
Our goal was to determine whether binding-site motifs and modules could be used to predict tissue-
specific differential expression and to identify motifs and modules that explain differential expression. Our
hypothesis is that binding sites for activating (inhibiting) transcription factors would be significantly over-
represented in promoters of transcripts with tissue-specific elevated (inhibited) expression. We construct
predictive logic from motifs that best distinguish promoters of transcripts with elevated expression from
promoters of transcripts with inhibited expression.

This document describes results that were omitted from the paper, and it describes methods in more
detail than would fit in the body of the paper. Results given here include samples from the catalog of
experimentally validated motifs and modules,in silico-identified motifs and modules, and predictive models
based on motifs and modules (referred in the paper as predictors). All are used to predict tissue-specific
differential expression.

1 Results

Only a limited selection of results could be presented in thebody of the paper and in this supplementary
information document. The remaining results are availabledirectly from the authors.

1.1 Tissue differential promoter sets and transcript lists corresponding to predictor calls

Proximal promoters, in FASTA format, for each of the 56 tissues are available directly from the authors.
Positive promoter sets (foreground) are denoted with an “fg” suffix, and negative promoter sets (background)
are denoted with a “bg” suffix. Human sets have Hs before the suffix, and mouse sets have Mm before the
suffix. For example, the positive promoter set for human trachea is called Trachea.Mm.fg, and the negative
set for mouse ovary is called Ovary.Mm.bg. The promoter setsare compressed and will unpack to a directory
called Promoters.

For each tissue, we provide (by request) the transcript lists predicted as true positive (corresponding
promoters were in the positive set and were predicted to be positive by the predictive model for that tissue),
false positive (negative set but predicted positive), truenegative (negative set predicted negative), and false
negative (positive set predicted negative).

1.2 Error Table

Table 2 is analogous to Table 1 and describes results for mouse tissues. It gives the number of terms se-
lected by multivariate adaptive regression splines (MARS)for building the predictor to minimize prediction
error, the classification error using this number of MARS terms, the prediction error according to 10-fold
crossvalidation, and the corresponding Bonferroni correctedP value (corrected for MARS term selection).

1.3 Top TRANSFAC single motif predictors

We give the top 10 experimentally validated vertebrate motifs from TRANSFAC (1) for each tissue. Motifs
are ranked by classification error, and similar lower ranking motifs are eliminated. The first column gives
the motif accession from TRANSFAC. The second column gives the name of the associated factor or factor
class, which may be edited for presentability. The third column gives the sequence logo built from the
position weight matrix (PWM) for the motif. The fourth column indicates whether the motif was enriched
in the foreground (positive set) or background (negative set). Foreground enrichment means that the motif
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Table 2. DNA patterns in mouse proximal promoters predict tissue specific expression

Tissue Terms Err PredctErr P val

Pancreas 2 0.323 0.324 1.0e-28

Ovary 4 0.296 0.329 1.8e-27

Liver 2 0.354 0.363 6.3e-18

Adrenal gland 2 0.352 0.368 1.0e-16

Uterus 4 0.339 0.371 5.3e-16

Thyroid 3 0.343 0.374 2.6e-15

Bone marrow 3 0.371 0.382 1.5e-13

Adipose tissue 7 0.387 0.385 6.5e-13

Thymus 4 0.359 0.385 6.5e-13

Amygdala 2 0.403 0.391 1.1e-11

Testis 7 0.321 0.394 4.1e-11

Lymph node 5 0.342 0.405 4.1e-09

Olfactory bulb 4 0.352 0.405 4.1e-09

Salivary gland 2 0.374 0.409 2.0e-08

Lung 7 0.351 0.412 6.0e-08

Dorsal root ganglia 2 0.394 0.418 5.1e-07

CD4 T cells 2 0.407 0.426 7.1e-06

Kidney 3 0.389 0.434 7.6e-05

Cerebellum 7 0.379 0.437 1.7e-04

Placenta 2 0.438 0.441 6.4e-04

Hypothalamus 4 0.379 0.445 1.7e-03

Prostate 2 0.408 0.448 2.7e-03

CD8 T cells 2 0.427 0.456 1.5e-02

Pituitary 2 0.430 0.459 3.1e-02

Trachea 4 0.399 0.467 1.2e-01

Skeletal muscle 2 0.438 0.478 4.6e-01

Heart 5 0.386 0.485 9.8e-01

Trigeminal ganglion 5 0.405 0.492 1.0e+00

For each mouse tissue, we present the number of MARS terms selected for building the predictor to minimize
prediction error, the classification error using this number of MARS terms, the prediction error according
to 10-fold crossvalidation, and the corresponding Bonferroni correctedP value (corrected for MARS term
selection). After correction, predictors for CD8 T cells, pituitary, trachea, skeletal muscle, heart, and trigem-
inal ganglion fail to predict significantly (P > 0.01). Err stands for the classification error and PredctErr is
the prediction error.
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Table 3. Ten TRANSFAC motifs with lowest classification error in human CD4 T cells

Acces.# Factor Logo Enrich Error Sens Spec
M00032 c-Ets-1(p54)

C
G
T
A
A

C
T
A
CGGACTACAGACTTCG

A FG 0.409 0.346 0.836
M00017 ATF

G

T
A
C
A

C
G
T

T
A
C
G

TGACGGCATGTA
C

C

G
T
A

T
A
C
G

A

G
T
C

A

G
T
C FG 0.425 0.682 0.468

M00480 LUN-1 TCCCAGAGCTTAACCTTACTAGGGA FG 0.437 0.768 0.358
M00793 YY1

A
T
G
A

G

C
T

C
C

G

A
C

G

T
A

G
T
C

C

A
G
T
A

C
G
T
A
C
T
G FG 0.439 0.548 0.574

M00652 Nrf-1 CAGCTGATGCGCGA FG 0.441 0.204 0.914
M00316 Imperfect

C

A
G
G
A
T
A

G
A

G
A

T
C

G
C

A
G
A

G

T
C
A
G
T
C
C

G

T

ATCTA
G
A

C
T

CTGTCTAGATTCATCTCATGACCAATCACGT FG 0.445 0.348 0.762
M00175 AP-4

A
G
C

A
G
T

CAGCAGTCGACT
G

A
C
G
T BG 0.445 0.510 0.600

M00431 E2F-1
A
G
C
T
C

G
T
A
TGCCGGCCGTGC FG 0.446 0.786 0.322

M00993 TAL1
A
G
TCCACG

T

CTGAGT
C

C
T BG 0.447 0.592 0.514

M00769 AML
T
G
C
A
C
G
T
A

T
A
C
G
C
G
T

G
A
C
T

C
TGCTGGCGTAGCTGA

T
T
A
C
G

G
A
T
C FG 0.451 0.374 0.724

For each motif, we give the TRANSFAC accession (Acces.#), corresponding binding factor (Factor), se-
quence logo built from the PWM for the motif (Logo), indication whether the motif was enriched in the
foreground or background (Enrich), and the classification error (Error) broken down to sensitivity (Sens)
and specificity (Spec).

has optimal classification performance when assigning sequences with max-score greater than the optimal
threshold to the foreground; similarly for background enrichment. Columns five through seven give the
classification error, the sensitivity and the specificity, respectively.

