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1 Introduction

Every scientist knows that there is a gap (or a precipice) between a scientific observation
and a published scientific assertion: Interpretation of experimental observations by an in-
dividual scientist is influenced by prior conclusions published by her peers, an effect known
in economics world as “information cascade.” In this work we modeled and evaluated the
importance of sequences of related assertions in biological publications. We were especially
interested in estimating parameters of the real process, defining the most prominent patterns
of dependencies among scientific publications, and addressing the possibility of modifying
the peer-review process to increase the probability that a correct assertion will be established
after a few consecutive scientific publications.

We attempted mathematical modeling of the work of a biological scientific community;,
and focused on patterns of publications about molecular interactions, such as protein—protein
binding, because these interactions have both practical importance and relative clarity of def-
inition, and because we had available many data from our ongoing information-extraction
project.

We are describing here two stochastic models (a “naive” and a “reasoning chain” mod-
els) that can generate binary chains of variable length-resembling chains of statements about
molecular interactions that are published in research articles in numerous biological period-
icals.

In designing our “reasoning chain” model we strove to make it as general and practi-
cal (in the sense that all parameters can be estimated) as possible. The model also went
through a series of alternative specifications—we started with more parameter-rich models
and eliminated non-essential parameters that did not affect the model performance.

2 Outline of the modeling approach and notations

For compactness of presentation we will often denote all parameters of the model with symbol
©—for example, for the reasoning chain model © = {«,¢,7v, 7,0, p,v, i, @, 5, n}—individual
notations are be explained in the following section.

Our data for the two models is represented by series of chronologically arranged state-
ments about molecular interactions. The i*" sequence of statements about the same interac-
tion is denoted with ¢; (c stands for chain). The number of missing (unpublished) statements
that would be normally included into the j chain in the data, is denoted with y;. The com-
plete data therefore has the observed and missing components: C = {ci,¢s,..., ¢y} and



Y = {Ystart; {U1, Y2, - - -, Ym } }, rESpPectively.

We assume that the probability of data (sequences of chronologically ordered published
statements about molecular interactions) given model and model parameter values, M and
O, respectively, has two independent components, chain length and chain pattern.

P(chains|M,0) = H P(chain length,|M, ©)P(chain pattern;|chain length,, M, ©).
all actions
(1)

Equation 1 tells us that each chain of reasoning is a result of two random processes: one
of them determines the length of the chain, whereas the other specifies the arrangement of
zeros and ones within the chain given that length. The second random process (see figure
2 A) is responsible for generating a specific sequence of zeros and ones within a chain of a
given length. The model that we propose here takes into account unequal probabilities of
encountering positive and negative “truths” about molecular interactions, the possibility of
having an exception to a rule, and the possibility of false-positive and false-negative errors
in wet-laboratory experiments.

(In the following text for the sake of brevity we will omit the symbol for model, M, in
the conditional probability equations, but, of course all parameters, © have meaning only in
a context of a model.)

The real chains of reasoning extracted by our system look as shown in figure 6.

3 Data used in the analysis

We have to admit that we do not know the extent to which automatically extracted informa-
tion from the literature accurately reflects biological knowledge. However, the results from
our analysis actually provide the first look at this problem. Our “chain-reasoning” model
was developed in part as an attempt to measure the accuracy to which published results
reflect biological knowledge.

Before analyzing the whole database, we studied a smaller manually cleaned dataset (a
few thousand interactions)—the smaller set behaved exactly in the same way (with a large
variances as the whole database. It is important to note that the model was specifically
designed to describe data that were automatically extracted from literature and to “clean”
the data—the whole point of doing a probabilistic modeling is to factor in a possibility of an
error. This allows our analysis seems to be a valid first-order approach that gives answers
to previously unanswerable questions.



We did our analysis in two ways. In one version of the analysis we used only one (most
frequent) statement per article—the hypothetical conflict among statements within the same
article would not occur in this analysis. In the other version of analysis we used all statements
available in the database. The results of the two analyses are qualitatively indistinguishable.

(It is a good place to clarify the meaning of F-parameter: it is a mean proportion of articles
that repeat information about known publications (without an additional experiment) at
least once. If we would take into account multiple statements in the same article, 5 would
be larger than our estimated f3.)

4 Assumptions behind the “reasoning chain” model

The “reasoning chain” model is built on eight simple and intuitive assumptions.

First, we assume that for every pair of substances, there is a general truth or rule: These
substances either usually do or usually do not interact. The odds of encountering a negative
rule (“A usually does not interact with B”) are not necessarily the same as the odds of en-
countering a positive rule (“C usually does interact with D”); we denote the corresponding
probabilities by 1 — p and p, respectively.

Second, each general rule may have an exception, with probability ¢ (e.g., proteins A
and B interact in most cases, but do not interact when in tissue X).

