the

breaking of RNA–RNA base pairs of the secondary structure. This is accomplished in our

simulations by adding reflecting boundaries at positions one base pair upstream of the

where the enzyme first encounters a fold (black vertical lines in Fig. 4). These barriers

are only encountered in the process of backtracking and are invisible to components of

the original distribution associated with positions of RNAP upstream of the barriers. The

enzyme is allowed to break one base pair of the fold before being pushed back by the

reflecting barrier. For example, in Fig. 4 the equilibrium probability components at states

0 and +1 see a reflecting barrier at position –1 while the component at –1, on the other

hand, sees a reflecting barrier at –3 but not at –1. Note that the barriers shown in Fig. 4

prevents template D167 from being paused at position 85.



An estimate of the maximum energy barrier between two translocation states can be

found by noting that at least one hybrid bond and one DNA–DNA bond in the

transcription bubble must be broken for each translocation step. We take the extreme

view that both of these bonds must be broken before any other bonds are reannealed and

thus, ignoring all other free energy contributions to this barrier this estimate corresponds

to an upper bound to the sequence dependent translocation barrier. The energy losses

corresponding for removing a rGC/dCG from the hybrid and a dCG/dGC from the bubble

are 2.4 kcal/mol and 2.8 kcal/mol respectively (7). This gives an estimate of the

maximum translocation energy barrier of 8.3 kBT at 37°C. This provides the estimate for

the energy barriers used in the main text.

The kinetic scheme we used is shown in Fig. 5. The pyrophosphate (PPi) release rate is

unknown but is thought to be rate-limiting at saturating NTP concentrations (8–11).

Single nucleotide incorporation studies of (10, 11) place the rate-limiting step to be at

least 700 s–1, which we use as an estimate of the NTP independent PPi release rate. We

used an apparent dissociation constant of NTP binding of 20 µM (12), at the lower  end

of the range of published dissociation constants, to account for the fact that competitive

inhibition due to some branched reaction pathways is explicitly accounted for in our

model. Two other effects on the effective dissociation constant are worth noting. First,

competitive inhibition effects associated with non-complementary NTPs are negligible at

the NTP concentrations we consider, as the inhibition constants are on the order of mM

(12); and second, the fact that the NTP concentration in the secondary channel may be

smaller than in the cellular environment (13) simply results in a rescaling of the

dissociation constant and need not be explicitly considered as long as NTP diffusion is

not rate-limiting.

The translocation rate prefactor was chosen to be 107 s–1 along with a dissociation rate of

5 × 104 s–1. These experimentally unknown parameters where chosen so that both

translocation and NTP dissociation would be faster than the pyrophosphate release rate.

We varied the translocation rates (by varying the constant which determines the barrier



heights), the NTP dissociation constant and NTP dissociation rate over several orders of

magnitude without any significant change in the statistics of our results (see below).

Kinetic Model Results

As already discussed above, pauses are defined as those sites where complexes do not

incorporate the next NTP with a probability greater than or equal to Pthresh, and up to a

threshold time scale, τ. Pauses were clustered based on adjacency. The thresholds Pthresh

and τ are determined by maximizing the statistical significance of our results: Pthresh is

varied between, 0.1 and 1 in steps of 0.1 while τ is varied between 0.1 s and 1 s in steps

of 0.1 s, and between 1 s and 10 s in steps of 1 s. We maximize the PPV and σ while

minimizing the percentage of sequence space covered constrained by tolerances on σ of

70%, and percentage of sequence space covered, 35%. We allow different thresholds for

seq10, seq11–13 and the data of ref. 5 since the corresponding experiments involve

different NTP. More precisely, (Pthresh, τ) are (0.5, 0.5 s) for seq10, (0.5, 0.6 s) for seq11–

13 and (0.4, 3 s) for the data of ref. 5. Using different kinetic parameters leads to different

incorporation timescales but we were able to find a pair (Pincorp, τ) yielding approximately

the same statistics for each set of kinetic parameters. For comparison, the kinetic,

thermodynamic and experimental results are shown side by side in Tables 1–10. We also

show in Fig. 6, the optimized values of η2 = PPV + σ  for the four equilibrium models and

the kinetic model.
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