The top 10 experimentally validated motifs for human CD4 T cells and human liver are given in Ta-
bles 3 and 4. Motifs for the remaining tissues are available from the authors.

1.4 Top TRANSFAC distinct motif pair predictors

We give the top five modules constructed from experimentallyvalidated vertebrate motifs from TRANSFAC
for each tissue. Modules are ranked by classification error, and modules that contain a motif similar to any
motif in a higher-ranking module are eliminated. The set of columns is divided into three sections; the
first two sections present each of the two motifs as describedin Section 1.3, and the third section gives
enrichment, classification error, sensitivity, and specificity.

The top 5 modules for human CD4 T cells and human liver are given in Tables 5 and 6. Modules for the
remaining tissues are available directly from the authors.

1.5 Top motif predictors

As in Section 1.3, we give the top 10 motifs for each tissue, but we also include motifs identifiedin silico
by DME (2) and DME-B; DME-B is a modified version of DME that considers only the best occurrences in
each sequence. We name TRANSFAC motifs by their accession, and motifs identifiedin silico are given a
name consisting of the prefix “Novel-” and an index. Some novel motifs resemble experimentally validated
motifs (see Section 2.2.1). For these motifs, we assign a factor corresponding to the experimentally validated
motif and describe the divergence between the motif and the experimentally validated binding site for the
factor. We speculate that the assigned factor may bind to sites characterized by the novel motif, because
it binds to the sites characterized by the similar experimentally validated motif. When several motifs have
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Table 4. Ten TRANSFAC motifs with lowest classification error in human liver

Acces.# Factor Logo Enrich Error Sens Spec
M00918 E2F

A

G

C
T
A

G
T
A

G

C
T
C
G
C
GCGGCATCG BG 0.405 0.686 0.504

M00248 Oct-1
C

G
A
T
A
T
C
G

A

C
TATTGTG

C

A
TAATT BG 0.406 0.664 0.524

M00071 E47
G
T
C
A

G
C
A
T

A
C
G
T

G
T
C
A
T

C
G
ACATCGCGTGGCTCGATTGA

C
T
G
C
A

T
G
A
C FG 0.415 0.584 0.586

M00646 LF-A1 GGAGACGATCTAAG FG 0.416 0.628 0.540
M00145 Brn-2

A
C
T
G

A
G
C
T

A
G
T

C
T
A
A
T
A
C
G
T

A
T
G
C
T
A
G

A
TAAATTCA

G

G
T

C
A
T
A
G

G
A
T
C BG 0.417 0.586 0.580

M00103 Clox
C
G
A
T

G
C
T
A
C

A
G
TATTCGATGACTCGTACAG

T
G

A
C
T
C
A
G
T

C

G
A
T BG 0.417 0.738 0.428

M00765 COUP
A
G
TGAACCCTCGTTGCTGAGCATCATC FG 0.421 0.492 0.666

M00318 Lentiviral
A
T
CAATAAACTG BG 0.421 0.648 0.510

M00129 HFH-1
A
C
G
T

C
T

G
A
C
A
T
A
TGTTTGACGTGATACT BG 0.422 0.578 0.578

M00025 Elk-1
A
G
T
C

A
T
G
C

T
G
C
A

C
T
G
A

T

G
A
C
T

G

A
CGGATATCAGAGCTGTA

C

G
T
A
C BG 0.422 0.622 0.534

For each motif, we give the TRANSFAC accession (Acces.#), corresponding binding factor (Factor), se-
quence logo built from the PWM for the motif (Logo), indication whether the motif was enriched in the
foreground or background (Enrich), and the classification error (Error) broken down to sensitivity (Sens)
and specificity (Spec).

Table 5. Five TRANSFAC motif pairs with lowest classification error in human CD4 T cells

Acces.# Factor Logo Acces.# Factor Logo Enrich Error Sens Spec
M00017 ATF

G
T
A
C
A
C
G
T

T
A
C
G

TGACGGCATGTA
C

C

G
T
A

T
A
C
G

A

G
T
C

A
G
T
C M00793 YY1

A
T
G
A

G

C
T

C
C

G

A
C

G

T
A

G
T
C

C

A
G
T
A

C
G
T
A
C
T
G FG 0.403 0.416 0.778

M00431 E2F-1
A
G
C
T
C

G
T
A
TGCCGGCCGTGC M00480 LUN-1 TCCCAGAGCTTAACCTTACTAGGGA FG 0.403 0.602 0.592

M00032 Ets-1
C
G
T
A
A

C
T
A
CGGACTACAGACTTCG

A M00423 FOXJ2
C
G
A
A
C
T
A
C
T
ACTAACTGACGTCTGTAGTACGT FG 0.406 0.328 0.860

M00257 RREB-1
A
CCACCACACATACACCAACACACGTAC M00993 TAL1

A
G
TCCACG

T

CTGAGT
C

C
T BG 0.425 0.472 0.678

M00147 HSF2
T
C
G
A

G
C

G
A
C

G
T
A
A
C
G
T

T
C
A
G

C
G
A
T
G
A
TCACT
G M00175 AP-4

A
G
C

A
G
T

CAGCAGTCGACT
G

A
C
G
T BG 0.427 0.446 0.700

For each motif pair, we give the TRANSFAC accessions (Acces.#), corresponding binding factors (Factor),
sequence logos built from the PWM for each motif (Logo), indication whether the motif was enriched in the
foreground or background (Enrich), and the classificationerror (Error) broken down to sensitivity (Sens)
and specificity (Spec).

Table 6. Five TRANSFAC motif pairs with lowest classification error in human liver

Acces.# Factor Logo Acces.# Factor Logo Enrich Error Sens Spec
M00103 Clox

C
G
A
T

G
C
T
A
C

A
G
TATTCGATGACTCGTACAG

T
G

A
C
T
C
A
G
T

C
G
A
T M00918 E2F

A

G

C
T
A

G
T
A

G

C
T
C
G
C
GCGGCATCG BG 0.364 0.554 0.718

M00465 POU6F1
C
A
G
T
A

C
T
A
A
T
C
T
A
C

G
AA
TTATAGT M00695 ETF

T
G
A
G
C

T

GGACCGG BG 0.376 0.648 0.600
M00071 E47

G
T
C
A

G
C
A
T

A
C
G
T

G

T
C
A
T

C
G
ACATCGCGTGGCTCGATTGA

C
T
G
C
A

T
G
A
C M00646 LF-A1 GGAGAC

G
A
TCTAAG FG 0.384 0.602 0.630

M00129 HFH-1
A
C
G
T

C
T

G
A
C
A
T
A
TGTTTGACGTGATACT M00224 STAT1

A

C
T
G

C
A
T
G

A
G
C
T

T
A
C
G

T
C
G
A
G
C
A
T

TTGTACCCGGAGAACTG
A

A
C
G
T
C
A
G
C
T
A
G
T

A
C
G
C
T
A
G BG 0.385 0.714 0.516

M00025 Elk-1
A
G
T
C

A
T
G
C

T
G
C
A

C
T
G
A

T

G
A
C
T

G

A
CGGATATCAGAGCTGTA

C

G
T
A
C M00248 Oct-1

C

G
A
T
A
T
C
G

A

C
TATTGTG

C

A
TAATT BG 0.389 0.496 0.726

For each motif pair, we give the TRANSFAC accessions (Acces.#), corresponding binding factors (Factor),
sequence logos built from the PWM for each motif (Logo), indication whether the motif was enriched in the
foreground or background (Enrich), and the classificationerror (Error) broken down to sensitivity (Sens)
and specificity (Spec).
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divergence lower than 1.0, we present the best match (lowestdivergence). Motifs are available directly from
the authors.