Third, we allow experiments to produce erroneous results: They produce false-negative
results with probability v and false-positive results with probability pu.

Fourth, we assume an asymmetry in terms of ease of publication between negative and
positive experimental results. Many experimentalists believe that it is more difficult to pub-
lish a negative result (“we were unable to demonstrate that A and B interact”) than to
publish a positive result (“we demonstrated that A and B interact”), so the model allows
negative results to be discarded, without publication, with probability 1 — 7.

Fifth, we assume that a published statement can be based on original experiments (with
probability 1 — ;) or can be a re-statement of an earlier published statement (with prob-
ability ;). We tested two formulations of the model: the simpler version assumes that f3;
is constant, while, in the more complicated version of the model, (3; is increasing as the
chain grows longer: 3; = 1 —i~%, ¥ > 0. The more complicated formulation asserts that
the chances that a scientist would experimentally re-verify an old statement drop with the
growth of the available evidence. We assume that the first statement in every chain is always
supported by an experiment.

Sixth, we allow an experimenters interpretation of her own data (and hence of her pub-
lished result) to differ from the “unbiased” interpretation of the same data that an expert
would have in the absence of prior publications. This model feature reflects our observa-



tion that, when reading about published experiments similar to their own, scientists build
in their minds an equivalent of statistical prior distributions of experimental outcomes that
they are using for interpreting their own experimental data. We assume that each pub-
lished statement has a weight that is different for statements in reasoning chains where they
are in the majority («), are the minority (¢), and are of equal number (7). For example,
for the chain of reasoning 1, 0, 0, 1, 1, 1, every published positive statement would have
weight « (because it is in the majority), whereas each negative statement would have weight
t. For the hypothetical chain 0, 1, 0, 1, the weight of each the statement would be equal
(7), because there are an equal number of zeros and ones. The weight of each published
statement is non-negative and reflects the importance of published statements in influencing
both a researchers choice of experiments (and thus ultimately observed results) and her inter-
pretation of the results. We set the subjective weight of the researchers own experiment to 1.1

Seventh, we assume that relationship among statements related to the same molecular
interaction is adequately represented with a linear structure (a chain), see figure 7. (A more
complicated model that allows directed acyclic graph dependencies among published state-
ments can be defined relatively easily but it would be very expensive computationally.)

Eighth, we assume that different chains are statistically independent.

5 Notations—in detail
The variables and parameters of the two models that we describe here are as follows.

T — is an unknown true rule about interaction between a pair of molecules, T' = 1 if the
molecules usually interact under appropriate conditions and 7" = 0 otherwise. (For
example “BCL-2 binds BAX” is a positive statement, while “BCL-2 does not bind
BAX?” is a corresponding negative statement.)

T! — an instance of true rule—may differ from the rule (an exception).

g; — a hidden (private for an individual experimentalist) result about a molecular inter-
action. ¢; = 1 if the hidden experiment suggests that the molecules do interact and
g; = 0 otherwise.

O, — an indicator variable, that is equal to 0 if a hidden experiment with negative result
(e; = 0) is discarded (is missing), and is equal to 1 if the hidden negative value (¢; = 0)
participates in an information cascade. According to our model, all positive hidden
statements (; = 1) are used in cascades, that is P(O; = 1|e; = 1) = 1.

"'We are not at all suggesting that scientists publish something that they don’t see in the experiments—on
the contrary, we suggest that each reasoning chain forms a micro-paradigm that changes scientists’ choice
of experiments to perform and the interpretation of their data. In the middle of a long reasoning chain
scientists honestly see 1 where they would see 0 in the absence of prior publications.



H; — an indicator variable which is equal to 1 if researcher performs a (hidden) experiment
before repeating a statement in publication, and equal to 0 if the researcher repeats
the statement without additional experiments.

E; — a published statement about a molecular interaction. FE; = 1, if the statement is
positive, and F; = 0, if the statement is negative.

p — P(T = 1), the probability of sampling a positive rule about molecular interactions.
v — probability of getting a single false negative result, P(e; = 0|7} = 1) in an experiment.
w — probability of getting a single false positive result, P(e; = 1|7} = 0) in an experiment.
1) — probability of obtaining a false experimental result, P(e; # T).

¢ — probability of observing an exception to a rule, P(T # T}).

f —instantaneous rate of discovery of new interactions (“innovation”).

A — instantaneous rate of repeating known statements (“amplification”).

v — subjective attractiveness of a popular (high copy number) statement.

17 — probability that a negative experimental observation is published. On average 1 —n
of all negative results will not be published and would constitute missing data.

(3 — probability of publishing a statement without doing an additional (hidden) experi-
ment.

a — a subjective weight of a single external statement representing the mAjority opinion.
L — a subjective weight of a single external statement representing the mInority opinion.
7 — subjective weight of a single external statement in a Tie situation.

