Genotype	Sex	Panc	ereas	Liver Lymphoid cell	Lung Lymphoid cell	
• 1		Periinsular lymphocytic	Atrophy of acinar			
. / .	F	infiltration	tissues	infiltration	infiltration	
+/+	F	++	-	-	-	
+/+	F	+	-	-	-	
+/+	F	++	-	-	-	
+/+	M	+	-	-	-	
+/+	M	+	-	+	-	
+/+	M	+	-	-	-	
+/+	M	+	-	-	-	
+/-	F	+	-	-	-	
+/-	F	++	-	+	-	
+/-	F	++	-	-	+	
+/-	M	+	-	-	-	
+/-	М	+	-	-	-	
+/-	М	++	-	-	+	
+/-	Μ	++	-	N.A.	-	
+/-	Μ	-	-	-	-	
+/-	М	++	-	-	-	
/	F	++	++	+	++	
-/-	F	++	++	+	++	
/	F	++	++	+	++	
/	F	N.A.	N.A.	+	++	
/	F	N.A.	N.A.	+	+	
/	F	+	-	+	+	
-/-	F	N.A.	N.A.	+	++	
/	F	++	+	+	++	
/	F	++	-	+	++	
/	F	-	-	+	++	
/	F	+	++	+	+	
/	F	++	++	+	++	
/	Μ	++	++	+	++	
/	М	++	++	+	++	
/	М	++	++	+	++	
/	М	+	-	+	++	
-/-	М	++	+	+	++	
/	М	++	++	+	-	
/	М	++	++	-	++	
/	М	++	++	+	++	
/	М	+	++	-	+	
/	М	++	+	+	++	
/	М	++	++	+	++	
/	М	++	++	+	++	

Supplemental Table 1. Histological evaluations of mice

Formalin-fixed tissue sections were subjected to H&E staining, and two pathologists independently evaluated the histology without being informed of the condition of each individual mouse. Histological evaluations were made 6 to 21 wks after birth. Mice backcrossed onto NOD mice for 6 to 9 generations were used. N.A., not assessed.

++, severe; +, moderate; -, not remarkable.

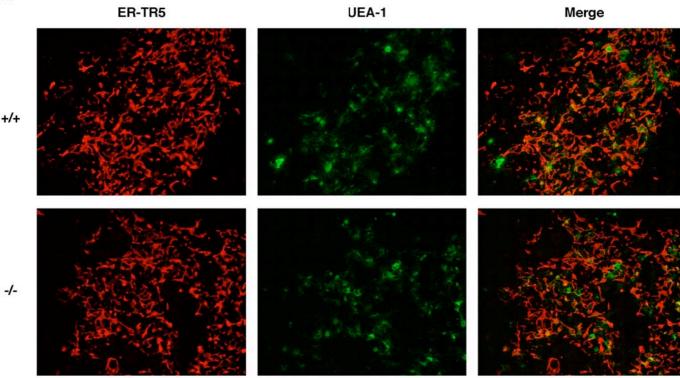
Genotype	Foxn1/Hprt	Ins/Hprt	SP1/Hprt	FABP/Hprt	CRP/Hprt	GAD67/Hprt	PDIp/Hrpt
+/+	1.86	2.83	1.04	0.78	1.41	52.2	0.74
/	1.65	9.77 x 10 ⁻²	4.96 x 10 ⁻³	3.49 x 10 ⁻²	1.60	185	0.62
Relative abundance (Aire-KO/control)	0.89	1/29.0	1/210	1/22.5	1.13	3.54	0.85

Supplemental Table 2. Expression of tissue-specific genes from Aire-deficient NOD mouse thymus

Real-time PCR for *Foxn1* and peripheral tissue-specific genes was performed using total thymus RNAs from control and Aire-deficient NOD mice. The relative abundance of each gene was calculated as described in Table 1. Mice backcrossed onto NOD mice for 6 generations were used.

Genotype	Pancreas	Stomach	Kidney	Liver
+/+	-	-	-	-
+/-	-	-	-	-
+/-	-	-	-	-
+/-	-	-	-	-
+/-	-	-	-	-
+/-	-	-	-	-
/	+	++	+	++
/	++	++	+	++
/	++	+	+	++
/	++	++	+	++
/	++	++	+	+
/	+	+	+	+
/	++	++	++	++

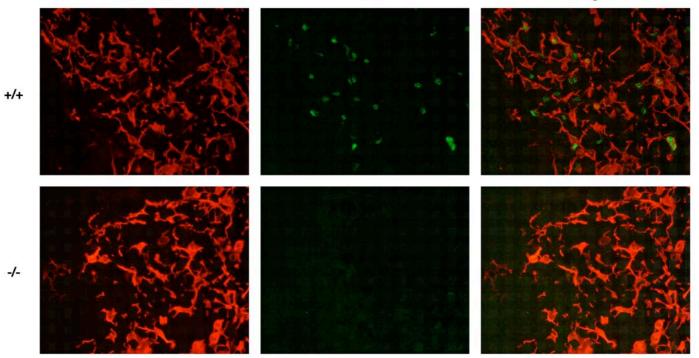
Supplemental Table 3. Serum auto-Abs against various organs detected with immuno-fluorescence


Mouse serum was incubated with various organs obtained from Rag2-deficient mice, and reactivity was determined by immuno-fluorescence. Mice backcrossed onto NOD mice for 6 generations were used.