1.6 Top distinct motif pair predictors

As in Section 1.4, we give the top five modules for each tissue,but we include motifs identifiedin silico by
DME and DME-B. Motifs are named as in Section 1.5, and eliminated as described in Section 1.4. Modules
are available directly from the authors.

1.7 Predictive models and interpretation

The predictive model (called predictors in the main paper) for each tissue is described as a set of modules
and the MARS function that models their interaction. For each predictive model, we describe the modules
and features (see Section 2.3.1) and the motifs of which theyare composed. The MARS function is given
immediately below; it describes the interaction between the modules and is used to predict elevated and
inhibited transcription. The function is broken into its terms (see Section 2.3.2), and each is given an
interpretation. Here we describe more in depth analysis forhuman CD8 T cells and testis. Predictive
models for all 56 human and mouse tissues are available directly from the authors.

1.7.1 Human testis predictive model

The human testis predictive model includes two modules thatare composed of novel motifs. Differential
expression in human testis is predicted with an error rate of0.397 (P < 1.5E-10), compared to 0.441 us-
ing only experimentally verified motifs. The predictor includes two terms,Te1 andTe2, each describing a
synergistic relation between motifs pairs.Te1 is the most significant contributor to prediction and it is over-
represented in the positive set.Te2 is overrepresented in the negative set. Fig. 4 describes thecontributions
of Te1 andTe2 to final prediction. A predictor that usesTe2 alone has high sensitivity and low specificity,
and a predictor that usesTe1 alone leads to higher specificity but lower sensitivity. Thecombination of
Te1 andTe2 results in higher sensitivity thanTe1-based prediction and higher specificity than eitherTe1-
or Te2-based prediction.Te1 includes C/G-rich motifs andTe2 includes A/T-rich motifs. However, base
composition alone is not enough to explain prediction quality; base composition has a classification error
of 0.416 compared to0.357 for the predictor. Te1 motifs are compensatory: their combination increases
sensitivity at the expense of decreasing specificity. Despite their similarity, they capture dependent but dis-
tinct signals. The overlap rate between the highest-likelihood binding sites of the two motifs is not enriched
over what is expected by chance, and attempts to join the motifs resulted in weakened predictive ability,
suggesting that an additive relation is the best way to capture their signal.

1.7.2 Predictive models for human CD8 T cells

As an example, consider the predictive model for human CD8 T cells give in Table 7 and Fig. 5. The predic-
tor includes two modulesX1 andX2. X1 is composed of two TRANSFAC motifs M00743 and M00793
using the max-score-sum feature.X2 is composed of two TRANSFAC motifs M00277 and M00691 using
the max-score-product feature. The MARS function has threeterms:

1. This positive constant term indicates that, by default, apromoter will be called positive.
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True Positives False Positives

128 12947 26281 103 3420 28

409331329 291201 188

22

Te1 Te2 Te1 Te2

329 243

55

Motif1 Motif 2 Motif1 Motif 2

88 6

140

681

201124245

78924 149 7

Motif 1
A
T
T
GGTCCCTC

A
GCGC

Motif 2 GGTCTCGTCCACTAGG

Te1: Score(Motif 1)+Score(Motif 2) > 31.1

Te2: Score(Motif 3)·Score(Motif 4) > −59.2

a

b

Fig. 4. (a) Human testis predictor constraints and the distribution of true positives and false positives across
its two modulesTe1 andTe2. Motifs in Te1 are overrepresented in the positive set and motifs inTe2 are
overrepresented in the negative set. Promoters that satisfy the conditions onTe1 (Te2) are more likely to be
predicted as positive (negative). Selections byTe1, the predictor, andTe2 are indicated in blue, red, and
green, and total set sizes are given immediately below. Compared with predictions based onTe1 alone,
predictions by the testis predictor include more true positives (331 vs. 329) and fewer false positives (188
vs. 201). Compared toTe2 alone, predictions by the testis predictor include considerably fewer false
positives (188 vs. 291). (b) Motifs included inTe1 and prediction statistics forTe1 across its two motif
components. These motifs share a similar core and differ only in the left- and right-most flanking positions.
Our experiments suggest that these two motifs function in a compensatory manner best modeled with an
additive relationship.
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2. This term is negative if the max-score-sum of M00743 and M00793 (X1) is less than 24.5, implying
that if the sum of the scores of the highest-scoring substrings of a given promoter for M00743 and
M00793 is lower than 24.5, this term will contribute to a negative call.

3. This term is negative ifX1 is less than 24.5 and the max-score-product of M00277 and M00691
(X2) is less than 45.1, implying that this term will contribute to a negative call in the event that both
modules score low. In our interpretation, this term will have an impact (it will further contribute to a
negative call) only if the first term’s negative contribution is smaller than the constant term, andX2
is less than 45.1.

It is important to remember that the interpretation in Fig. 5describes the effect of each term on prediction,
but terms do not act in isolation.

1.8 Human and mouse promoter set intersection

Some tissue-specific promoter sets include a large number of common promoters; for example positive
sets for human CD4 and CD8 T cells include 70% common promoters. Common promoters correspond to
common transcripts, and are a measure of tissue-specific expression similarity. We expect that tissues with
foreground or background promoter sets that have a high similarity in composition will also have similar
predictive models. Tables 8 and 9 give the proportion of similar promoters between each human tissue pair
and mouse tissue pair. The upper triangle describes the similarity in composition of the positive sets (FG),
and the lower describes the similarity in composition of thenegative sets (BG).

1.9 Mouse heat map

The heat map in Fig. 6 is the mouse counterpart to the human heat map given in Fig. 3. It has a few changes
in tissue order to address prediction similarity in the mouse tissues. The tissue set is also different, because
a different set of predictors in mouse failed the significance test.

2 Methods

This section describes methods used to prepare the data, identify patterns (motifs and motif modules),
and build predictive models based on those patterns. All programs named below are freely available
under the GNU Public License as part of Comprehensive Regulatory Element Analysis and Discovery
(CREAD) (http://cread.sf.net), with the exception of DME and DME-B (see Section 2.2.3), which are avail-
able from the authors.