Iy;,—1 — the total number of negative statements in a chain of 7 — 1 statements about the
same molecular interaction, {Fy, Fa, ..., E;_1}.

I ;-1 — the total number of positive statements in a chain of i — 1 statements about the
same molecular interaction, {Fy, F, ..., E;_1}.

Ystart —— number of missing cascades that would start with zero.

y; — number of missing hidden negative experiments (¢; = 0) in the ith cascade in the
data.



6 Chain length distribution

6.1 Chain length: “Naive” model

In our earlier paper [1] we introduced a “naive” model of publication process.

The naive model, assumes that scientists produce new assertions at an approximately
steady rate; once published the first time, each new assertion has a chance of being repeated
in the scientific literature (see figure 8). We refer to publication of a new assertion as “in-
novation,” and to re-publication of a known assertion as “amplification”; we postulate that
both processes are Poisson processes, with rates different for innovation and amplification,

and different for amplification of false and true assertions.

Implicitly, we hope that the true assertions are both generated and amplified with higher
mean rates than the false assertions. More specifically, we assume that the probability of
generating [ new statements over time interval ¢ given innovation rate € is given by

efet l
P(16,t) = #’” (2)

and the probabilities of amplifying a true and a false assertions during time interval ¢, given
amplification rates Ay, and Agqe are as follows.

e~ Aruel (\ ruel F
P(kl)\trumt) = ]i' : ) ) (3)
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e (Aasset)" (1)
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P(np\falseat) =

Combining innovation and amplification steps into a single equation, we can find dis-
tributions of the number of amplified true and false setatements. Specifically, under the
naive model, the distribution of the number of times that an assertion is mentioned in the
literature has the shape of a smoothed step function (equation 5).

k—1 ;

_ 1 e N At

P(k|Ag, t) =3 [1—6 ZT . (5)
7=0

where x can take values false or true. The chain length distribution is mixture of distributions

of false and true statements:

P(m‘)\truea )\falseu t) = wP(mp\falsey t) + (1 - ¢)P(m|)\trueu t) (6)

where k is the length of a chain, A is an amplification rate per time unit (subscripts true
and false refer to true and false statements, that are assumed to have different amplification
rates), and ¢ is the time since the first statement in the series was published. Variable 1)
denotes the expected proportion of false statements in the published articles, where
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+ + +

which leads us to

Y = p(1 =)+ pp(l— p)
+ (I=p)p(l —v)+ (1 —p)(1—9¢)u (8)

The distribution of the combined chain length for true and false statements under the
naive model is as shown in Figure 9 (green line and green dots for theoretical and simulated
distributions, respectively).

The real chain length distribution turned out to be as shown in Figure 11 in this doc-
ument (approximately Zipf-Estoup or discrete Pareto distribution), which is very different
from the distribution expected under the “naive” model.

In the new reasoning chain model, the innovation process is not constant in time, but
rather depends on the total frequency of assertions that are given more than one mention
in literature; the amplification process depends on the number of published mentions of a
assertion, and on a vanity parameter that reflects the subjective (to a researcher) attractive-
ness of a popular statement, «v. This part of the cascade model resembles the model of a Yule
process ([2] , p. 450). This new model for chain length distribution produces exponential-like
distributions of chain length if  is small, and is similar to a Zipf-Estoup (discrete Pareto)
distribution if «y is greater than 1 (see Figure 11).

The newer model (“chain of collective reasoning”) for chain length distribution fits the
real data much better (see the next section).

6.2 Chain length: “Reasoning chain” model

The second model is slightly more involved.

We assume a Markovian version of the previous model where the mean innovation rate
(rate at which original statements are generated) can vary in time.

Postulates for our Markovian/Poisson process (which resembles Yule process, see [2], vol.
1, p. 450) are as follows. (i) Direct transitions from state i are possible only to state i + 1.
(i) If at epoch ¢ system is in state k, the probability of jump to state k + 1 within short
interval between ¢ and ¢ + h equals Ahk*py(t) + o(h), while probability of more than one
jump is o(h). (iii) Innovation process is defined as increase of probability at state 1 within
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short interval between ¢ and ¢ + h proportional to (1 — p1(¢))f#h. This increase in the state
1 is balances by decrease in all the remaining states proportional to —py(t)6h.

To make the following derivation more compact we introduce the following notation.
def
pe(t)=P(klt, A,0,7). (9)
These assumptions are sufficient to derive the following system of differential equations

WO — 91— py(t)] — Apa(t),
(10)

W0 — \(k — 1)"pp_1(t) — [0 + NE] pi(t), for k > 1

As is clear from analysis of system 10, processes of innovation and duplication are com-
peting with each other when the chain length distribution is considered: each time a novel
statement is published, the proportion of chains with length 1 (p;) increases and therefore
proportion of longer chains, py(k > 1), decreases, because the sum over all py, is always equal
to one. On the other hand, amplification process increases the proportion of chains with
length more than one (because it extends chains of length 1 to longer chains).

