Our goal was to determine whether binding-site motifs andluhes could be used to predict tissue-
specific differential expression and to identify motifsdamodules that explain differential expression. Our
hypothesis is that binding sites for activating (inhikgfjriranscription factors would be significantly over-
represented in promoters of transcripts with tissue-$igeelevated (inhibited) expression. We construct
predictive logic from motifs that best distinguish prommstef transcripts with elevated expression from
promoters of transcripts with inhibited expression.

This document describes results that were omitted from #pep and it describes methods in more
detail than would fit in the body of the paper. Results giverehiaclude samples from the catalog of
experimentally validated motifs and modulassilico-identified motifs and modules, and predictive models
based on motifs and modules (referred in the paper as poeslictAll are used to predict tissue-specific
differential expression.

1 Reaults

Only a limited selection of results could be presented inltbdy of the paper and in this supplementary
information document. The remaining results are availaiiectly from the authors.

1.1 Tissuedifferential promoter setsand transcript lists corresponding to predictor calls

Proximal promoters, in FASTA format, for each of the 56 tissware available directly from the authors.

Positive promoter sets (foreground) are denoted with ahstiffix, and negative promoter sets (background)
are denoted with a “bg” suffix. Human sets have Hs before tHexsand mouse sets have Mm before the
suffix. For example, the positive promoter set for humanhteacis called Trachea.Mm.fg, and the negative
set for mouse ovary is called Ovary.Mm.bg. The promoteraet€ompressed and will unpack to a directory
called Promoters.

For each tissue, we provide (by request) the transcripg fisedicted as true positive (corresponding
promoters were in the positive set and were predicted to biiy® by the predictive model for that tissue),
false positive (negative set but predicted positive), tragative (negative set predicted negative), and false
negative (positive set predicted negative).

1.2 Error Table

Table 2 is analogous to Table 1 and describes results for enigsues. It gives the number of terms se-
lected by multivariate adaptive regression splines (MARSpuilding the predictor to minimize prediction
error, the classification error using this number of MARShtey the prediction error according to 10-fold
crossvalidation, and the corresponding Bonferroni cae@@ value (corrected for MARS term selection).

1.3 Top TRANSFAC single motif predictors

We give the top 10 experimentally validated vertebrate fadtom TRANSFAC (1) for each tissue. Motifs

are ranked by classification error, and similar lower ragkmotifs are eliminated. The first column gives
the motif accession from TRANSFAC. The second column gikiestame of the associated factor or factor
class, which may be edited for presentability. The thirduooh gives the sequence logo built from the
position weight matrix (PWM) for the motif. The fourth columindicates whether the motif was enriched
in the foreground (positive set) or background (negativt $eoreground enrichment means that the motif

1



Table 2. DNA patterns in mouse proximal promoters predssie specific expression

Tissue Terms Err PredctErr P val

Pancreas 2 0.323 0.324 1.0e-28
Ovary 4 0.296 0.329 1.8e-27
Liver 2 0.354 0.363 6.3e-18
Adrenal gland 2 0.352 0.368 1.0e-16
Uterus 4 0.339 0.371 5.3e-16
Thyroid 3 0.343 0.374 2.6e-15
Bone marrow 3 0.371 0.382 1.5e-13
Adipose tissue 7 0.387 0.385 6.5e-13
Thymus 4 0.359 0.385 6.5e-13
Amygdala 2 0.403 0.391 1.1e-11
Testis 7 0.321 0.394 4.1e-11
Lymph node ) 0.342 0.405 4.1e-09
Olfactory bulb 4 0.352 0.405 4.1e-09
Salivary gland 2 0.374 0.409 2.0e-08
Lung 7 0.351 0.412 6.0e-08
Dorsal root ganglia 2 0.394 0.418 5.1e-07
CD4 T cells 2 0.407 0.426 7.1e-06
Kidney 3 0.389 0.434 7.6e-05
Cerebellum 7 0.379 0.437 1.7e-04
Placenta 2 0.438 0.441 6.4e-04
Hypothalamus 4 0.379 0.445 1.7e-03
Prostate 2 0.408 0.448 2.7e-03
CD8 T cells 2 0.427 0.456 1.5e-02
Pituitary 2 0.430 0.459 3.1e-02
Trachea 4 0.399 0.467 1.2e-01
Skeletal muscle 2 0.438 0.478 4.6e-01
Heart 5 0.386 0.485 9.8e-01
Trigeminal ganglion ) 0.405 0.492 1.0e+00

For each mouse tissue, we present the number of MARS tererdeseélfor building the predictor to minimize
prediction error, the classification error using this numbeMARS terms, the prediction error according
to 10-fold crossvalidation, and the corresponding BouwfigrcorrectedP value (corrected for MARS term
selection). After correction, predictors for CD8 T cellgiutary, trachea, skeletal muscle, heart, and trigem-
inal ganglion fail to predict significantly®{ > 0.01). Err stands for the classification error and PredctErr is
the prediction error.