2.1 Data Preparation

This section describes our methodology for obtaining sets of promoter sequences for transcripts showing
differential expression in tissue specific microarray experiments. The expression data discussed here are
due to Suet al. (3). There are three major steps in obtaining sequence sets from the expression data:

1. Mapping probes to transcripts.

2. Mapping transcripts to promoters.
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Table 7. TRANSFAC MARS classifiers for human CD8 T cells

Module Feature MotifName Factor Logo

X1 SUM M00743 c-Ets-1
G

C
G
C
AGGATAGTC

M00793 YY1
A
T
G
A

G

C
T

C
C

G

A
C

G

T
A
G
T
C

C

A
G
T
A

C
G
T
A
C
T
G

X2 PRODUCT M00227 v-Myb
A
G
C
T

T
A
G
C

C
TAACCTGGAT

C

M00691 ATF-1 CGCTAGT
C

C
G
T
C
GAACGATACTA

MARS function terms (f(x) = max(x, 0)):

Term Interpretation
+ 0.495 FG by default
- 0.0788 f(24.5 -X1) BG if X1 scores low
- 0.00355 f(24.5 -X1) f(45.1 -X2) BG if X1 scores low andX2 scores low

Fig. 5. MARS predictor for human CD8 T cells.

3. Selecting sets of tissue-specific transcripts.

The objective is to obtain sets of sequences with unusually high and unusually low frequencies of binding-
site patterns that are associated with the observed tissue-specific differential expression.

2.1.1 Mapping probes to transcripts

We map Affymetrix probes to RefSeq transcripts in an attemptto identify isoforms detected by the UniGene-
centric arrays. This step is necessary, because many genes have tissue-specific isoforms (4–6), and because
different isoforms often have different first exons and should be assigned different promoters. We focused
exclusively on RefSeq transcripts because the vast majority of Su et al. (3) probes can be associated with
RefSeq transcripts (7) (see Table 10), and because corresponding Cold Spring Harbor Laboratory Mam-
malian Promoter Database (CSHLmpd) (8) transcription start site (TSS) annotation can almost always be
mapped to RefSeq transcripts.

We use the expression data to select sets of transcripts whose promoters are hypothesized to be rich in
binding site patterns that determine tissue-specific expression, and toa posteriori evaluate tissue-specific
motifs, modules, and predictive models. Transcript selection requires mapping probes to transcripts, and
probe intensities to the corresponding transcript intensity. We classify transcripts as either enhanced with
tissue specificity (positive) or inhibited with tissue specificity (negative) based on the motif sites in their
promoters.

To associate probes with RefSeq transcripts, we mapped the probes back to the genomes (NCBI human
genome assembly Hs33 and mouse genome assembly ver. 3C dating to February 2003) to identify the probe
locations and exon targets. We used the resulting probe-to-exon map to identify the RefSeq transcripts
targeted by each probe and to assign a probe set to each transcript. If in a particular tissue the probe set AP
calls disagreed, we removed the transcript from further consideration. To obtain intensities for a transcript
we simply took the mean intensity of its assigned probes.
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Table 8. common promoter composition in human tissue-specific sets
Adip Adre Amyg Bone CD4T CD8T Cere Dors Hear Hypo Kidn Live Lung Lymp Olfa Ovar Panc Pitu Plac Pros Sali Skel Test Thym Thyr Trac Trig Uter

Adip – 0.112 0.034 0.022 0.010 0.006 0.032 0.034 0.054 0.042 0.078 0.064 0.096 0.048 0.084 0.092 0.044 0.048 0.102 0.056 0.034 0.028 0.012 0.046 0.076 0.072 0.020 0.160
Adre 0.150 – 0.034 0.074 0.012 0.010 0.080 0.074 0.088 0.032 0.164 0.084 0.082 0.062 0.102 0.114 0.084 0.098 0.072 0.080 0.068 0.050 0.040 0.050 0.072 0.106 0.050 0.078
Amyg 0.098 0.080 – 0.014 0.006 0.008 0.226 0.020 0.008 0.340 0.010 0.006 0.016 0.008 0.044 0.020 0.014 0.096 0.022 0.034 0.016 0.004 0.008 0.014 0.066 0.012 0.020 0.042
Bone 0.080 0.176 0.052 – 0.014 0.012 0.054 0.084 0.044 0.014 0.070 0.038 0.022 0.106 0.086 0.080 0.052 0.070 0.026 0.054 0.088 0.062 0.038 0.090 0.022 0.108 0.066 0.032