System 10 turned out to have a nice closed-form solution:

P (RSOl
[T (7 A+6)

We need time parameter in the modeling because in our database we store absolute time
points (publication date of individual journals) for each statement extracted from literature—
therefore we can work with real time (in weeks or days) and estimate for each journal the
absolute rate of publishing totally new statements (6) and the rate of repetition of old state-
ments ()\ = )\true + )‘false)-

pi(t) [0+ Ne= A0 (11)

Unless extremely small time intervals are considered (which is not the case in our model),
it is most natural to use a continuous-time model—it would be more difficult to justify a
discrete-time Markov model in this case.

The 6 parameter is important in comparing multiple journals that publish novel and
repeated statements at different rates. We plan to estimate such parameters for numerous
journals (we have 81 journals in the current GeneWays database)—this information is in-
valuable for automated assignment of posterior probability of being true for all statements
in the database (which is the ultimate purpose of modeling that we do).

Incidentally, we used the system of equations 10 earlier for description of a growing
proteome, see [3].



7 Chain content

7.1 Chain content: “Naive” model

Under the “naive” model all statements within the chain are independently distributed, so
that all possible patterns with the same number of zeros and ones are equally likely to occur
in the published articles.

7.2 Chain content: “Reasoning chain” model

In the “Reasoning chain” model a probabilistic dependence among statements within the
same chain is explicitly built into the model (see figure 1).

T is the general rule or “truth”—a statement about molecular interactions that is correct
in the majority of real-life cases.

P(T=1|0) = p, (12)
P(T=00) = 1-p. (13)

T’ is a truth instance that may be different from the general rule or “truth”—for example,
“BAD binds BAX” in the majority of animals, but an experimenter happened to sample an
animal with a mutant form of BAD that fails to bind BAX.

P(T}=T|0) = o, (14)
P(T'=T|©) = 1-¢. (15)

g; is the outcome of the i experiment about molecular interaction. With probabilities
v and p results may be false-positive or false-negative with respect to the instance of truth,
T

P(e; =0T =1,0)
P(e; = 1T =1,0)
Pe; =11/ =0,0) = p,
P(g;=0|T/ =0,0) = 1—p.

= 1—v,

—_
oo
~— — ~— ~—

So long as the instance of truth, 77, can be different from the general truth, 7', even
a perfectly performed experiment may result in a conclusion, ¢;, that is different from the
general truth 7T'.



Ple; =0T =1,0) = P(e; =0|T =0,0)P(T =0|T =1,0) + (20)
P(e; =0|T) =1,0)P(T} = 1|T = 1,0) (21)

= I=—pe+rvl—p)=1-A7A, (22)

Ple;=1T=1,0) = (1-v)(1—9)+pp=A7As, (23)
P, =1T=0,0) = (1—-v)p+ul—yp)=A, (24)
P(e;=0[T=0,0) = (1—m)(l—¢)+vp=1-A. (25)

For the chain links following the first link, each new statement (link) can be either
supported by a new experiment (H; = 1) or it can be a repetition of an earlier published
statement in the absence of new experimental support (H; = 0).

7.3 Statements unsupported by an experiment are allowed to par-
ticipate in a chain

We allow some of the statements in the reasoning chain to be unsupported by experimental
data—this is because for most humans frequently repeated statements (even without ad-
ditional evidence) often get etched in the memory as facts. For example, if one hears X
times that mister Y is a bad person (even without evidence) one might start to believe the
statement at some point. That is why we explicitly account for repeated statements about
interactions, as opposed to statements describing results newly presented. These repeated
statements are typically not based on general knowledge, but instead are references to spe-
cific papers and experiments, as one might find in the introduction and background section
of a paper.

P(H, =10) = 1, (26)
P(Hi» =10) = p, (27)
P(Hi»1 =0[0) = 1-0. (28)

In our mathematical treatment of the sequence of statement at each point of the chain,
the value of statement FE; is completely determined by the counts of conflicting statements
(I1;-1 and Iy; 1) preceding the " link in the chain:

P(E;|Ey, ..., E;i1,0) = P(E;|I1;-1,10-1,0). (29)

7.4 Interpretation of data in the chain extension

The major difference between the first and all the next links in a chain comes at the point
of data interpretation. If the new link is supported by a new experiment, interpretation of
this new experiment would be done in the context of the previously published data, that can
bias the resulting conclusion. That is, the published statement, F; can be different from the
“unbiased” experimental result, ;.