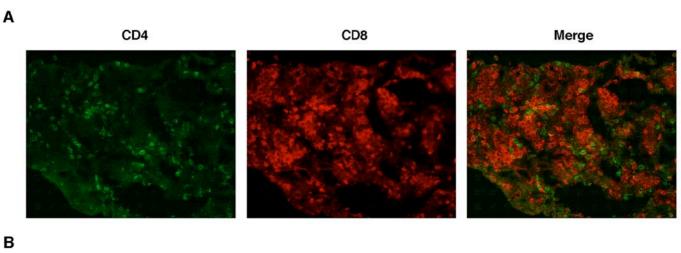
++, strongly positive; +, moderately positive; -, negative.

Supplemental Figure 1. Matsumoto M, et al

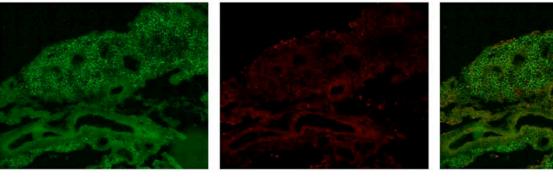
Α



в

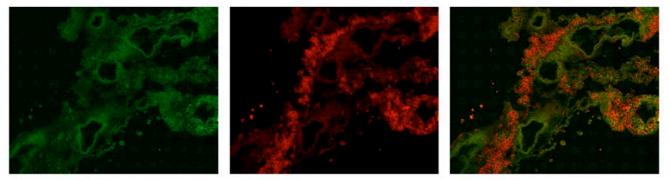


Merge

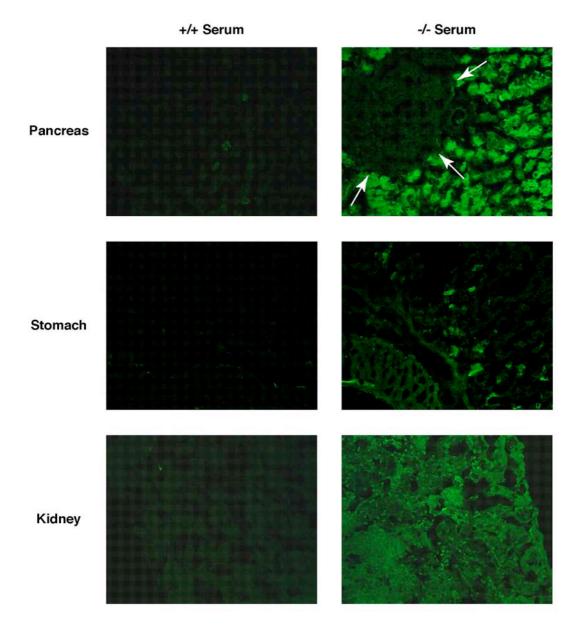


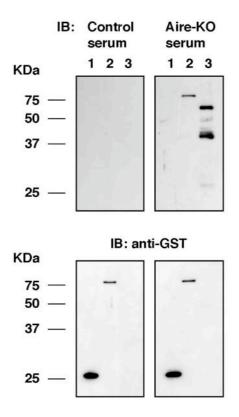
Α

CD138



B220


B220


CD138

Merge

Supplemental Figure 3. Matsumoto M, et al

Supplemental Data

Figure S1. Retained thymic structure in both Aire-sufficient and Airedeficient NOD mice. (A) Thymic medulla, identified as ER-TR5⁺ areas (stained in red), contained normal numbers and distribution of UEA-1⁺ cells (stained in green) in both Aire-sufficient and Aire-deficient NOD mice. Original magnification, x 200. (B) Aire⁺ cells were normally distributed within the medullary TECs in NOD mice. The subcellular distribution of Aire nuclear-dots within the cell was also unaltered. Aire-deficient NOD thymus served as a negative control for staining with anti-Aire Ab. Original magnification, x 400.

Figure S2. Lymphoid cell infiltration in the pancreas from Aire-deficient NOD mice. (A) Both CD4⁺ and CD8⁺ cells infiltrated in the pancreas from Aire-deficient NOD mice. (B) B220⁺ cells, which do not express CD138, were recognized in the pancreas from Aire-deficient NOD mice (upper panels). Clusters of CD138⁺ cells, which are B220^{low}, were also identified among these lymphoid cell infiltrations (lower panels). Original magnification, x 200.

Figure S3. Auto-Ab production in Aire-deficient NOD mice. Serum from Aire-deficient NOD mice, but not from control littermates, contained IgG class auto-Abs against pancreas, stomach and kidney as detected with immunofluorescence. Arrows in the upper right panel indicate a β -cell islet. Original magnification, x 200.

Figure S4. Production of anti-PDIp auto-Ab in Aire-deficient NOD mice. Aire-deficient NOD mouse serum (top right), but not control mouse serum (top left), showed reactivity against bacterially expressed GST-PDIp fusion protein (lane 2), but not against GST alone (lane 1), by Western blot analysis. Protein extracted from pancreas was used as a positive control (lane 3). The same blot was probed with anti-GST Ab (bottom).