
Supporting Text

Analytical Calculation

Under the model assumptions we can write down an expression for Pn,α(f) that reflects a process of drawing
Ng independent ”true” correlations Zt from the distribution q(Zt), each of which is submitted to a Gaussian
noise of variance σn

2, and identifying the NTOP (= αNg) top genes. Submitting the Ng true values to another
realization of the noise, we obtain another list of NTOP genes. For finite n, the lists are expected to be different
due to noise (nonvanishing σn

2). The probability to obtain an overlap f between two PGLs, Pn,α(f), is given
by EQ. 2 in the main text which is specified here in more details:
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Here δ(.) is the Kronecker delta, Zj is the true correlation of the jth gene, and Z1
mj , Z2

mj are the measured
correlations of the jth gene in the first and second realizations, respectively. Nr is a normalization factor.
h = (h1, . . . , hNg ) and l = (l1, . . . , hNg ) are binary vectors of size Ng whose nonzero elements correspond to
the genes included in the PGLs of the first and the second realizations, respectively. The integration variables
x1, x2 can be thought of as artificial ”thresholds” which separate the NTOP top correlations from the rest in
the two realizations. The density of x1, x2 has no effect in the large Ng limit, and is thus omitted here.
Replacing the delta functions in EQ. 1 by their integral representations one obtains:

Pn,α(f) =
1

Nr

∫ ∞

0

dx1dx2

∑

h,l∈{0,1}Ng

{∫ π

−π

dydzdw

(2π)3
e
iy

(∑Ng
j=1 hj−NT OP

)
+iz

(∑Ng
j=1 lj−NT OP

)
+iw

(∑Ng
j=1 hj lj−fNT OP

)

Ng∏

j=1

[
(1− hj)P (x1, Zj) + hj(1− P (x1, Zj))

][
(1− lj)P (x2, Zj) + lj(1− P (x2, Zj))

]}
, (2)

where P (x, Z) ≡ P (x,Z, σn) =
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n . (From now on, we shall omit the dependence on σn
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in P .) Simple manipulations yield

Pn,α(f) =
1

Nr

∫ ∞
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which results in
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where

B(x1, x2, y, z, w, Z) = P (x1, Z)P (x2, Z) + P (x1, Z)(1− P (x2, Z))eiz

+ (1− P (x1, Z))P (x2, Z)eiy + (1− P (x1, Z))(1− P (x2, Z))(eiy + eiz + eiw). (5)

For Ng À 1, one can approximate summation over the Zj by integrating dq(Z), which for symmetric q(Z)
gives
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Defining A as
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yields
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The above integral can be written as

Pn,α(f) =
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where

F (x1, x2, y, x, w; f) = −i(1− α)y − i(1− α)z − i(1− αf)w − 2
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The Saddle Point (SP) equations ∇F = 0 (where f is treated as a parameter) are
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where Px(x, Z) is the derivative of P (x,Z) with respect to x. For Nr the SP equations are those shown in
11 and an additional equation, w = 0, which is obtained from ∂F

∂f = 0. Substituting w = 0 in the last two SP
equations in 11 one obtains y, z = 0, and the first three SP equations become:

1− α = 2
∫ ∞

0

q(Z)dZP (x1, Z)

1− α = 2
∫ ∞

0

q(Z)dZP (x2, Z)

1− αf = 2
∫ ∞

0

q(Z)dZ
(
P (x1, Z) + P (x2, Z)− P (x1, Z)P (x2, Z)

)
. (12)

Note that the last equation can be written in a more meaningful way as

αf = 2
∫ ∞

0

q(Z)dZ (1− P (x1, Z)) (1− P (x2, Z)) . (13)

For very large Ng, the SP expansion gives

Pn,α(f) ∼
√

Ng detR

2π detH
e−Ng(F (f)−F (f∗n)), (14)

where R5×5 and H6×6 are the second derivative matrices of F at the saddle point with respect to (x1, x2, y, z, w)
and (x1, x2, y, z, w, f), respectively, det denotes matrix determinant, and f∗n is the value of f minimizing F .
Thus, f∗n is obtained by taking the value of f in the solution of the set of the SP EQS. 12 (which are easily
solved numerically). For large Ng, Pn,α(f) gets a sharp maximum at f = f∗n, and as Ng →∞, Pn,α(f) tends
to a delta function at f = f∗n. The meaning of this result is that for Ng →∞, and for a given finite number of
samples n, the values of both x and f are independent of the specific selection of the n samples. Expanding
EQ. 14 into a series around f∗n and keeping the leading term one obtains our final expression for Pn,α(f)