10



xali 1+ (1 —x)edy ;1 + 6(x,
P(E;=xle; =y, Hy=1,11;-1 > ly-1,0) = - ;11< 1+L)fo 97111 ( y)7 (30)

where

1 ite =y,
0(z,y) = { 0 otherwise. (31)

wuly i+ (1 —x)aly; 1 +6(x,y)
thijy +aly;1+1

PE, =xle;=y, Hi=1,11,1 <I;-1,0) = ; (32)

1 i— 1— I i— 0 )
P(E; = ale; =y, Hi = 1,11,y = Ip;—1,0) = 471 : (T(Z —xi;i’l e y)' (33)

Clearly, the larger are the values of the momentum parameters o and ¢, the smaller is
correlation between the result of the new experiment (g;) and the resulting value of E;.

In the case the new statement is a mere repetition of an older statement, there is no
hidden experiment. If all statements in the chain agree, the repeated statements have no
choice but agree with the beginning of the chain. In the case when chain contains both zeros
and ones, the value of the repeated statement depends only on the counts of the conflicting
statements at the beginning of the chain and values of momentum parameters:

061.1,1'71

PE;,=1|H;,=0,11; 1> 1y;,-1,0) = ) 34
( | bt 0i-1,©) ady i1+ tly i (34)
P(E; = 1|H; = 0,11, < Iy;1,0) = it (35)
i ¢ — Yy dl4-1 0,2—1, - Lll,i—l I Oé]o,z'—l’
1
P(EZ = 1|Hz = O, Il,i—l = ]071'_1, @) = 5 (36)

Finally, if the result of experiment is negative a researcher may choose to discard it with-
out publishing with probability 1 — 7.

P(O;=1l¢;,=0,0) = n, (37)

The possibility of discarding the negative results stems from observation that only 4%
of published statements are negativeand it is very likely that the negative results occur in
experiments much more frequently. Therefore it is very likely that a significant portion of

11



negative results is simply discarded. We needed to reflect this possibility in our model to
test whether this feature would change our parameter estimates. This missing data feature
appears to have very little influence on other parameter estimates (and is very expensive
computationally), but we had no way to know this without testing.

Many negative results may not be published because the scientist feels there is no reason
to publish a negative result—there, of course, can be many other reasons why a negative
result is not published, including journal policy, a perceived low societal impact of negative
results, and competing (for time required for producing an article) projects within the same
laboratory. Importantly, the underlying reasons for “holding back” of negative results do
not affect our ability to measure the actual rate of published negative results or to make
estimates from our model—the only difference for the model this would make is the higher
empirical estimate of the p parameter (the expected proportion of true positive statements).

8 Optimizing the probability of reaching the correct
answer at the end of a reasoning chain

Our goal in this section to find a set of parameter values, é, that maximizes the probability
of reaching the correct answer at the i step of a chain:

A

O = arg m@ax[P(Ei =T|0)]. (39)

P{E,....,E}O) = P{E,...,E}T=0,0)P(T =0,0)
+ PH{E,,...,E}|T =1,0)P(T =1,0). (40)

P(E; = T|©) = P(E; = 0|T = 0,0)P(T = 0|0) + P(E; = 1|T = 1,0)P(T = 1]0). (41)

i—1

P(E;=0|T=0,0) = Y P(E;=0,.1=2T=00)P(,;=z|T=00), (42)
=0
i—1

P(E;=1T=1,0) = Y PE;=1;1=2T=10)P(l;;,,=xzT=1,0), (43)

=0
P([l,i = I’T =Y, @) = P(EZ = 1|[1,2'71 =T — 1,T =Y, (_))P([l,ifl =T — HT =1, @) +
P(EZ = 0|Il,i—1 = ZL‘,T =Y, @)P(Il,i—l = I|T =Y, @) (44)
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PE, =xT=vy,11;-1,1p;-1,0) =

P(Ei = 95\51' =0,T =y, 1—1,1'71, fo,zel, @)

x Ple; =0T =y,0) +

(46)

PE, =z, =1,T=y,11;-1,10,-1,0)

X P(e; =1|T =y,0).

PE,=1T=x11;-1,10,-1,0) =

P(E,L = HHZ = 1,T =X, Ilyifl,lo’ifl,@)P(HZ’ = 1|@>+
P(Ez = ]-|Hz = O,T =, ]1,2‘_1, ]0,2‘_1, @)P(HZ = 0|@>

( (1 B 5) ol ;—1+M +ﬁ oy 1

ol i1+l i—1+1 aly;—1+ulp ;-1

el i1+ el i1
<1 ﬁ) el i—1+adp i—1+1 +BLI1,2‘71+6¥10,171

(1 - 8) G+ 6/2

T(i—1)+1
P(E;is1 = 1T, Ipi-1,11,-1,0) =

ali;—1+A2 aly ;1
(1 6)0111,1'71-&%10,1'71-&-1 +ﬁoéf1,i71+bfo,i71

ey i—1+A2 el i1
<1 ﬁ) ey i 14adg;—1+1 +BL11,1‘71+0JO,7;—1

(1 i 6>T(Z 1)/24+A2 _’_/6/2

T(i—1)+1

P(E, = 1|T =0,0) = Ay,
P(El - HT = 1,@) - AQ,

where

Ay = (1 =v)p+pu(l— ),
Ay = (1 —=v)(1—¢)+ pp.