CD4T 0.084 0.062 0.072 0.064 – 0.704 0.014 0.010 0.012 0.016 0.004 0.008 0.022 0.180 0.010 0.010 0.018 0.014 0.008 0.022 0.028 0.008 0.010 0.130 0.030 0.008 0.008 0.030
CD8T 0.058 0.064 0.074 0.048 0.414 – 0.016 0.008 0.002 0.012 0.008 0.002 0.010 0.178 0.008 0.018 0.016 0.020 0.004 0.024 0.028 0.008 0.010 0.122 0.036 0.006 0.002 0.036
Cere 0.102 0.186 0.132 0.154 0.034 0.050 – 0.072 0.052 0.138 0.090 0.026 0.024 0.046 0.080 0.122 0.074 0.078 0.024 0.020 0.026 0.040 0.024 0.062 0.034 0.070 0.024 0.044
Dors 0.084 0.068 0.050 0.118 0.036 0.040 0.072 – 0.044 0.026 0.072 0.008 0.016 0.072 0.172 0.224 0.120 0.054 0.022 0.046 0.182 0.096 0.014 0.044 0.030 0.076 0.218 0.072
Hear 0.084 0.174 0.076 0.202 0.032 0.028 0.158 0.092 – 0.016 0.070 0.092 0.128 0.062 0.052 0.038 0.048 0.024 0.038 0.062 0.044 0.126 0.038 0.040 0.062 0.042 0.042 0.042
Hypo 0.128 0.112 0.162 0.048 0.084 0.088 0.112 0.054 0.052 – 0.020 0.016 0.014 0.018 0.096 0.008 0.008 0.126 0.032 0.042 0.020 0.022 0.020 0.008 0.034 0.018 0.024 0.040
Kidn 0.120 0.248 0.064 0.204 0.044 0.050 0.200 0.090 0.230 0.084 – 0.170 0.084 0.056 0.056 0.144 0.086 0.048 0.058 0.072 0.094 0.064 0.018 0.054 0.084 0.116 0.036 0.044
Live 0.084 0.176 0.068 0.216 0.042 0.048 0.122 0.104 0.360 0.038 0.230 – 0.088 0.028 0.032 0.024 0.064 0.032 0.036 0.070 0.014 0.014 0.032 0.032 0.064 0.026 0.022 0.022
Lung 0.084 0.200 0.126 0.226 0.044 0.060 0.158 0.068 0.244 0.076 0.226 0.244 – 0.088 0.094 0.044 0.068 0.032 0.168 0.202 0.030 0.016 0.028 0.090 0.134 0.100 0.020 0.114
Lymp 0.118 0.098 0.092 0.108 0.126 0.112 0.120 0.086 0.066 0.112 0.100 0.042 0.118 – 0.076 0.108 0.110 0.064 0.058 0.052 0.072 0.042 0.018 0.118 0.052 0.086 0.058 0.108
Olfa 0.106 0.092 0.118 0.076 0.080 0.072 0.104 0.118 0.068 0.130 0.088 0.060 0.090 0.092 – 0.094 0.062 0.102 0.060 0.094 0.092 0.084 0.016 0.048 0.078 0.092 0.140 0.152
Ovar 0.118 0.096 0.066 0.106 0.042 0.054 0.082 0.302 0.114 0.050 0.108 0.090 0.094 0.114 0.116 – 0.182 0.038 0.050 0.058 0.178 0.044 0.020 0.090 0.022 0.140 0.160 0.118
Panc 0.104 0.104 0.088 0.100 0.080 0.104 0.064 0.116 0.092 0.084 0.096 0.100 0.120 0.120 0.088 0.172 – 0.038 0.062 0.092 0.096 0.056 0.026 0.096 0.076 0.152 0.084 0.064
Pitu 0.084 0.100 0.120 0.078 0.114 0.108 0.096 0.088 0.046 0.118 0.084 0.060 0.078 0.110 0.104 0.068 0.116 – 0.048 0.078 0.070 0.056 0.038 0.044 0.080 0.102 0.042 0.066
Plac 0.124 0.180 0.120 0.146 0.090 0.078 0.144 0.046 0.132 0.094 0.184 0.136 0.240 0.142 0.086 0.090 0.122 0.120 – 0.094 0.044 0.016 0.026 0.050 0.082 0.102 0.026 0.102
Pros 0.102 0.110 0.208 0.092 0.124 0.112 0.078 0.072 0.084 0.130 0.086 0.118 0.170 0.100 0.110 0.064 0.130 0.094 0.150 – 0.092 0.032 0.024 0.084 0.198 0.156 0.020 0.170
Sali 0.108 0.088 0.068 0.078 0.082 0.074 0.080 0.214 0.068 0.058 0.098 0.056 0.056 0.118 0.128 0.198 0.166 0.086 0.074 0.060 – 0.118 0.020 0.026 0.084 0.188 0.156 0.070
Skel 0.104 0.096 0.050 0.108 0.036 0.038 0.064 0.192 0.190 0.046 0.128 0.160 0.074 0.072 0.086 0.178 0.120 0.048 0.058 0.046 0.174 – 0.012 0.012 0.040 0.048 0.152 0.050
Test 0.100 0.166 0.100 0.146 0.068 0.058 0.128 0.072 0.168 0.090 0.166 0.160 0.194 0.130 0.094 0.082 0.094 0.102 0.154 0.132 0.088 0.084 – 0.032 0.018 0.028 0.020 0.016
Thym 0.118 0.152 0.120 0.122 0.096 0.098 0.130 0.048 0.130 0.106 0.144 0.098 0.236 0.154 0.114 0.072 0.120 0.100 0.234 0.174 0.060 0.058 0.170 – 0.040 0.090 0.030 0.040
Thyr 0.094 0.074 0.294 0.070 0.148 0.134 0.074 0.044 0.072 0.174 0.068 0.092 0.136 0.116 0.084 0.056 0.084 0.140 0.114 0.308 0.052 0.034 0.118 0.144 – 0.132 0.016 0.128
Trac 0.140 0.134 0.114 0.140 0.056 0.070 0.136 0.138 0.084 0.086 0.140 0.086 0.118 0.138 0.118 0.180 0.180 0.138 0.168 0.102 0.196 0.088 0.140 0.134 0.084 – 0.066 0.102
Trig 0.068 0.060 0.032 0.090 0.044 0.046 0.062 0.314 0.122 0.040 0.064 0.102 0.060 0.070 0.102 0.252 0.144 0.040 0.038 0.038 0.224 0.246 0.068 0.026 0.026 0.106 – 0.062
Uter 0.092 0.066 0.270 0.058 0.142 0.134 0.100 0.082 0.068 0.116 0.056 0.048 0.148 0.156 0.096 0.112 0.128 0.082 0.122 0.214 0.124 0.062 0.086 0.156 0.252 0.114 0.074 –