Pn,α(f) ∼ 1√
2πΣn

e
− (f−f∗n)2

2Σ2
n , (15)

where the variance Σ2
n is given by:

Σ2
n =

detH

NgdetR
. (16)

Simulations

Adjusting µg(i)− µp(i) to fit the true distribution

As described in the main text, the two Gaussians G(µg(i),σg(i)) and G(µp(i),σp(i)) are approximating the
probability distribution of the expression of gene i for n = Ns. However, we are interested in the true
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distributions, namely those corresponding to infinite Ns. Therefore, we have to rescale ∆µ(i) ≡ µg(i)− µp(i)
so that the distribution of the resulting correlations will fit q(Zt). The rescaling can be done, for example, by
keeping µg(i) (and σg(i), σp(i)), and changing µp(i) such that we get

∆µ(i) = Zmi

√
Vt

Vt + σ2
n

PLσg(i)
2 + (1− PL)σp(i)

2

PL(1− PL)(1− Z2
i )

, (17)

where PL is the relative fraction of good outcome patients in the data set.

Motivation for Creating the Simulation Model

The most straightforward way to perform simulations is the following: For each n, divide the data set into the
maximal number of nonoverlapping training sets of size n, K(n) ≡ bNs

n c. (Clearly, allowing overlaps between
the training sets will result in an overestimate of f .) For each training set generate a PGL, ending up with
K(n) lists. Then calculate the overlaps between the K(n)/2 independent pairs of lists. Repeat this procedure
T times to obtain T ·K(n)/2 overlap values whose mean and variance have to match the analytical prediction
of f∗n, and Σ2

n respectively. We have found that performing the simulations in this way gives strong data-
dependent fluctuations in the estimates of f∗n (for a fixed value of n), resulting in sometimes a nonmonotonic
behavior of f∗n in n. This was observed both for the biological and simulated data sets (data not shown). We
note that this instability in the estimate of f∗n cannot be attributed to the lack of computational resources
(i.e., too small number of repeats T ) and may occur even if one enumerates all possible

(
Ns

n n .. n

)
partitions for

a given data set.
To overcome this problem, we created our model, which in addition to eliminating the aforementioned

phenomenon, allows to produce simulation results for unlimited n as opposed to the aforementioned procedure,
which is limited to n = Ns/2.

Checking the Model Assumptions on the Real Data Sets

Our analytical calculation is based on four main assumptions:
Assumption 1: The distributions of the measured Z’s are Gaussian, centered for each gene around its Zt.
Assumption 2: The variance σ2

n is the same for all genes.
Assumption 3: The noise variables Z − Zt are independent (i.e. uncorrelated noise for different genes).
Assumption 4: q(Zt), the distribution of the true correlations, can be approximated by a Gaussian with

variance Vt. This assumption is easily generalized to represent q(Zt) as a mixture of Gaussians.

The successful application of our method to real data sets depends on the extent to which our assumptions
hold. We checked these assumptions on the six data sets analyzed in this work. The validity of Assumption
1 is demonstrated in Fig. 4, for five randomly peaked genes from each data set. We have checked it also for
many other genes, and the Z’s distributions of almost all genes were very well approximated by Gaussians.

Results for Assumption 2 appear in Fig. 5. The histograms were generated by selecting 1, 000 random pairs
of nonoverlapping training sets of size n = Ns/2. The correlation of each gene with survival was calculated
in each training set, and the variance of its transformed correlation, Z, within each pair was recorded. This
resulted in 1, 000 variances for each gene as obtained from the 1, 000 randomly generated pairs of training
sets. The average of these 1, 000 values was the estimate for the noise variance of each gene. The variance
histograms of the six data sets are tightly centered around the mean value σ̂2

n (red vertical lines) which is very
close to the analytical value 1/(n− 3) (green vertical lines), implying that the data sets can be well described
using Assumption 2. A relatively less centered histogram is obtained for lung cancer (1) which may explain
the relatively high deviations between analytical prediction and simulations observed in this data set.

Results for Assumption 3 appear in Table 2. In most data sets the fitted a, b values satisfy a ≈ 1 and
b ≈ −1, which implies that the noise of the genes is uncorrelated (see explanation in Materials and Methods).

Results for Assumption 4 are exhibited in Fig. 6. Since we used n = Ns, our sampling noise σ2
n is rather

small. The nice match between the fits and the real histograms of the measured qn therefore reflects the
validity of this assumption also for the true distribution q.
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