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Model equations. The system of differential equations corresponding to

the model is
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represents the derivative with respect to time t in days, and parameters are
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we obtain a nondimensionalized version of the original model equations:

ẋ = −f(u)x− δ̃(x− n)

ẏ = (1− g(v))f(u)x− (µ̃− + δ̃)y

ẇ = g(v)f(u)x− (µ̃+ + δ̃)w

ż = µ̃−y + µ̃+w − δ̃z

u̇ = m̃(1− φu− v)u + κ(y + w)

v̇ = ω̃(φ2u− 1)v + ξw,

where {µ̃−, µ̃+, m̃, ω̃, δ̃} = π−1{µ−, µ+, m, ω, δ}, n = x+y+w+z, and the dot

now represents the derivative with respect to τ . The composite parameters
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Note that the prevalence is given by

I− + I+

N
=
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n
,

so that the dynamics of prevalence are completely specified by the nondi-

mensional system. Because the shedding parameter c does not appear there,

the dynamics are independent of c, as mentioned in the paper.

The R routines evaluate the nondimensionalized equations and provide

scalings to recover the dimensional versions of the solutions.

Stability analysis of bacteria/phage dynamics. We will analyze

the nondimensional equations and drop the tildes for convenience. Consider

first the situation when δ = 0. In this case, no new susceptibles are intro-

duced. Then for all initial conditions, the infected classes y, w → 0, as all



susceptible individuals are eventually infected and recover or die. Then the

bacteria-phage equlibria of the entire system are identical to the equilibria

of the following system:

u̇ = m(1− φu− v)u

v̇ = ω(φ2u− 1)v.

Setting u̇ = v̇ = 0, we find the following possible equilibrium states:

(û, v̂) = {(0, 0), (
1

φ
, 0), and (

1

φ2
, 1− 1

φ
)}.

We infer stability by adding a small positive perturbation term (εu, εv)

to each equilibrium in turn, substitute into the reduced equations, and con-

sider the eigenvalues of the linearized system in (εu, εv). For the degenerate

equilibrium (0, 0), the linearized system is

ε̇u = mεu

ε̇v = −ωεv,

so that the eigenvalues are simply m and −ω, and stability ensues if both

are negative, i.e, only if m < 0 and ω > 0. Because we consider only m > 0

in this work, the degenerate equilibrium is always unstable.

For the resource-control equilibrium ( 1
φ
, 0), first note that V̂ = (Kvφ)û =

Kv, the carrying capacity, by the above variable transformation. The lin-

earized system is

ε̇u = −m

φ
(φεu + εv)

ε̇v = ω(φ− 1)εv



and the eigenvalues are −m and ω(φ−1). Then, for ω > 0, we have stability

only if m > 0 and φ < 1, and the nondegenerate phage-control equilibrium

( 1
φ2 , 1 − 1

φ
) must be unstable. Stability of these two equilibria must switch

when φ > 1, so that this condition specifies phage control. Note that when

φ > 1, 1
φ2 < 1

φ
. That is, equilibrium bacterial density is reduced below

carrying capacity by phage predation.

For small δ > 0, as in our numerical analysis, these conditions are good

approximations for most of the levels of human bacterial and phage shedding

we consider, and equilibria are shifted by small relative amounts. Under

higher rates of infection of humans by phage, we find that in the resource

control regime, P̂ >> 0 by virtue of a constant input of phage from infected

humans (see paper).

Epidemic equilibrium and basic reproductive number. Consider

the nondimensional system above, dropping the tildes, and setting µ+ =

µ− = µ. Setting the derivatives equal to zero, we can solve for the equilibrium

values of the state variables, x̂, ŷ, ŵ, ẑ, in terms of the equilibrium bacterial

and phage densities û and v̂:
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where f̂ = f(û) and ĝ = g(v̂). Setting u̇ and v̇ to zero and substituting the

above expressions for x̂, ŷ, ŵ, ẑ gives exact equations for û and v̂ that can be



solved numerically. These were used in establishing the initial conditions for

the model outbreaks in the paper.

Using the observation (ref. 1, p. 17) that the basic reproductive number

R0 multiplied by the equilibrium fraction of susceptibles is equal to unity, we

have

R0 =
n

x̂
= 1 +

f̂

δ
.

R0 is plotted as a function of the bacterial median infectious dose k in Fig.

6.

Sensitivity analyses. Here we consider the effects of changes in bac-

terial growth rate and phage decay rate, over emipirical determined ranges,

on the magnitude of simulated cholera epidemics.

Fig. 7 illustrates the effect of bacterial growth rate and the bacterial

bloom size on the severity of an outbreak, in the absence of phage, in the

case where phage cannot coexist with bacteria (φ = 2/3). The severity is

given in terms of the number of new disease cases exceeding the number

expected under constant equilibrium cholera prevalence (the “excess cases”),

over 1 year. Excess cases are calculated as follows: if the prevalence is p,

the number of excess cases from the beginning of the epidemic to a time T

equals I(T ) − I(0) + (µ− + δ)
∫ T

0
(I−(t) − pN)dt, where N is the (constant)

total number of individuals.

In Fig. 8 we consider the number of excess cases prevented by the intro-

duction of exogenous phage into the environmental reservoir, over a range

of initial phage densities. These results demonstrate that phage can affect

epidemic course for the situation in which phage do not stably persist, but



that both bacterial growth and phage decay rates must be low to obtain a

substantial effect.