FG sets are given in the top portion and human BG sets in the bottom.

Table 9. Common promoter composition in mouse tissue-specific sets
Adip Adre Amyg Bone CD4T CD8T Cere Dors Hear Hypo Kidn Live Lung Lymp Olfa Ovar Panc Pitu Plac Pros Sali Skel Test Thym Thyr Trac Trig Uter

Adip – 0.206 0.016 0.024 0.064 0.060 0.018 0.044 0.074 0.018 0.096 0.128 0.142 0.148 0.024 0.246 0.002 0.056 0.068 0.056 0.026 0.060 0.004 0.064 0.010 0.206 0.046 0.138
Adre 0.230 – 0.028 0.010 0.032 0.030 0.046 0.066 0.074 0.040 0.118 0.064 0.130 0.036 0.046 0.234 0.012 0.078 0.060 0.088 0.020 0.062 0.002 0.036 0.012 0.112 0.062 0.106
Amyg 0.052 0.068 – 0.010 0.004 0.004 0.256 0.178 0.022 0.352 0.008 0.002 0.024 0.006 0.378 0.030 0.014 0.060 0.006 0.026 0.014 0.018 0.000 0.022 0.006 0.010 0.146 0.028
Bone 0.082 0.050 0.052 – 0.024 0.038 0.018 0.012 0.054 0.010 0.028 0.034 0.030 0.094 0.024 0.008 0.042 0.034 0.040 0.026 0.070 0.042 0.006 0.074 0.088 0.036 0.006 0.034
CD4T 0.156 0.112 0.050 0.112 – 0.656 0.008 0.020 0.010 0.004 0.014 0.002 0.040 0.324 0.006 0.038 0.006 0.034 0.022 0.024 0.016 0.012 0.002 0.232 0.016 0.102 0.016 0.048
CD8T 0.094 0.078 0.050 0.120 0.472 – 0.010 0.038 0.014 0.012 0.010 0.008 0.048 0.318 0.014 0.024 0.018 0.038 0.026 0.038 0.020 0.014 0.004 0.240 0.030 0.096 0.016 0.034
Cere 0.104 0.124 0.192 0.076 0.054 0.044 – 0.186 0.014 0.244 0.020 0.006 0.024 0.010 0.310 0.026 0.022 0.074 0.020 0.048 0.016 0.040 0.002 0.022 0.034 0.016 0.180 0.022
Dors 0.114 0.090 0.148 0.056 0.116 0.098 0.122 – 0.026 0.158 0.024 0.014 0.050 0.018 0.126 0.034 0.030 0.064 0.030 0.042 0.010 0.044 0.002 0.016 0.012 0.012 0.574 0.026
Hear 0.094 0.108 0.056 0.138 0.072 0.048 0.100 0.058 – 0.022 0.100 0.026 0.050 0.020 0.030 0.034 0.028 0.038 0.022 0.032 0.038 0.346 0.004 0.018 0.056 0.036 0.030 0.024
Hypo 0.084 0.092 0.272 0.056 0.060 0.034 0.214 0.134 0.066 – 0.022 0.014 0.024 0.012 0.278 0.028 0.008 0.122 0.024 0.026 0.014 0.020 0.002 0.018 0.010 0.010 0.192 0.018
Kidn 0.130 0.134 0.058 0.138 0.082 0.058 0.090 0.090 0.188 0.052 – 0.242 0.056 0.010 0.016 0.050 0.008 0.042 0.038 0.060 0.032 0.052 0.004 0.010 0.026 0.044 0.024 0.034
Live 0.082 0.086 0.056 0.108 0.088 0.086 0.056 0.090 0.150 0.062 0.230 – 0.044 0.016 0.010 0.034 0.028 0.018 0.038 0.040 0.030 0.020 0.000 0.004 0.014 0.044 0.012 0.032
Lung 0.184 0.180 0.064 0.100 0.094 0.082 0.076 0.118 0.098 0.090 0.126 0.084 – 0.082 0.054 0.142 0.006 0.036 0.116 0.068 0.024 0.018 0.000 0.052 0.022 0.190 0.050 0.120
Lymp 0.096 0.102 0.038 0.150 0.194 0.230 0.078 0.054 0.114 0.056 0.070 0.084 0.118 – 0.018 0.038 0.028 0.022 0.050 0.046 0.022 0.010 0.000 0.132 0.044 0.178 0.018 0.070
Olfa 0.064 0.076 0.302 0.046 0.040 0.052 0.244 0.134 0.088 0.242 0.056 0.042 0.070 0.076 – 0.038 0.012 0.068 0.030 0.020 0.016 0.024 0.002 0.020 0.032 0.006 0.104 0.020
Ovar 0.244 0.234 0.058 0.062 0.136 0.070 0.138 0.136 0.084 0.102 0.100 0.058 0.178 0.092 0.070 – 0.006 0.092 0.102 0.100 0.016 0.038 0.006 0.064 0.014 0.106 0.048 0.336
Panc 0.044 0.042 0.064 0.176 0.042 0.062 0.048 0.062 0.098 0.082 0.086 0.182 0.054 0.106 0.060 0.026 – 0.052 0.056 0.022 0.112 0.030 0.004 0.010 0.084 0.010 0.016 0.016
Pitu 0.122 0.118 0.092 0.062 0.096 0.094 0.098 0.152 0.074 0.090 0.084 0.078 0.142 0.070 0.120 0.124 0.082 – 0.044 0.120 0.068 0.030 0.008 0.030 0.050 0.042 0.102 0.074
Plac 0.054 0.080 0.070 0.104 0.064 0.078 0.060 0.092 0.068 0.042 0.118 0.132 0.134 0.126 0.072 0.058 0.142 0.092 – 0.046 0.038 0.034 0.004 0.020 0.050 0.028 0.028 0.086
Pros 0.154 0.130 0.060 0.086 0.112 0.068 0.082 0.096 0.098 0.116 0.116 0.134 0.150 0.088 0.060 0.132 0.078 0.116 0.078 – 0.132 0.038 0.004 0.044 0.062 0.068 0.030 0.098
Sali 0.088 0.072 0.044 0.116 0.064 0.078 0.062 0.070 0.112 0.052 0.114 0.176 0.088 0.096 0.058 0.064 0.206 0.100 0.148 0.144 – 0.024 0.002 0.018 0.170 0.016 0.020 0.028
Skel 0.096 0.078 0.054 0.122 0.072 0.092 0.074 0.080 0.226 0.052 0.154 0.166 0.070 0.070 0.060 0.078 0.168 0.068 0.126 0.100 0.134 – 0.010 0.022 0.028 0.034 0.044 0.022
Test 0.098 0.088 0.062 0.114 0.092 0.068 0.096 0.088 0.118 0.102 0.098 0.134 0.068 0.090 0.076 0.104 0.190 0.088 0.130 0.066 0.120 0.138 – 0.004 0.002 0.006 0.000 0.004
Thym 0.158 0.172 0.066 0.112 0.228 0.238 0.106 0.104 0.082 0.070 0.082 0.066 0.180 0.154 0.068 0.190 0.030 0.092 0.050 0.148 0.066 0.086 0.080 – 0.022 0.124 0.020 0.040
Thyr 0.074 0.048 0.054 0.142 0.080 0.088 0.066 0.088 0.120 0.052 0.094 0.162 0.078 0.078 0.066 0.060 0.260 0.112 0.152 0.108 0.230 0.154 0.150 0.078 – 0.018 0.026 0.022
Trac 0.222 0.188 0.058 0.100 0.116 0.074 0.088 0.106 0.104 0.072 0.094 0.066 0.200 0.082 0.046 0.226 0.058 0.120 0.064 0.136 0.078 0.104 0.098 0.200 0.086 – 0.026 0.110
Trig 0.084 0.086 0.206 0.038 0.052 0.066 0.136 0.226 0.106 0.176 0.112 0.098 0.098 0.040 0.162 0.072 0.068 0.118 0.068 0.098 0.072 0.082 0.072 0.058 0.046 0.090 – 0.036
Uter 0.168 0.176 0.056 0.076 0.140 0.074 0.126 0.100 0.122 0.124 0.092 0.048 0.152 0.136 0.072 0.258 0.042 0.122 0.066 0.158 0.096 0.086 0.102 0.168 0.066 0.162 0.070 –

FG sets are given in the top portion and human BG sets in the bottom.
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 crm Hypothalamus 

 crm Olfactory Bulb 

 crm Amygdala 

 crm Cerebellum 

 crm Adipose Tissue 

 crm CD4TCells 

 crm CD8TCells 

 crm Bone Marrow 

 crm Lymph Node 

 crm Thyroid 

 crm Testis 

 crm Pancreas 

 crm Liver 

 crm Salivary Gland 

 crm Adrenal Gland 

 crm Thymus 

 crm Kidney 

 crm Lung 

 crm Placenta 

 crm Prostate 

 crm Ovary 

 crm Dorsal Root Ganglia 

Fig. 6. Prediction error ofcis-regulatory module (CRM)-based predictors (right) trained on specific mouse
tissues and tested on all mouse tissues (top). Errors below,at, and above 45% are displayed in red, black,
and green. The diagonal, corresponding to predictors trained and tested on the same tissue, gives prediction
error under 10-fold crossvalidation. When applying a predictor to a tissue other than that on which it was
trained, promoters common to both tissues are excluded. Tissues and corresponding predictors with
crossvalidation errorP value above the 0.01 significance cutoff are omitted.
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Table 10. Summary of probe data
Human Mouse

Probes on the chip 33,674 36,182
Probes called present at least once 20,041 22,728
Probes associated with a RefSeq transcript 15,967 10,950
Probes with more than one RefSeq transcript 2,035 308
Mean intensity for probe present calls 2,886.4 750.4

Number of probes on the chips includes Affymetrix probes andGNF probes, but not the Celera probes.