Table 3. Ten TRANSFAC motifs with lowest classification efirmhuman CD4 T cells

Acces.# Factor Logo Enrich Error Sens Spec
M00032 c-Ets-1(p54) £2CSCCALLESE FG 0.409 0.346 0.836
MO00017 ATF CICTCACCTS2s$¢ FG  0.425 0.682 0.468
M00480 LUN-1  TCCCAGCTACTTT:CGA FG  0.437 0.768 0.358
MO00793 YY1 CCCATSTIx= FG 0439 0.548 0.574
M00652 Nrf-1 C CATCGCGCA FG 0441 0.204 0.914
M00316  Imperfect ([TUTGOGNTIININT FG  0.445 0.348 0.762
MO00175 AP-4 AACA CTLx=X BG 0.445 0.510 0.600
M00431 E2F-1 XITTC<LoCL:C FG 0446 0.786 0.322
MO00993 TAL1 TCCAECTSX BG 0447 0.592 0.514
MO00769 AML axcTITCIGCETIESE FG 0.451 0.374 0.724

ScEcX]

For each motif, we give the TRANSFAC accession (Acces.#esponding binding factor (Factor), se-
quence logo built from the PWM for the motif (Logo), indiaai whether the motif was enriched in the
foreground or background (Enrich), and the classificatioorgError) broken down to sensitivity (Sens)
and specificity (Spec).

has optimal classification performance when assigningieseces with max-score greater than the optimal
threshold to the foreground; similarly for background ehment. Columns five through seven give the
classification error, the sensitivity and the specificrigspectively.

The top 10 experimentally validated motifs for human CD4 Tiscand human liver are given in Ta-
bles 3 and 4. Motifs for the remaining tissues are availatdmfthe authors.

1.4 Top TRANSFAC distinct motif pair predictors

We give the top five modules constructed from experimentadlidated vertebrate motifs from TRANSFAC
for each tissue. Modules are ranked by classification gaiod modules that contain a motif similar to any
motif in a higher-ranking module are eliminated. The seta@umns is divided into three sections; the
first two sections present each of the two motifs as describefkction 1.3, and the third section gives
enrichment, classification error, sensitivity, and sfieity.

The top 5 modules for human CD4 T cells and human liver arengivdables 5 and 6. Modules for the
remaining tissues are available directly from the authors.

1.5 Top motif predictors

As in Section 1.3, we give the top 10 motifs for each tissu¢ Wrialso include motifs identifieth silico

by DME (2) and DME-B; DME-B is a modified version of DME thatregiders only the best occurrences in
each sequence. We name TRANSFAC motifs by their accessidnmatifs identifiedin silico are given a
name consisting of the prefix “Novel-” and an index. Some howatifs resemble experimentally validated
motifs (see Section 2.2.1). For these motifs, we assigntarfaorresponding to the experimentally validated
motif and describe the divergence between the motif andstperenentally validated binding site for the
factor. We speculate that the assigned factor may bind ¢s siharacterized by the novel motif, because
it binds to the sites characterized by the similar experiagnvalidated motif. When several motifs have



Table 4. Ten TRANSFAC motifs with lowest classification ehimhuman liver

Acces.# Factor Logo Enrich Error Sens Spec
M00918 E2F ITT CCCs BG 0405 0.686 0.504
M00248 Oct-1 I<TATC IAATT BG 0406 0.664 0.524
MO00071 E47 ATTAACA CTeITseS FG 0.415 0.584 0.586
M00646  LF-Al CETCAL FG 0416 0.628 0.540
M00145  Brn-2  zECATEC:TAATze:¥ BG 0.417 0.586 0.580
M00103 Clox  IZTATCCATIAIZTI BG  0.417 0.738 0.428
M00765 COUP TCACCITTCACGS FG  0.421 0.492 0.666
M00318 Lentiviral SAATAAAL BG 0421 0.648 0.510
M00129 HFH-1 IAITCTTTATIT BG  0.422 0.578 0.578
MO00025 Elk-1  $SefCCLLAAZZEE BG 0422 0.622 0.534

For each motif, we give the TRANSFAC accession (Acces.#esponding binding factor (Factor), se-
quence logo built from the PWM for the motif (Logo), indiaati whether the motif was enriched in the
foreground or background (Enrich), and the classificatioorgError) broken down to sensitivity (Sens)
and specificity (Spec).

Table 5. Five TRANSFAC motif pairs with lowest classificatierror in human CD4 T cells

Acces.# Factor Logo Acces.# Factor Logo Enrich  Error  Sens Spec
M00017  ATF AC T§T<:$C mM00793 YY1  LCCATSTI= FG 0403 0416 0.778
M00431  E2F-1 T C M00480  LUN-1 Icc CTACTTTZCGA | Fe 0403 0602 0592
M00032  Ets-1 Mo0423  FoxJ2 ALGATAATATTTII | FG 0406 0328 0.860
M00257  RREB-1 §C RAAAQC?QQQ% M00993  TAL1 ig AL :F L | BG 0425 0472 0678
M00147  HSF2 AZ=1T Moo175  AP-4  SICA czi BG  0.427 0.446 0.700

For each motif pair, we give the TRANSFAC accessions (Aé)esorresponding binding factors (Factor),
sequence logos built from the PWM for each motif (Logo), dadion whether the motif was enriched in the
foreground or background (Enrich), and the classificagoror (Error) broken down to sensitivity (Sens)
and specificity (Spec).