(47)

T =0,I1,-1 > In;1,
T =0, I < o,
T =0,I1,-1 = In;,
T =1,11,;-1 > In;,
T =111 <o,

|T = 17 Il,i—l - IO,i—lv
(48)

(49)
(50)

The existence of a formal probabilistic model allows us to compute the probability of

reaching the correct answer at an arbitrary step of publication series. Therefore, using a nu-
merical optimization technique, we can identify the values of subjective weight parameters
that optimize the probability of reaching the correct answer under a wide choice of values of
other parameters; our aim here is to identify the stochastic strategy that is most successful
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from the point of view of generating valid knowledge. It appears that, under all randomly
selected reasonably constrained (0 < p < 1,0 < p < 0.5 and 0 < v < 0.5) values of other
parameters, it is advantageous to ignore the minority statements (the optimal value of ¢ is
zero). Furthermore, the longer the series, the lower the optimum value of « (figure 12); the
optimum value of « is always smaller than 1.

9 Gibbs sampling within Metropolis-Hastings update

We did analysis in the Bayesian famework; we estimated the posterior distribution of pa-
rameter values given data— from analysis of the whole dataset. Our computation is nothing
but stochastic integration according to the following equation (which is a mere re-statement
of the Bayes theorem).

P(Data|©)P(O)
Jo P(Data|®©)P(©)

P(©|Data) = (53)

The main (oversimplified) idea of statistical integration is as follows. Imagine that you
are interested in the volume of a complex shape encompassed by a multidimensional surface.
All you need to estimate the volume is (1) be able to tell whether a given point is inside or
outside the shape, and (2) be able to randomly pick points within a hypercube that contains
your shape. Then you can compute the volume of hypercube (an easy task since you know
the length of each edge of the hypercube), and the proportion of randomly distributed points
that fall inside and outside your shape. The precision of the estimate will grow with the
number of random points generated.

In most real-life applications a Markov chain Monte Carlo (MCMC) chain is updated one
component at the time, see [4, 5, 6, 7, 8] for more detail. In our case also missing data is
involved—which comes in two flavors: the number of unpublished one-link negative chains,
Ystart, and unpublished negative links {y;};—1 ,, within the corresponding observed chains,
{¢i}iz1,m- The missing data is imputed during the computation—the computation involved
in data imputation is essentially the same as in the sampling parameter values from condi-
tion distributions.

The brief representation of our update schedule is as follows. Notation A|B,C, D means
“update value A by sampling from conditional distribution P(A|B,C, D).”
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10 Equations for description of missing data

The likelihood (probability of data, both observed and missing, given model and model
parameters) in for our models has the following form. (We use the standard notation for

likelihood L(@|Data)d§fP(Data|@), e.g. see [9].)

P({Clu---;Cm}yystarta{yla--'7ym}|@) - L(@’{Clv-"7cm}7ystart7{y17--~aym}) (55>

= Lstart(@‘{cb s 7Cm}7 ystart) H L<®|Cza yz>

=1
_ m + yStart m Ystart
Lstart((—)'{cla s 7Cm}a ystart) - y X (1 - X) ) (56)
start
where
X = P(Ostart = 1)

= P(T =1)P(0; =1|T = 1)+ P(T = 0)P(0; = 1|T = 0) (57)

= pwi+ (1 - p)WQ,
and

w = P(O; =1|T =1,0)

= P, =1T =1,0)P(0; = 1|¢; = 1,0)

4 Ple; =0T =1,0)P(0; = 1|z; = 0,0) (58)
(=) =) +pe+[(1—pe+vd—ep)ln
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wy, = P(O;=1]T =0,0)
= P(5; = 1T =0,0)P(0; = 1|¢; = 1,0) (59)
+ P(g; =0T =0,0)P(0; =1|g; = 0,0)
= (=v)e+pul—¢)+[(1-p)1—¢)+ven.