Fig. 9 shows the effects of decreasing levels of phage instability, for the

case in which bacteria and phage coexist (φ > 1). Initial phage densities are

given as fractions of the equilibrium phage density. Note that, in contrast

to the resource-controlled case, outbreak severity is insensitive to changes in

the bacterial growth rate over the experimental range.

Parameter estimates. Below we set out our rationale behind the

choices of values for unknown parameters.

c, daily bacterial shedding per individual: In our model, the bacterial

shedding parameter affects the dynamics only as a linear scaling of the epi-

demic compartments. Thus, when compartments are analyzed as proportions

of the total population, c cancels out; it does not affect the endemic preva-

lence or the basic reproductive number of the epidemic, for example. We

also found that, in the scenarios we consider, changes in initial human pop-

ulation numbers over several orders of magnitude do not strongly affect the

dynamics of the outbreak. Thus we chose c = 10 for the purposes of explicit

calculations, but the outbreak dynamics, and hence our conclusions, do not

depend strongly on the value of this parameter. Because severely infected

individuals excrete enormous numbers of vibrio [5× 1011− 2× 1012 cells per

day (2)], a contribution of 10 cells per liter of reservoir is a modest estimate

even for an extremely large body of water.

We did not explicitly model the growth of bacteria and phage within the

individual, but supposed that each infected individual contributed a constant

density of bacteria and/or phage to the reservoir each day over the course



of infection. The underlying assumption here is that bacterial growth within

the infected person is very rapid relative to the time scales of the outbreak

and bacterial growth in the reservoir. We believe this is justifiable, since the

time between infection and onset of symptoms is short (3) relative to the

length of outbreaks, and shedding and symptomatic infection are coincident.

Numerical experiments incorporating a constant delay between infection and

shedding of up to 10 d indicate that neither magnitudes nor times of epidemic

and density peaks shift appreciably compared to the simpler model presented

here (data not shown).

µ+, daily recovery rate of phage-positive individuals: While the model was

formulated to allow for differences in recovery rates between phage-negative

and phage-positive infecteds, we set the recovery rates for both classes equal

to 0.1. We justified this simplification primarily on the basis of phage therapy

experiments (2) indicating that densities of phage much greater than arise

through within-host replication alone are necessary to shorten the symp-

tomatic period. Monsur (2), citing unpublished data, noted that the gut

transit time of vibriophage is probably shorter than the eclipse phase (the

time from phage adsorption to phage burst) in symptomatic individuals, so

that multiple rounds of phage replication within the gut are unlikely.

α , phage/bacteria ratio in phage-positive individuals: Faruque et al. (5)

observed between 102 and 108 virions/ml stool in their study; assuming 108

cells/ml in the stool of diarrheal patients (2), this gives between 10−6 and

1. We chose α = 1 for our numerical experiments, to maximize the possible

contribution of phage within the estimated range.

k, median infectious vibrio dose: Using human volunteers, Cash et al. (3)



estimated that this parameter lay between 106 and 108 cells. In that study,

the lowest dose was effective only when buffered by sodium bicarbonate. We

chose k = 4× 107 for our simulations. Figure S1 shows the sensitivity of the

basic reproductive number R0 to changes in k, given the other parameter

values we chose. This gives a rough idea of how the magnitude of the model

outbreaks would respond to different k.

a, threshold parameter: When a = 1, as in ref. 6, under the other

parameter constraints, a low equilibrium prevalence of cholera (0.5 in 1,000)

can be achieved only with a very low proportion of susceptible individuals,

too low to give epidemics of the size observed in Dhaka. When a > 1, the

rate of immigration can be adjusted to give larger numbers of susceptibles

at equilibrium and consequently larger epidemic sizes. Although a ∼ 7 is

somewhat arbitrary, it gives epidemic sizes near that observed in Dhaka,

without requiring unreasonable immigration rates. The effect of changes in

a on the reproductive number R0 can be seen in Fig. 6.

Data limitations and model “fitting”. As comprehensive as they

are, these data have features that make it difficult to estimate the model pa-

rameters using numerical procedures. Only relative bacterial densities were

reported, while the model we consider was constructed in terms of absolute

densities. The reason for this limitation is technical: viable pathogenic V.

cholerae are difficult to recover from environmental sources by culture, re-

quiring enrichment in selective medium (4, 7, 8). Comparison of fluorescent

antibody staining and culture results suggest a detection limit of about 103

cells/ml (7), but even at higher densities, enriched cultures are frequently

negative for cholera bacteria. Also, as we note in the Discussion, it is likely



that the environmental densities would be too low during most of the epi-

demic to account for cholera prevalence by consumption of environmental

water alone. This leads us to suppose that local reservoirs exist that are

actually responsible for most infections, but within which the microbial dy-

namics are unknown.

While the data of Faruque et al. (5) may not be amenable to numerical

fitting, we can assume that the sampled densities of bacteria and phage are

directly proportional to those in the reservoirs responsible for disease. The

relative changes in microorganismal densities and cholera infections over time

can then be studied with our mathematical reformulation of their conceptual

model. To this end, we seek sets of parameters such that the behavior of the

model reproduces the following qualitative and semi-quantitative features

of the data: 1) a synchronous rise in environmental bacteria density and

outbreak cases, 2) a delayed rise and fall of environmental phage density

relative to the outbreak, 3) a reduction of bacterial and phage densities to

undetectable levels (after putative dilution), and 4) a rise in phage-positive

infecteds from zero to a high proportion of all infecteds. These dynamics

should play out on a time scale comparable to that of the actual outbreak.

Access to model code. R code for numerical solution of the model

equations and calculation of equilibria and excess cases can be obtained by

contacting the authors.
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