Table 6. Five TRANSFAC motif pairs with lowest classificatierror in human liver

Acces.# Factor Logo Acces.# Factor Logo Enrich  Error  Sens Spec
M00103  Clox A C ATTA'T" moo9i8 E2F T TIoLC( €L | BG 0364 0554 0718
Moo465 Pouerl CCAT AATT M00695  ETF (S-Sl BG 0376 0.648 0.600
M00071  EA47 ég;éé AGGTGL gég M00646  LF-Al <=TC4~ | FG 0384 0602 0630
M00129  HFH-1  TAXTCTTTATAT | mMoo224  STATL  pr&AITTO0L CAMST aga BG 0385 0.714 0516
M00025  Elk-1  $$SLCCLOAALLES | Moo248  oct1 T<TATCSTAATT | BG 0389 0496 0.726

For each motif pair, we give the TRANSFAC accessions (A&)esorresponding binding factors (Factor),
sequence logos built from the PWM for each motif (Logo), aadion whether the motif was enriched in the
foreground or background (Enrich), and the classificagoror (Error) broken down to sensitivity (Sens)
and specificity (Spec).



divergence lower than 1.0, we present the best match (lafise=igence). Motifs are available directly from
the authors.

1.6 Top distinct motif pair predictors

As in Section 1.4, we give the top five modules for each tisbuewe include motifs identifieéh silico by
DME and DME-B. Motifs are named as in Section 1.5, and eliteidas described in Section 1.4. Modules
are available directly from the authors.

1.7 Predictive modelsand interpretation

The predictive model (called predictors in the main paper)each tissue is described as a set of modules
and the MARS function that models their interaction. Forrepredictive model, we describe the modules
and features (see Section 2.3.1) and the motifs of which @éinexomposed. The MARS function is given
immediately below; it describes the interaction between rtiodules and is used to predict elevated and
inhibited transcription. The function is broken into itgrtes (see Section 2.3.2), and each is given an
interpretation. Here we describe more in depth analysishfonan CD8 T cells and testis. Predictive
models for all 56 human and mouse tissues are availabletlgifeam the authors.

1.7.1 Human testis predictive model

The human testis predictive model includes two modulesahaicomposed of novel motifs. Differential
expression in human testis is predicted with an error rai@. 897 (P < 1.5E-10), compared to 0.441 us-
ing only experimentally verified motifs. The predictor indes two termsJel andTe2, each describing a
synergistic relation between motifs paifi&l is the most significant contributor to prediction and it igpv
represented in the positive s@e2 is overrepresented in the negative set. Fig. 4 describesotfitgibutions

of Tel andTe2 to final prediction. A predictor that us@&2 alone has high sensitivity and low specificity,
and a predictor that usekel alone leads to higher specificity but lower sensitivity. Tdmnbination of
Tel and Te2 results in higher sensitivity thafel-based prediction and higher specificity than eithet-

or Te2-based prediction.Tel includes C/G-rich motifs ande2 includes A/T-rich motifs. However, base
composition alone is not enough to explain prediction gqyabase composition has a classification error
of 0.416 compared td).357 for the predictor. Tel motifs are compensatory: their combination increases
sensitivity at the expense of decreasing specificity. Degpeir similarity, they capture dependent but dis-
tinct signals. The overlap rate between the highest-hiked binding sites of the two motifs is not enriched
over what is expected by chance, and attempts to join thefsmasulted in weakened predictive ability,
suggesting that an additive relation is the best way to cagheir signal.

1.7.2 Predictive modelsfor human CD8 T cells

As an example, consider the predictive model for human CD@IIE give in Table 7 and Fig. 5. The predic-
tor includes two moduleX'1 and X2. X1 is composed of two TRANSFAC motifs M00743 and M00793
using the max-score-sum featurt¥2 is composed of two TRANSFAC motifs M00277 and M0O0691 using
the max-score-product feature. The MARS function has ttesas:

1. This positive constant term indicates that, by defaytt;cemoter will be called positive.



True Positives False Positives

a
Tel ez Tel Te2
Tel: Score(Motif 1)+Score(Motif 2) > 31.1
Te2: Score(Motif 3)-Score(Motif 4) > —59.2
329 331 409 201 188 291
b Motifl Motif 2 Motifl Motif 2
w TELCCCALEE
wrr (CTEECOCA
CcTvXT
245 329 243 124 201 140

Fig. 4. @ Human testis predictor constraints and the distributibtie positives and false positives across
its two moduleslel andTe2. Motifs in Tel are overrepresented in the positive set and motifieihare
overrepresented in the negative set. Promoters thatys#tiisiconditions orffel (Te2) are more likely to be
predicted as positive (negative). Selectionsigy, the predictor, ande2 are indicated in blue, red, and
green, and total set sizes are given immediately below. @oadpwith predictions based del alone,
predictions by the testis predictor include more true posst (331 vs. 329) and fewer false positives (188
vs. 201). Compared t@e2 alone, predictions by the testis predictor include consioly fewer false
positives (188 vs. 291)bj Motifs included inTel and prediction statistics fdiel across its two motif
components. These motifs share a similar core and diffgriorthe left- and right-most flanking positions.
Our experiments suggest that these two motifs function iomapensatory manner best modeled with an
additive relationship.



2. This term is negative if the max-score-sum of M0O0743 an@®3 (X1) is less than 24.5, implying
that if the sum of the scores of the highest-scoring sulggriof a given promoter for M00743 and
MO00793 is lower than 24.5, this term will contribute to a nagacall.

3. This term is negative X1 is less than 24.5 and the max-score-product of M00277 and6®IDO
(X2) is less than 45.1, implying that this term will contributea negative call in the event that both
modules score low. In our interpretation, this term will Ban impact (it will further contribute to a
negative call) only if the first term’s negative contributies smaller than the constant term, aki@
is less than 45.1.