1Ol =B Budon) = PO =)™ T )ut (1 - ) PelT = 1.0)
P(T = 0) (" ; yi>w;“(1 — W) P(¢;|T = 0,0)

+
= (n’ ; yi) [pwl (1 —w)Y"P(¢;|T =1,0)
£ (1= )l (L — wo)“ P(e|T = 0,0)]. (60)
Finally,
P(Ci = {El, . ,En}|@,T = l‘) = H P(Ej|]17j_1, IO,j—hT =, @) (61)
7j=1

P(yil©,c; = {Er, ..., Ey})

B (nz‘;yi)[pw{”(1_w1)wp(c,-|@,T:1)+(1—p)w;i(1—WQ)yiP(ci|@,T:0)] (62)
o pP(ci|O,T=1)/w1+(1—p)P(c;|©,T=0) /w2

= NB(n; + Lwi)& + NB(n; + 1,ws) (1 — &),

where “NB(z,y)” stands for a “negative binomial distribution with parameters x and y”,
and

o p/wi 63
T fn + (1~ p) ] EEIBTZ (09)

m + yst art

P(ystart|@7 {yz}: {Cla <o 7Cm}> = ( )Xm+1(1 - X)ysmrt = NB(m + 17 X) (64)

ystart

Our implementation of the Metropolis-coupled Markov chain Monte Carlo closely followed
[10].

11 “Multiple universes”: models with multiple solu-
tions

The goal of a typical MCMC analysis is to estimate the posterior distribution P(©|Data)—
the resulting distribution estimate provides an intuitive measure of confidence in parameter
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estimates. The point estimates of the parameters can be obtained either as posterior means
or maximum posterior probability values—we used the later option because our posterior
distribution turned out to be bimodal. It is hard to represent the full multidimensional
posterior distribution for all parameters in our model-—we show pairwise joint distribution
of parameters p, u and v in figure 13A (it clearly shows the bimodal nature of the estimated
distribution), and correlation matrix for all parameters at figure 13B.

We divided the whole space of the permissible parameter values into “bad” and “good”
neighborhoods (error rate is very high and in the bad neighborhood and low in the good
neighborhood) and then computed posterior probability that the real parameter values be-
long to each neighborhood (we call these neighborhoods a “pessimists’ universe” and an
“optimists’ universe,” respectively, see figure 5).

We will try to illustrate the reason for existence of multiple model solutions (modes of
posterior distribution) through a thought experiment. Imagine that you are standing on
the Fifth Avenue (next to the Central Park and corner of 68" East Street in Manhattan)
facing East river. You are new to Manhattan and you would like to find which way is the
Guggenheim museum. To be cautious, you are asking four passers by about the direction.
Three are showing to your left and one to your right. You can interpret these data in two
ways: you can label all statements “right” as “true” and statement “left” as “false,” or other
way around. These two solutions are obviously distinct because they lead to very different
actions on your part (either you are walking to the south or to the north).

Similarly, optimists’ and pessimists’ universes in our analysis are drastically different—in
one universe the majority of published statements are correct (and the model can be used
to identify these correct statements), while in the other universe the majority of published
statements are incorrect—the ramifications for practical usage of the molecular interaction
data are drastically different. (The value of T" for each individual chain of reasoning defines
whether each published statement in the chain is true (if value of T' coincides with the pub-
lished interaction value) or false (if the published interaction value differs from 7).

12 An attempt to classify possible data types with re-
gard to results of data reordering

Below we will consider three types of data randomization. First, we perform what we call
a global randomization—a data reshuffling that keeps the chain length distribution intact,
but completely changes content of individual chains, preserving only the mean frequencies
of zeros and ones in the real data. Second, chain reversal—where the natural chronological
order of statements within the same chain is substituted with a reversed chronological order.
Third, chain scrambling—where each chain retains its original length and statements that
are observed in the real data set, but the chronological order of statements is substituted
with a random order.
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In the main text of the paper we described a few possible types of chains (generated with
different combinations of values of parameters a and .

Chains with completely independent statements (« = ¢+ = 0—trust nobody pattern) would
be resistant to all three types of randomization (in the sense of robustness of the results of
probabilistic analysis).

Super-conformism chains (large o and ¢ = 0) would tend to be one-digit chains, such
as 111111111, and therefore resistant to chain-reversal and chain scrambling. However, if
both negative and positive statements are observed in the data, the super-conformism chains
would not be resistant to the global randomization (we should expect difference in estimated
parameters between the original and globally randomized data).

Anti-conformism chains (large ¢ and zero or small o) would tend to be resistant to chain-
reversal (because the characteristic alternating pattern is preserved by the order reversal),
but not to global randomization and chain scrambling.

Other types of chains should fall somewhere in between these main types: for example,
the weak skepticism pattern (both v and ¢ are significantly positive, but ¢ is smaller than «)
should combine properties of the super-conformism and trust nobody chains.

13 Data-shuffling experiments

To make the comparison with the rearranged-data experiments easier, we first provide re-
sults for the correctly arranged (chronological-order) physical-interaction chains (see figure
15). (For the purpose of an easier presentation we show only physical interactions here).

