
Classification of dispersal tails and general result 

concerning long-distance mixing of propagules 

 

The vocabulary concerning heavy tails may appear confusing in the literature because (i) no 

strict definition of “heavy tailed distributions” seems to exist and (ii) the different fields of 

application (ruin theory, time series…) do not require the same types of heavy-tailed 

distributions. We present here several classes of heavy tailed distributions. They are 

classically defined by characterizing the tail of the cumulative distribution function  

(
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" x( ) =1#" x( ) =1# $ y( )dy
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x

% ) and we adapted the definitions to the tail of the density 

functions (dispersal kernel are supposed to be always decreasing to 0). For more details, see 

[1]. 

 

Definitions of some classes of heavy-tailed kernels. 

K is the set of fat-tailed kernels γ. By definition they are the kernels not exponentially 

bounded, i.e. such that 

! 

lim
x"#

exp $x( )% x( ) =#, for all ε>0. 

L is the set of long-tailed kernels γ , i.e. such that  

! 

lim
x"#

$ x % y( )
$ x( )

=1, for all y≥0. 

R-α is the set of kernels γ regularly varying with index of variation –α where α is a positive 

real number, i.e. such that 

! 

lim
x"#

$ %x( )
$ x( )

= %&' , for all λ≥0. 



 

Remarks 

(i) R-α⊂ L⊂ K (e.g. Fig. 1.4.1 in [1]) and these are strict inclusions. Few functions 

belong to K but not L (see Section 1.4 in [1] for an example). However, numerous 

functions, among them many classically used, belong to L but not to R-α (e.g. 

Table 1). 

(ii) K is the set of fat-tailed kernels [2]. For these kernels the moment generating 

function is undefined [1], leading to a travelling wave of increasing speed [2, 3]. 

(iii) We can also define R0 as the set of functions slowly varying, i.e. such that 

! 

lim
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$ %x( )
$ x( )

=1, for all λ≥0, 

and R-∞ as the set of kernels rapidly varying, i.e. such that 

( )
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x

x #

$# , for all λ>1. 

However no dispersal kernel belongs to R0 because it contains functions with too 

heavy tails to define probability densities. R-∞ contains both heavy-tailed kernels 

and light-tailed kernels and is thus not included in L or K. 

(iv) Regularly varying functions with α>0 also exist but are not dispersal kernels since 

they do not decrease to 0. 

(v) The tail of a kernel obtained as a mixture of two kernels has the same type as the 

heavier tail of the two kernels. Thus mixtures of two Gaussian, classically used as 

typical leptokurtic kernels (e.g. [4] are thin-tailed. As an opposite example, the 

kernel  
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is fat-tailed and rapidly varying because so is the right hand-term. Note however 

that it is platykurtic (

! 

µ4

µ2
2

= 2.73 < 3, where µ4 and µ2 are the second and fourth 

moments). 

 

Examples 

Regularly varying kernels have the general form 

! 

" r( ) = ra# r( ), with ϕ(r) a slowly varying 

function, so they gather the power-law functions or geometric decreases. 

Fat-tailed kernels include the regularly varying kernels, but also exponential power function 

with b<1 (Table 1).  

Slowly varying functions that decrease to 0 are for instance log(r)-c, with c>0. Products and 

sums of slowly varying functions are also slowly varying. 

 

Definitions of some classes of light-tailed kernels. 

Among the light-tailed kernels, we distinguish: 

E, the set of kernels that are exponential-like, i.e. such that there exist a value ε0>0 with 

! 

lim
x"#

exp $x( )% x( ) =#, for all ε>ε0 and 

! 

lim
x"#

exp $x( )% x( ) = 0 , for all ε<ε0. 

T, the set of kernels that are bounded by any exponential (thin-tailed), i.e. such that 

! 

lim
x"#

exp $x( )% x( ) = 0 , for all ε>0. 

Remarks 

(i) The functions belonging to E are of the general form 

! 

" r( ) = exp(#ar)$ r( ) , with 

ϕ(r) a fat-tailed function. They are neither fat-tailed nor thin-tailed. 

 



General results concerning long-distance mixing of propagules  

The ratio 

! 

"B x( ) =
# x $ xB( )
# x $ xA( )

 has the same asymptotic behaviour as 

! 

" x # $( )
" x( )

=
" log(%y)( )
" log(y)( )

, 

where δ=xB-xA, x=log(y) and –δ=log(λ). 

First, note that the ratio ρB(x) is constant if and only if γ is exactly an exponential function. 

The exponential functions are indeed the only ones that verify f(x+δ)=f(x)K(δ) for any x and δ 

(e.g. [5], K being a function not depending on x (that turns to be equal to f up to a 

multiplicative constant).  

Even mixing of propagules- Following the definitions given above, the ratio ρB(x) tends 

toward 1 if and only if γ is a long-tailed kernel, which is not strictly equivalent to a fat-tailed 

kernel. However, functions belonging to K but not L are rare and we are not aware of 

examples among the classical functions used as dispersal kernels. Although we did not prove 

it, we expect that functions in K but not L are not smooth enough to be dispersal kernels. 

Uneven mixing of propagules -

! 

" log(#y)( )
" log(y)( )

 tends to a function g(λ) depending on λ, if and 

only if g(λ)= λa and γ(log(y)) is of the form yaϕ(y) with ϕ(y) a slowly varying function (e.g. 

Appendix A3 in [1]. This means that πA tends to a value strictly between 0 and ½ only for 

kernels of the form γ(x)=exp(ax)ϕ(exp(x)). When ϕ(y) is any kind of slowly varying function, 

ϕ(exp(x))  is within the set of long-tailed functions. So here again, we do not find exactly the 

set of exponential-like functions, but only those of the form exp(ax)ϕ(x) with ϕ(x) belonging 

to L. 

Absence of mixing of propagules- As above, the ratio ρB(x) does not tend towards + ∞ for all 

thin-tailed kernels but for a subset of them (defined, just symmetrically to the long-tailed 

functions L, as all functions such that

! 

lim
x"#

$ x % y( )
$ x( )

=#, for all y≥0). Here again, although not 



proven, we expect that all thin-tailed functions sufficiently smooth to be a dispersal kernel 

belong to this subset. 
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