It is important to remember that the interpretation in Figigscribes the effect of each term on prediction,
but terms do not act in isolation.

1.8 Human and mouse promoter set inter section

Some tissue-specific promoter sets include a large numbeoramon promoters; for example positive
sets for human CD4 and CD8 T cells include 70% common promot@ommon promoters correspond to
common transcripts, and are a measure of tissue-specpieesion similarity. We expect that tissues with
foreground or background promoter sets that have a highasityiin composition will also have similar
predictive models. Tables 8 and 9 give the proportion of lsinpromoters between each human tissue pair
and mouse tissue pair. The upper triangle describes théasityin composition of the positive sets (FG),
and the lower describes the similarity in composition of tlegative sets (BG).

1.9 Mouseheat map

The heat map in Fig. 6 is the mouse counterpart to the humamiaagiven in Fig. 3. It has a few changes
in tissue order to address prediction similarity in the netissues. The tissue set is also different, because
a different set of predictors in mouse failed the significamest.

2 Methods

This section describes methods used to prepare the datgjfydpatterns (motifs and motif modules),
and build predictive models based on those patterns. Algnarms named below are freely available
under the GNU Public License as part of Comprehensive Remyld&lement Analysis and Discovery
(CREAD) (http://cread.sf.net), with the exception of DMiEdlaDME-B (see Section 2.2.3), which are avail-
able from the authors.

2.1 DataPreparation

This section describes our methodology for obtaining séfg@moter sequences for transcripts showing
differential expression in tissue specific microarray esiments. The expression data discussed here are
due to Swet al. (3). There are three major steps in obtaining sequencersetstifie expression data:

1. Mapping probes to transcripts.

2. Mapping transcripts to promoters.



Table 7. TRANSFAC MARS classifiers for human CD8 T cells

Module  Feature  MotifName Factor Logo
X1 SUM M00743  c-Ets-1

M00793 YY1 —-—CC A%TT
Xy PRODUCT  M00227  v-Myb CéT ‘AT C

>=0)

ACG
M00691  ATF-1 CC AC TCA

MARS function terms (f(z) = max(z, 0)):

Term Interpretation

+0.495 FG by default

-0.0788 f(24.5 -X1) BG if X; scores low

- 0.00355 f(24.5 -X;) f(45.1 - X5) | BG if X, scores low and{, scores low

Fig. 5. MARS predictor for human CD8 T cells.

3. Selecting sets of tissue-specific transcripts.

The objective is to obtain sets of sequences with unusudgly &nd unusually low frequencies of binding-
site patterns that are associated with the observed tgzewfic differential expression.

2.1.1 Mapping probesto transcripts

We map Affymetrix probes to RefSeq transcripts in an atteimtentify isoforms detected by the UniGene-
centric arrays. This step is necessary, because many ganesissue-specific isoforms (4—6), and because
different isoforms often have different first exons and dtidae assigned different promoters. We focused
exclusively on RefSeq transcripts because the vast majofriSu et al. (3) probes can be associated with
RefSeq transcripts (7) (see Table 10), and because comdisigoCold Spring Harbor Laboratory Mam-
malian Promoter Database (CSHLmpd) (8) transcriptiont site (TSS) annotation can almost always be
mapped to RefSeq transcripts.

We use the expression data to select sets of transcriptsewdromoters are hypothesized to be rich in
binding site patterns that determine tissue-specific &gion, and t@ posteriori evaluate tissue-specific
motifs, modules, and predictive models. Transcript s@lactequires mapping probes to transcripts, and
probe intensities to the corresponding transcript intgndiVe classify transcripts as either enhanced with
tissue specificity (positive) or inhibited with tissue spity (negative) based on the motif sites in their
promoters.

To associate probes with RefSeq transcripts, we mappedobepback to the genomes (NCBI human
genome assembly Hs33 and mouse genome assembly ver. 3¢ tddebruary 2003) to identify the probe
locations and exon targets. We used the resulting prolexdo- map to identify the RefSeq transcripts
targeted by each probe and to assign a probe set to eachripphn$dn a particular tissue the probe set AP
calls disagreed, we removed the transcript from furtheisa®ration. To obtain intensities for a transcript
we simply took the mean intensity of its assigned probes.



Table 8. common promoter composition in human tissue-fpesgts

Adip Adre Amyg Bone CDA4T CD8T Cere Dors Hear Hypo Kidn Live lguhymp Olfa Ovar Panc Pitu Plac Pros Sali

Skel

Test Thym ThymcTrTrig Uter

Adip
Adre 0.150
Amyg 0.098 0.080
Bone 0.080 0.176 0.052
CDA4T 0.084 0.062 0.072
CD8T 0.058 0.064 0.074
Cere 0.102 0.186 0.132
Dors 0.084 0.068 0.050
Hear 0.084 0.174 0.076
Hypo 0.128 0.112 0.162
Kidn 0.120 0.248 0.064
Live 0.084 0.176 0.068
Lung 0.084 0.200 0.126
Lymp 0.118 0.098 0.092
Olfa 0.106 0.092 0.118
Ovar 0.118 0.096 0.066
Panc 0.104 0.104 0.088
Pitu  0.084 0.100 0.120
Plac 0.124 0.180 0.120
Pros 0.102 0.110 0.208