13.1 Global randomization

To generate a “globally” randomized dataset, we first counted the number of positive and
negative statements in the real chains and computed a probability for a random statement to
be positive (p; = 0.9652). Then, we populated every chain with statements by randomly and
independently sampling statements based on the fixed probability of generating the positive
statement (p1); we did not alter the length of the chains (as in the real data). The results
were significantly different from the analysis of the real data (see the figure 16)—momentum
parameters ¢ and « are much smaller and no longer significantly differ from 0, and distribu-
tions for 4 and v are not any longer bimodal (only one “universe” rather than two).

Using this random model, we obtained 2,597 patterned (two-digit) cascades—twice as

many as in the real data. Therefore, the real data are highly structured and dependence be-
tween statements within the same chain is highly significant. Also, the two-universe solution

18



for our data does not appear to be a phenomenon that is common for all possible data sets.

13.2 Local randomization: content randomization or reversal within
each chain

If we reverse each chain (so that the statements go from the future to the past), we obtain
figure 17.

The results are not very different (with respect to the original, unreversed data). This is
a rather intuitive result if we recall that we have primarily single-state chains (either only
ones or only zeros)—in the whole collection of distinct chain patterns (each pattern can
occur in data multiple times) we have 323,489 uniform (single-digit) and 1,136 non-uniform
(two-digit) unique chain patterns. Time reversal does not affect the uniform patterns, and
information for most of the parameters is derived from all patterns combined.

Exactly the same logic applies to the shuffled-data experiments shown in the following
figure 18).

14 Looking only at variable chains (chains with both
zeros and ones)

To illustrate the fact that the order of statement within chains does matter, we have ana-
lyzed separately only chains that have both zeros and ones. While these experiments serve
as a good control, the full model including the uniform chains is absolutely necessary to
represent the data in the published literature. In general, selecting a non-random subset of
data can lead to parameter estimates that are severely biased,? but it is very useful to see
the properties of the reshuffled data in order to show that our model does not produce the
same results regardless of what the data looks like. Specifically, the analysis shows that the
order of reporting results in the literature (i.e. the historical patterns) can indeed make a
substantial difference in the parameter estimates obtained.

Now let us consider analysis of only non-uniform (zero-one) chains. Essentially, we are
taking only the “controversial” data from the literature and using the model to estimate pa-
rameters on this interesting subset. Accordingly, it is expected to see different results for the
non-uniform subset of data than the complete dataset. In fact, the resulting estimates look
very different: the distribution for p is essentially uniform. Both momentum parameters, «
and ¢, have much smaller means, although the a-parameter is still significantly greater than

2The closest analogy that we are aware of is in the inference of phylogenetic trees: if one has an alignment
of homologous nucleotide sequences, in a typical reliable alignment, most of the homologous nucleotide sites
in different sequences contain the same nucleotide and appear uninformative. Yet removing the constant
sites can lead to inference of incorrect tree with the maximum likelihood method or distance-matrix methods,
and to vast overestimation of the evolutionary distances. Very similar logic is applicable to our modeling.
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0. Furthermore, the two-universe phenomenon (two modes of the posterior distribution in
the analysis of the complete dataset) is no longer observed: the false-negative error estimate
is reliably low, and the false-positive rate is reliably high.

The order within chains does matter when we analyze the non-uniform subset of data.
We show two cases of extreme shuffling within chains. The following analysis was performed
on 0/1 chains where all zeros were moved to the beginning of each chain, see Figure 20. Plots
for the intact variable chains and the rearranged ones look different. We can try yet another
rearrangement, putting ones at the beginning of each variable chain. This rearrangement
changes the estimates yet again, see Figure 21.

The mono-digital chains (such as 1111...111) are not uninformative because they reflect
the propensity of scientists to agree with the published statements; with removal of such
chains the data becomes severely biased towards low values of momentum parameters.

15 Looking only at constant chains (chains with only
zeros or only ones)

An additional logical experiment is to analyze only mono-digit (constant) chains separately
from the variable ones.

This experiment produces also quite curious parameter estimates, see Figure 22. The two-
universe effect vanished, the joint posterior distribution has only one mode. The marginal
posterior distribution for the false-negative error (v) has a mode near zero, but the corre-
sponding 99% credible interval extends to the whole range between zero and one. Posterior
distribution for the false-positive error parameter (i) has mode near 1. Parameters o and
¢ have rather flat marginal posterior distributions (see Figure 22) with a constraint: the
value of « is always (much) bigger than value of ¢, see Figure 23,—this relationship between
the values of @ and ¢ (that the momentum of majority-statement is much stronger than the
minority-statement momentum) is the logical explanation of the observed data within our
model.
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