Table 11. Summary of transcript data
Human Mouse

UniGene sets represented on chip 33,954 31,479
RefSeq transcripts represented on chip 12,651 9,851
RefSeq transcripts called present at least once 8,450 7,398
RefSeq transcript ortholog pairs 22,209 22,209
RefSeq transcripts with at least one ortholog 11,793 10,189
RefSeq transcripts with unique first exon 8,157 9,884
RefSeq transcripts with more than one probe 3,757 1,322
Mean number of probes per RefSeq transcript 1.3 1.03
Most probes associated with a transcript 25 23
Percent of calls for which probes disagree (i.e. discarded calls) 7.8% 5.1%
Mean intensity for RefSeq transcript present calls 2,970.1 973.1
Proportion of RefSeq transcript calls discarded 0.264 0.383

2.1.2 Mapping transcripts to promoters

Regulatory elements can exist almost anywhere in the genome, but they are known to have a high con-
centration in proximal promoters. Smithet al. (2) and Sumazinet al. (9) were successful in identifying
experimentally validated motifs for factors known to play tissue-specific regulatory roles. Promoter quality
(i.e., confidence in the TSS) has a large impact, and poor-quality promoters may hurt motif discovery as
much as poor-quality sets of tissue-specific transcripts (for example, those containing ubiquitous or incor-
rectly assigned transcripts).

To map transcripts to promoters, we used CSHLmpd, which includes annotations for human, mouse,
and rat (8). We exclude isoforms that share first exons and have inconsistent calls in any of the tissues. We
prohibit multiple representations of promoters in our positive and negative sets (see below for definition).
CSHLmpd includes 51,506 and 46,475 promoter annotations for human and mouse, of which 16,433 and
15,061 are assigned to RefSeq transcripts. We extracted promoter sequences for each transcript with a
promoter in CSHLmpd, using a sequence from -1,000 to +100 relative to the TSS. We note that mouse TSS
prediction is thought to be substantially less accurate than human TSS prediction at present.

2.1.3 Transcripts differentially expressed in a tissue

Using the intensities we assigned to transcripts and the information in CSHLmpd, we constructed sets of
promoters for genes with tissue-specific differential expression. The procedure we used is as follows:
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Table 12. Summary of tissue data
Human Mouse

Total number of tissues 79 61
Number of tissues with experiments in human and mouse 28
Number of tissue-differential transcripts 1,243/2,517 1,113/2,175
Mean intensity for a present call 3,550.5/3,560 2,317.2/2,123.2
Number of tissue-specific orthologs 756/1162 744/1,123
Mean intensity of tissue-specific orthologs 4,653.9/4,282.7 2,561.3/2,207

1. For each transcript and each tissue, we calculate the number of standard deviations by which the
intensity of that transcript in the tissue differed from themean intensity for that transcript across all
tissues. We call this the standard intensity.

2. If the standard intensity is positive, the transcript is said to be enhanced with tissue specificity, and if
the standard intensity is negative, the transcript is said to be inhibited with tissue specificity.

3. The sets of enhanced and inhibited transcripts are rankedaccording to their standard intensity, from
highest to lowest in each tissue.

4. Transcripts with no associated promoter in CSHLmpd are removed from consideration.

5. Of the remaining overrepresented transcripts, the top-ranking 500 (according to standard intensity) are
selected in each tissue, and their promoters form the positive set (foreground) for this tissue. The 500
promoters corresponding to remaining transcripts with lowest standard intensity form the negative set
(background).

The resulting positive and negative sets are called the tissue-differential sets. These uniform-size sets
include promoters of transcripts with intensities near themean in some tissues and exclude promoters of
transcripts with intensities far from the mean in other tissues. However, experimentation suggests that this
size (500) is a good compromise between tissue specificity and statistical power. The benefits of using
large and uniform size sets include consistent prediction estimates that are comparable across tissues and
robustness to outliers and features that are shared by few promoters. The drawbacks include higher estimates
of prediction-error and elevated noise level.

2.2 Obtaining motifs and modules

Motifs are abstract characterizations of the DNA sequence elements to which transcription factors bind.
Modules are sets of motifs whose corresponding sites are thought to interact synergistically.

2.2.1 PWMs

We represent motifs with PWMs; PWMs are described in detail by Stormo (10). A rigorous statistical model
based on PWMs was developed by Liuet al. (11). The statistical interpretation of PWMs allows them tobe
converted into scoring matrices. Because PWMs describe distributions over the substrings of a sequence, we
can estimate the likelihood that the substring was generated from the distribution described by a PWM. The
score given by the scoring matrix for a substring is the log ofthe likelihood that the substring was generated
by the distribution described by the PWM, divided by the likelihood that the substring was generated by the
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base composition (which can be the genomic base composition, or the base composition of some other set
of sequences). Negative scores indicate that the substringwas more likely to have been generated by the
base composition than the PWM. Positive scores indicate a greater likelihood for generation by the PWM.

When using experimentally verified orin silico-identified motifs, we rank each motif as a predictor
and eliminate motifs that are similar to higher-ranked motifs. We also matchin silico-identified motifs to
transcription factors based on similarity of identified motifs and experimentally verified binding-site motifs
for these factors. We compare motif pairs using matcompare (12), which aligns matrices and compares
the aligned column; matcompare implements various measures of distance or similarity between columns.
We use the Kullback-Leibler divergence method to compare columns (this is a general distance between
divergence). In comparing matrices, we require that the setof aligned columns be contiguous, and for the
smaller of the two matrices being compared, we require that,at most, a specified number of positions not be
aligned (we call this the number of overhang columns). To indicate when two matrices are to be considered
as representing the same motif, we require that the divergence per aligned column be at most 1.0, and we
restrict the number of overhang columns to 1. These values are suitable for matrices of widths roughly in
the range 8-12. In our experience, when aligning longer matrices, it is best to allow a greater overhang
value, and when aligning shorter matrices, it is best to reduce the threshold for divergence and not allow any
overhang.

2.2.2 Motifs from the TRANSFAC database

TRANSFAC (1) is the largest database of experimentally validated transcription factor-binding sites and
corresponding binding-site models. We used motifs from thevertebrate subset of TRANSFAC Professional
version 8.4 PWMs. This subset includes 546 vertebrate matrices of varying qualities, of which fewer than
120 are distinct according to matcompare.

2.2.3 Motif discovery using DME and DME-B

We used DME (2) and a variant DME-B forde novo motif discovery. DME enumerates PWM-based motifs
composed of columns from discrete sets of column types. The DME algorithm defines motif occurrences,
and these are used to measure the quality of a motif. The scorefor a motif in DME is the score of all of
the motif’s foreground occurrences, minus the score of all the motif’s background occurrences. DME is
described in detail by Smithet al. (2).

DME-B uses the same enumerative strategy, but the score for amotif in DME-B is the number of
foreground sequences with a score greater than 0 minus the number of background sequences with a score
greater than 0. DME-B keeps track of the sequences that contain occurrences and is more expensive to
compute in terms of time and space.

For both DME and DME-B, the enumerative strategy uses several parameters including motif width
(w), granularity (g), refinement limit (r), and information content measured in bits/column (b). See Smith
et. al (2) for detailed definitions. We use the tuple(w, g, r, b) to describe sets of parameters used by DME
and DME-B. These parameters indicate the degeneracy of motifs and are related to the expected number of
occurrences of the motifs in random sequences.