0.112 0.034 0.022 0.010
0.034 0.074 0.012
0.014 0.006
0.014

0.064
0.048 0.414
0.154 0.034
0.118 0.036
0.202 0.032
0.048 0.084
0.204 0.044
0.216 0.042
0.226 0.044
0.108 0.126
0.076 0.080
0.106 0.042
0.100 0.080
0.078 0.114
0.146 0.090
0.092 0.124

Sali  0.108 0.088
Skel 0.104 0.096
Test 0.100 0.166
Thym 0.118 0.152
Thyr 0.094 0.074
Trac 0.140 0.134
Trig  0.068 0.060
Uter 0.092 0.066

0.068
0.050
0.100
0.120
0.294
0.114
0.032
0.270

0.078 0.082
0.108 0.036
0.146 0.068
0.122 0.096
0.070 0.148
0.140 0.056
0.090 0.044
0.058 0.142

0.006 0.032 0.034 0.054 0.082800.064
0.010 0.080 0.074 0.088 0.032400.084
0.008 0.226 0.020 0.008 0.380000.006
0.012 0.054 0.084 0.044 0.004000.038
0.704 0.014 0.010 0.012 0.006400.008
0.016 0.008 0.002 0.00@800.002
0.072 0.052 0.1(3¥ 0.026
0.040 0.072 0.044 0.0@%200.008
0.028 0.158 0.092 0.008000.092
0.088 0.112 0.054 0.052 -02000.016
0.050 0.200 0.090 0.28840. 0.170
0.048 0.122 0.104 0.363800.230
0.060 0.158 0.068 0.2@84600.226
0.112 0.120 0.086 0.066200.100
0.072 0.104 0.118 0.068000.088
0.054 0.082 0.302 0.108000.108
0.104 0.064 0.116 0.0324 0.096
0.108 0.096 0.088 0.026800.084
0.078 0.144 0.046 0.132400.184
0.112 0.078 0.072 0.0B30(0.086
0.074 0.080 0.214 0.068800.098
0.038 0.064 0.192 0.168600.128
0.058 0.128 0.072 0.168000.166
0.098 0.130 0.048 0.130600.144
0.134 0.074 0.044 0.01Z400.068
0.070 0.136 0.138 0.088600.140
0.046 0.062 0.314 0.122000.064
0.134 0.100 0.082 0.068600.056

0.050 -

0.244
0.042
0.060
0.090
0.100
0.060
0.136
0.118
0.056
0.160
0.160
0.098
0.092
0.086
0.102
0.048

0.096
0.082
0.016
0.022
0.022
0.010
0.024
0.016
0.128
0.014
0.084
0.088
0.118
0.090
0.094
0.120
0.078
0.240
0.170
0.056
0.074
0.194
0.236
0.136
0.118
0.060
0.148

0.048
0.062
0.008
0.106
0.180
0.178
0.046
0.072
0.062
0.018
0.056
0.028
0.088

0.092
0.114
0.120
0.110
0.142
0.100
0.118
0.072
0.130
0.154
0.116
0.138
0.070
0.156

0.084
0.102
0.044
0.086
0.010
0.008
0.080
0.172
0.052
0.096
0.056
0.032
0.094
0.076
0.116
0.088
0.104
0.086
0.110
0.128
0.086
0.094
0.114
0.084
0.118
0.102
0.096

0.092
0.114
0.020
0.080
0.010
0.018
0.122
0.224
0.038
0.008
0.144
0.024
0.044
0.108
0.094
0.172
0.068
0.090
0.064
0.198
0.178
0.082
0.072
0.056
0.180
0.252
0.112

0.044
0.084
0.014
0.052
0.018
0.016
0.074
0.120
0.048
0.008
0.086
0.064
0.068
0.110
0.062
0.182
0.116
0.122
0.130
0.166
0.120
0.094
0.120
0.084
0.180
0.144
0.128

0.048
0.098
0.096
0.070
0.014
0.020
0.078
0.054
0.024
0.126
0.048
0.032
0.032
0.064
0.102
0.038
0.038
0.120
0.094
0.086
0.048
0.102
0.100
0.140
0.138
0.040
0.082

FG sets are given in the top portion and human BG sets in therbot

Table 9. Common promoter composition in mouse tissue-Bpexts

0.102
0.072
0.022
0.026
0.008
0.004
0.024
0.022
0.038
0.032
0.058
0.036
0.168
0.058
0.060
0.050
0.062
0.048

0.088400.028
0.086800.050
0.032600.004
0.084800.062
0.022800.008
0.022800.008
0.0a2600.040
0.048200.096
0.082400.126
0.042000.022
0.002400.064
0.001400.014
0.202000.016
0.062200.042
0.0991200.084
0.068300.044
0.092600.056
0.008000.056
0.094400.016
0.150 -99200.032
0.07600.0- 0.118
0.0586000174
0.1532001088 0.084
0.2324001060 0.058
0.11@8003052 0.034
0.1682001196 0.088
0.0388000224 0.246

0.012
0.040
0.008
0.038
0.010
0.010
0.024
0.014
0.038
0.020
0.018
0.032
0.028
0.018
0.016
0.020
0.026
0.038
0.026
0.024
0.020
0.012

0.170
0.118
0.140
0.068

0.046
0.050
0.014
0.090
0.130
0.122
0.062
0.044
0.040
0.008
0.054
0.032
0.090
0.118
0.048
0.090
0.096
0.044
0.050
0.084
0.026
0.012

0.032

0.144
0.134
0.026

0.12P4002124 0.062 0.086 0.156

0.076
0.072
0.066
0.022
0.030
0.036
0.034
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Fig. 6. Prediction error ofis-regulatory module (CRM)-based predictors (right) traimma specific mouse
tissues and tested on all mouse tissues (top). Errors batpand above 45% are displayed in red, black,
and green. The diagonal, corresponding to predictorsedaamd tested on the same tissue, gives prediction
error under 10-fold crossvalidation. When applying a praatito a tissue other than that on which it was
trained, promoters common to both tissues are excludedud@ssand corresponding predictors with
crossvalidation erroP value above the 0.01 significance cutoff are omitted.
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Table 10. Summary of probe data

Human Mouse
Probes on the chip 33,674 36,182
Probes called present at least once 20,041 22,728
Probes associated with a RefSeq transcript 15,967 10,950
Probes with more than one RefSeq transcript 2,035 308
Mean intensity for probe present calls 2,886.4 750.4

Number of probes on the chips includes Affymetrix probes @h- probes, but not the Celera probes.

Table 11. Summary of transcript data

Human Mouse
UniGene sets represented on chip 33,954 31,479
RefSeq transcripts represented on chip 12,651 9,851
RefSeq transcripts called present at least once 8,450 7,398
RefSeq transcript ortholog pairs 22,209 22,209
RefSeq transcripts with at least one ortholog 11,793 10,189
RefSeq transcripts with unique first exon 8,157 9,884
RefSeq transcripts with more than one probe 3,757 1,322
Mean number of probes per RefSeq transcript 1.3 1.03
Most probes associated with a transcript 25 23
Percent of calls for which probes disagrée.(discarded calls) 7.8% 5.1%
Mean intensity for RefSeq transcript present calls 2,970.1 973.1
Proportion of RefSeq transcript calls discarded 0.264 ».38

2.1.2 Mappingtranscriptsto promoters

Regulatory elements can exist almost anywhere in the genbuatehey are known to have a high con-
centration in proximal promoters. Smith al. (2) and Sumaziret al. (9) were successful in identifying

experimentally validated motifs for factors known to plégstie-specific regulatory roles. Promoter quality
(i.e., confidence in the TSS) has a large impact, and poor-qualiignpters may hurt motif discovery as
much as poor-quality sets of tissue-specific transcrifuts dxample, those containing ubiquitous or incor-

rectly assigned transcripts).

To map transcripts to promoters, we used CSHLmpd, whichuded annotations for human, mouse,

and rat (8). We exclude isoforms that share first exons and im@onsistent calls in any of the tissues. We
prohibit multiple representations of promoters in our gigeiand negative sets (see below for definition).
CSHLmpd includes 51,506 and 46,475 promoter annotationeufman and mouse, of which 16,433 and
15,061 are assigned to RefSeq transcripts. We extractedgien sequences for each transcript with a
promoter in CSHLmpd, using a sequence from -1,000 to +1@Qdivelto the TSS. We note that mouse TSS
prediction is thought to be substantially less accurate thanan TSS prediction at present.

2.1.3 Transcriptsdifferentially expressed in atissue

Using the intensities we assigned to transcripts and trenmdtion in CSHLmpd, we constructed sets of
promoters for genes with tissue-specific differential egsion. The procedure we used is as follows:
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Table 12. Summary of tissue data

Human Mouse
Total number of tissues 79 61
Number of tissues with experiments in human and mouse 28
Number of tissue-differential transcripts 1,243/2,517 118B/2,175
Mean intensity for a present call 3,550.5/3,560 2,3171212,2
Number of tissue-specific orthologs 756/1162 744/1,123
Mean intensity of tissue-specific orthologs 4,653.9/2,28 2,561.3/2,207

1. For each transcript and each tissue, we calculate the ewoflstandard deviations by which the
intensity of that transcript in the tissue differed from thean intensity for that transcript across all
tissues. We call this the standard intensity.

2. If the standard intensity is positive, the transcriptaigigo be enhanced with tissue specificity, and if
the standard intensity is negative, the transcript is salktinhibited with tissue specificity.

3. The sets of enhanced and inhibited transcripts are raakeakrding to their standard intensity, from
highest to lowest in each tissue.

4. Transcripts with no associated promoter in CSHLmpd amoked from consideration.

5. Ofthe remaining overrepresented transcripts, the émiing 500 (according to standard intensity) are
selected in each tissue, and their promoters form the pesit (foreground) for this tissue. The 500
promoters corresponding to remaining transcripts withdsixstandard intensity form the negative set
(background).

The resulting positive and negative sets are called thadig#ferential sets. These uniform-size sets
include promoters of transcripts with intensities near ringan in some tissues and exclude promoters of
transcripts with intensities far from the mean in otherues However, experimentation suggests that this
size (500) is a good compromise between tissue specificity satistical power. The benefits of using
large and uniform size sets include consistent predicteimates that are comparable across tissues and
robustness to outliers and features that are shared by fawqters. The drawbacks include higher estimates
of prediction-error and elevated noise level.

2.2 Obtaining motifsand modules

Motifs are abstract characterizations of the DNA sequerements to which transcription factors bind.
Modules are sets of motifs whose corresponding sites argtiido interact synergistically.