For each tissue, DME was used to obtain three sets of motifs, each set containing 30 motifs. The pa-
rameter combinations used were(12, 0.5, 0.25, 1.45), (10, 0.5, 0.125, 1.6), and(8,DN, 0.125, 1.8). DME-
B was used to obtain two sets of motifs, each set containing 30motifs, with parameter combinations
(10, 1, 0.25, 1.6) and (8, 1, 0.125, 1.8). All of the motifs were pooled to obtain a single set for each tis-
sue.
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2.2.4 Selecting motifs from a set of candidates

The initial set of candidate motifs may include experimentally validated motifs, computationally identified
motifs, or both. We used motifclass (this program is available from CREAD) to assign scores to motifs based
on their ability to discriminate between positive and negative promoters sets. For a given tuple consisting of a
promoter and a motif of lengthw, motifclass produces a score that is equal to the score of thehighest-scoring
subsequence of lengthw in the promoter and its reverse complement. Subsequences are scored using the
log-likelihood score, as described in Section 2.2.1. Having assigned a score to each promoter in the positive
and negative sets using the motif, motifclass evaluates themotif’s ability to discriminate between positive
and negative promoters based on error rate. For a given scorethreshold, motifclass predicts that promoters
with scores above the threshold belong to the positive set, and scores below belong to the negative set. For
each motif, motifclass selects a score threshold that minimizes the error corresponding to this prediction,
where the error is simply the rate of incorrect predictions.

After scoring each motif using motifclass, we used the uniqmotifs program to eliminate motifs from the
set if they are sufficiently similar (based on Kullback-Leibler divergence) to a higher-scoring motif. Finally,
we retained the top 100 remaining motifs.

2.2.5 Building modules from motifs

We constructed modules consisting of pairs and triples of motifs from the set of retained individual motifs.
Pairs were assembled using the modclass program, which combines motifs into modules and evaluates them
in a manner similar to motifclass, using max-scoring subsequences and thresholds. For a module to classify
a sequence as positive, the sequence must have substrings with scores above threshold for each motif in the
module. To construct modules, modclass simultaneously finds optimal threshold values for each motif in a
candidate module, which is time consuming and done using a branch and bound algorithm.

Because module enumeration and construction are computationally expensive, we built modules of size
2 using exhaustive enumeration, and modules of size 3 were generated from modules of size 2. When three
pairs (size-2 modules) are composed of only three distinct motifs, those three motifs are combined to form
a module of size 3. All such triples were retained and along with the top-scoring 100 pairs produced by
modclass, form the set of retained modules.

2.3 Building predictive models

Using the retained motifs and modules, we built models to predict whether the transcripts associated with
promoters would be overexpressed or underexpressed in a specific tissue. Because we wanted to determine
whether proximal promoters contained sufficient information to make statistically significant predictions,
we evaluated the accuracy of predictions made by these models. Our method consisted of first constructing
sets of features using motifs and modules, then using MARS (amachine-learning algorithm) to build a
model from those features; the quality of the models was determined by crossvalidation.

2.3.1 Pattern-based features

First, we used the sets of retained motifs and modules to construct features from which to build the models.
Features (in this context) are functions describing properties of sequences in terms of motifs or modules.
We initially tested many types of features to use for classification. These include functions based on counts
and strengths of motif and module occurrences in sequences,as well as relative positions of occurrences
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for motifs in a module and positions of motif occurrences relative to the transcription start site. Although
positions of occurrences are known to be important for binding sites of certain factors, the features we tested
that were based on position performed poorly relative to substring-score features.

The feature types selected to be used for classification included the max-score feature (score of highest
scoring substring, see Section 2.2.4) for individual motifs; for modules, we used the sums (max-score-sum)
and products (max-score-product) of the max-score featurefor motifs comprising the module. Each type
of feature was evaluated for each motif or module, as appropriate, on each positive and negative promoter.
The final sets of features for the tissue-differential sets corresponded to the max-score features and the
max-score-sum and -product features (one for each retainedmodule).

2.3.2 Classification using MARS

We used the MARS algorithm (13) to build predictive models (classifiers) from the sets of features. MARS is
a nonparametric and adaptive regression method that buildsa set of models using stepwise forward selection
and backward elimination and in terms of basis functions andtheir products. Each basis function has the
general form

max(0, x − k) or max(0, k − x),

wherex is an input variable (a feature), andk is a constant called the knot value. Each term is selected to
minimize reduction in variance. Letyi be the response variable for theith observation, and let̄yi be the
corresponding predicted outcome, then reduction in variance is defined as

RIV = 1 − (
∑

m

i=1
(Γi − Γ̄)2)/(

∑
m

i=1
(yi − ȳ)2),

whereΓi = yi − ŷi, andȳ andΓ̄ are the corresponding means.
We build a model up to a maximum number of terms, and then remove terms iteratively to generate a

set of models of different sizes. At each stage, one term is removed so that the performance of the model
consisting of the remaining terms is maximized. MARS produces either (i) all resulting models, or (ii)
the model with size maximizing the error under crossvalidation (14). We adapted MARS to function as a
classifier by having it regress against response variablesrestricted to 1 for a positive promoter (observation)
and -1 for a negative observation.

The models constructed by MARS can reveal complex interactions between features. The sign of each
term indicates whether that term will contribute to assigning observations to the positive or the negative
set. The knots appearing in the basis functions act as a cutoff value and impose criteria that eliminate the
influence of any term containing a basis function not meetinga particular value. As classifiers, these models
behave like Boolean formulas with weighted terms.

2.3.3 Evaluating predictive ability

We use crossvalidation to evaluate how well predictive models predict differential expression in a tissue.
To correctly perform crossvalidation, each testing set must be excluded from motif discovery, optimization,
module construction, and predictor construction to ensureaccurate estimation of the prediction error.

We used 10-fold crossvalidation, which randomly partitions the data into 10 equal size parts. For part
k, a model is trained on the combined other 9 parts and then tested on partk. In this way, each observation
is involved in exactly one testing set. The testing results for each observation are used to calculate the
sensitivity, specificity, and error rate of the predictions. These statistics correspond to 10 distinct trained
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models and provide an indication of how well a model trained on the entire data set would do when making
predictions about data not yet observed.

Under the null hypothesis that no special signals are commonto a given set of tissue-differential promot-
ers, we expect our predictive models to have a predictive error of 0.5. Therefore, the probability of observing
a predictive error lower thanα for a particular tissue is distributed according to a binomial distribution, and
we can obtain aP value to use in determining statistical significance.

As described in Section 2.3.2, our implementation of MARS produces 6 different models for each train-
ing set. As the appropriate model size for each tissue, we select the size with the smallest predictive error.
Because this represents selecting the optimal from among a set of size 6, we use a Bonferroni correction for
multiple testing, which amounts to multiplying the resulting P value by 6.

To demonstrate the effect of motif identification and motifand module optimization before test-set
exclusion, we generated 100 pairs of positive and negative promoter set for both human and mouse by
randomly selecting promoters from CSHLmpd. We identified and optimized motifs in the entire set, used
MARS to generate a predictive model on each training set and estimated the prediction error on the test set.
Average prediction errors for human and mouse were0.389±0.013 and0.378±0.012, which after multiple
sampling correction, are statistically significant. Whenmotif identification and optimization were done after
test-set exclusion (the correct way), the average prediction error for human and mouse was0.491 ± 0.018
and0.491 ± 0.017, which is not statistically significant.
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