221 PWMs

We represent motifs with PWMs; PWMs are described in deta$tormo (10). A rigorous statistical model
based on PWMs was developed by Etwal. (11). The statistical interpretation of PWMs allows thenb&
converted into scoring matrices. Because PWMs descrilihdisons over the substrings of a sequence, we
can estimate the likelihood that the substring was gerndfaden the distribution described by a PWM. The
score given by the scoring matrix for a substring is the lotheflikelihood that the substring was generated
by the distribution described by the PWM, divided by thelilk@od that the substring was generated by the
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base composition (which can be the genomic base compasitidhe base composition of some other set
of sequences). Negative scores indicate that the substrsgmore likely to have been generated by the
base composition than the PWM. Positive scores indicateatyr likelihood for generation by the PWM.

When using experimentally verified on silico-identified motifs, we rank each motif as a predictor
and eliminate motifs that are similar to higher-ranked fisotWe also matclin silico-identified motifs to
transcription factors based on similarity of identified tifeoand experimentally verified binding-site motifs
for these factors. We compare motif pairs using matcompa?g, (vhich aligns matrices and compares
the aligned column; matcompare implements various measirdistance or similarity between columns.
We use the Kullback-Leibler divergence method to compatenens (this is a general distance between
divergence). In comparing matrices, we require that thevsatigned columns be contiguous, and for the
smaller of the two matrices being compared, we require Htahost, a specified number of positions not be
aligned (we call this the number of overhang columns). Tacia when two matrices are to be considered
as representing the same motif, we require that the divesgeer aligned column be at most 1.0, and we
restrict the number of overhang columns to 1. These valuesuitable for matrices of widths roughly in
the range 8-12. In our experience, when aligning longer igedy it is best to allow a greater overhang
value, and when aligning shorter matrices, it is best tocedbe threshold for divergence and not allow any
overhang.

2.2.2 Motifsfrom the TRANSFAC database

TRANSFAC (1) is the largest database of experimentallydedaéd transcription factor-binding sites and
corresponding binding-site models. We used motifs fromviréebrate subset of TRANSFAC Professional
version 8.4 PWMs. This subset includes 546 vertebrate cestiof varying qualities, of which fewer than
120 are distinct according to matcompare.

2.2.3 Motif discovery usng DME and DME-B

We used DME (2) and a variant DME-B fde novo motif discovery. DME enumerates PWM-based motifs
composed of columns from discrete sets of column types. TH& Rlgorithm defines motif occurrences,
and these are used to measure the quality of a motif. The $moeemotif in DME is the score of all of
the motif’s foreground occurrences, minus the score oftal motif's background occurrences. DME is
described in detail by Smitét al. (2).

DME-B uses the same enumerative strategy, but the score ffiootd in DME-B is the number of
foreground sequences with a score greater than 0 minus thbenof background sequences with a score
greater than 0. DME-B keeps track of the sequences thatinootaurrences and is more expensive to
compute in terms of time and space.

For both DME and DME-B, the enumerative strategy uses skparameters including motif width
(w), granularity g), refinement limit ¢), and information content measured in bits/colurbyy See Smith
et. al (2) for detailed definitions. We use the tugle, g, r, b) to describe sets of parameters used by DME
and DME-B. These parameters indicate the degeneracy ofswawmtil are related to the expected number of
occurrences of the motifs in random sequences.

For each tissue, DME was used to obtain three sets of mo#td) set containing 30 motifs. The pa-
rameter combinations used wer2, 0.5, 0.25,1.45), (10,0.5,0.125,1.6), and(8, DN, 0.125,1.8). DME-

B was used to obtain two sets of motifs, each set containingn8tfs, with parameter combinations
(10,1,0.25,1.6) and (8,1,0.125,1.8). All of the motifs were pooled to obtain a single set for eaich t
sue.
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2.2.4 Selecting motifsfrom a set of candidates

The initial set of candidate motifs may include experiméytealidated motifs, computationally identified
motifs, or both. We used motifclass (this program is avdddimm CREAD) to assign scores to motifs based
on their ability to discriminate between positive and naggbromoters sets. For a given tuple consisting of a
promoter and a motif of lengtlw, motifclass produces a score that is equal to the score tiigihest-scoring
subsequence of length in the promoter and its reverse complement. Subsequeneexared using the
log-likelihood score, as described in Section 2.2.1. Hgwassigned a score to each promoter in the positive
and negative sets using the motif, motifclass evaluatesnibié’s ability to discriminate between positive
and negative promoters based on error rate. For a given fu@shold, motifclass predicts that promoters
with scores above the threshold belong to the positive setsaores below belong to the negative set. For
each motif, motifclass selects a score threshold that nmeisnthe error corresponding to this prediction,
where the error is simply the rate of incorrect predictions.

After scoring each motif using motifclass, we used the umitifs program to eliminate motifs from the
set if they are sufficiently similar (based on Kullback-Leibdivergence) to a higher-scoring motif. Finally,
we retained the top 100 remaining motifs.

2.2.5 Building modulesfrom motifs

We constructed modules consisting of pairs and triples difsnfsom the set of retained individual maotifs.
Pairs were assembled using the modclass program, whichisemimotifs into modules and evaluates them
in a manner similar to motifclass, using max-scoring subsages and thresholds. For a module to classify
a sequence as positive, the sequence must have substrihgscaries above threshold for each motif in the
module. To construct modules, modclass simultaneously faptimal threshold values for each motif in a
candidate module, which is time consuming and done usingrechrand bound algorithm.

Because module enumeration and construction are commadi expensive, we built modules of size
2 using exhaustive enumeration, and modules of size 3 werergied from modules of size 2. When three
pairs (size-2 modules) are composed of only three distirattfsy those three motifs are combined to form
a module of size 3. All such triples were retained and aloniip whie top-scoring 100 pairs produced by
modclass, form the set of retained modules.

2.3 Building predictive models

Using the retained motifs and modules, we built models tdiptevhether the transcripts associated with
promoters would be overexpressed or underexpressed ircHispissue. Because we wanted to determine
whether proximal promoters contained sufficient informatio make statistically significant predictions,
we evaluated the accuracy of predictions made by these smo@elr method consisted of first constructing
sets of features using motifs and modules, then using MAR®4dehine-learning algorithm) to build a
model from those features; the quality of the models wasaébed by crossvalidation.

2.3.1 Pattern-based features

First, we used the sets of retained motifs and modules tarmtgeatures from which to build the models.

Features (in this context) are functions describing prigpeiof sequences in terms of motifs or modules.
We initially tested many types of features to use for clasaifon. These include functions based on counts
and strengths of motif and module occurrences in sequeasesgell as relative positions of occurrences
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for motifs in a module and positions of motif occurrencestige to the transcription start site. Although
positions of occurrences are known to be important for ligdiites of certain factors, the features we tested
that were based on position performed poorly relative tessing-score features.

The feature types selected to be used for classificatidndied the max-score feature (score of highest
scoring substring, see Section 2.2.4) for individual neptibr modules, we used the sums (max-score-sum)
and products (max-score-product) of the max-score fedtarrenotifs comprising the module. Each type
of feature was evaluated for each motif or module, as ap@tpron each positive and negative promoter.
The final sets of features for the tissue-differential setsesponded to the max-score features and the
max-score-sum and -product features (one for each retanoetile).

2.3.2 Classification using MARS

We used the MARS algorithm (13) to build predictive modelagsifiers) from the sets of features. MARS is
a nonparametric and adaptive regression method that kugdsof models using stepwise forward selection
and backward elimination and in terms of basis functions thed products. Each basis function has the
general form

max(0,x — k) or max(0,k — z),

wherex is an input variable (a feature), aids a constant called the knot value. Each term is selected to
minimize reduction in variance. Let be the response variable for thg observation, and lej; be the
corresponding predicted outcome, then reduction in vadds defined as

RIV=1- (3" (T —0)2) /(0 (v — 9)),

wherel'; = y; — 9;, andy andI are the corresponding means.

We build a model up to a maximum number of terms, and then rertewns iteratively to generate a
set of models of different sizes. At each stage, one termn®ved so that the performance of the model
consisting of the remaining terms is maximized. MARS pradueither (i) all resulting models, or (ii)
the model with size maximizing the error under crossvailaa(14). We adapted MARS to function as a
classifier by having it regress against response variaesicted to 1 for a positive promoter (observation)
and -1 for a negative observation.

The models constructed by MARS can reveal complex intamastbetween features. The sign of each
term indicates whether that term will contribute to assignobservations to the positive or the negative
set. The knots appearing in the basis functions act as a aatiole and impose criteria that eliminate the
influence of any term containing a basis function not meeipgrticular value. As classifiers, these models
behave like Boolean formulas with weighted terms.

2.3.3 Evaluating predictive ability

We use crossvalidation to evaluate how well predictive negeedict differential expression in a tissue.
To correctly perform crossvalidation, each testing settrbesexcluded from motif discovery, optimization,
module construction, and predictor construction to ensgrirate estimation of the prediction error.

We used 10-fold crossvalidation, which randomly partitidghe data into 10 equal size parts. For part
k, a model is trained on the combined other 9 parts and theedtest partt. In this way, each observation
is involved in exactly one testing set. The testing resuitsefach observation are used to calculate the
sensitivity, specificity, and error rate of the predictonThese statistics correspond to 10 distinct trained
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models and provide an indication of how well a model trainedh® entire data set would do when making
predictions about data not yet observed.

Under the null hypothesis that no special signals are contmariven set of tissue-differential promot-
ers, we expect our predictive models to have a predictiver efr0.5. Therefore, the probability of observing
a predictive error lower than for a particular tissue is distributed according to a binaindistribution, and
we can obtain & value to use in determining statistical significance.

As described in Section 2.3.2, our implementation of MAR&dpices 6 different models for each train-
ing set. As the appropriate model size for each tissue, veetstie size with the smallest predictive error.
Because this represents selecting the optimal from amoagd size 6, we use a Bonferroni correction for
multiple testing, which amounts to multiplying the resudfiP value by 6.

To demonstrate the effect of motif identification and matifd module optimization before test-set
exclusion, we generated 100 pairs of positive and negatiemgpter set for both human and mouse by
randomly selecting promoters from CSHLmpd. We identified aptimized motifs in the entire set, used
MARS to generate a predictive model on each training set atichated the prediction error on the test set.
Average prediction errors for human and mouse vie389 4+ 0.013 and0.378 + 0.012, which after multiple
sampling correction, are statistically significant. Wheatif identification and optimization were done after
test-set exclusion (the correct way), the average prediatiror for human and mouse wad91 + 0.018
and0.491 + 0.017, which is not statistically significant.
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