
Appendix: Numerical Method

Here, we fully elucidate the numerical implementation of the model described in this article.
First, we describe the method used for simulating the kinetochore, and then we describe the
method used to simulate the rest of the chromosome. All physical parameters not defined
here are defined in Model.

The chromosome is discretized as explained in Model. As mentioned, the central segment
of the chromosome x0 is considered to be connected the the kinetochore via a stiff spring,
thus yielding the following relation for the effective 1D diffusion constant of the complex:

Deff =
DkinetochoreDx0

Dkinetochore + Dx0

, [1]

where

Dx0 =
kBT

(∆s)ζ
. [2]

This complex then diffuses in the potential defined by the interactions of the kinetochore
with the microtubule and the elastic interactions of the central segment with the rest of the
chromosome.

The nature of the Brownian ratchet potential is inherently discontinuous. Thus, one
cannot use a standard forward Euler method, because the instantaneous force caused by
the potential drop ∆V is nil almost everywhere (and infinite almost nowhere). Instead, we
use the method that allows for for discontinuous potentials (1). This method discretizes the
motion of the kinetochore in space, yielding jump rates for the motor along a one-dimensional
lattice given the effective diffusion coefficient of the kinetochore and the potential acting upon
the kinetochore. This simulation technique has been shown to be strongly convergent (1).

Here, the lattice sites are at positions
(
m + 1

2

)
(∆x), m = . . . ,−1, 0, 1, . . . along the x-

axis, where ∆x is the lattice width, chosen such that L (the period of the Brownian ratchet
potential) is some integer multiple of ∆x. Note that the potential jumps of −∆V never occur
at the lattice sites themselves, but rather occur halfway between (some) adjacent lattice sites.
Recall that x0 = (x0, 0, 0) is the position of the kinetochore. Therefore x0 must coincide with
the position of one of the lattice sites, and so x0 changes in steps of ±∆x. As it does so, the
whole configuration of the chromosome changes from x to x ± (∆x)ex

0 , where ex
0 is a unit

vector in the same higher dimensional space as x with components (ex
0)

i
j = δj0δi1. Thus,

the configuration x± (∆x)ex
0 is the same as x, except that the kinetochore has been moved

forward or backward along the microtubule by an amount ∆x (not to be confused with the
length L of a tubulin heterodimer: ∆x is a numerical parameter that is much smaller than
L).

The rate constants (probabilities per unit time) for jumping forward or backward along
the compuational lattice are given by

F (x) =
Deff

(∆x)2

αF

eαF − 1
[3]

B(x) =
Deff

(∆x)2

αB

eαB − 1
, [4]

1

where

αF =
1

kBT
(E[x + (∆x)ex

0] − E[x] + U(x0 + ∆x) − U(x0)) [5]

αB =
1

kBT
(E[x− (∆x)ex

0] − E[x] + U(x0 − ∆x) − U(x0)) , [6]

where E(x) is the elastic energy of the chromosome configuration x, and U(x) is the discon-
tinuous tilted periodic potential characterizing the imperfect Brownian ratchet motor that
pulls on the chromosome. Both E and U are defined in the text.

The procedure for choosing the waiting time ∆τ for the jump to occur, and the direction
of the jump when it does occur, is as follows (2). First, a random time increment ∆τ is
chosen from an exponential distribution with mean value (F (x) + B(x))−1. This represents
the waiting time until the next jump event occurs, be it either forward or backward along the
lattice. Next, another random number r is generated, uniformly distributed in the interval
[0, 1]. Then, if r < F (x)/(F (x) + B(x)), q is set to x0 + ∆x; otherwise, q is set to x0 −∆x.
The outputs of this procedure are ∆τ , a randomly chosen timestep duration, and (q, 0, 0),
the position of the kinetochore at the end of the time step. The procedure used to update
the configuration of the rest of the chromosome over the time interval ∆τ will be described
next.

To update the configuration of the rest of the chromosome, we use the Euler-Maruyama
method (3) for the solution of systems of stochastic ordinary differential equations. There
are, of course, stiffness constraints on the time step, which are especially severe because
of the fourth-order differences in the computation of the force density of an elastic rod.
This poses a difficulty because the time increment chosen in the manner described above is
exponentially distributed, allowing for the possibility of arbitrarily large time increments.
This difficulty is circumvented by first empirically determining a maximal time step ∆τ ∗ at
which the simulation is stable, and then dividing the chosen time increment ∆τ into p equal
parts, where p is set equal to d ∆τ

∆τ∗
e. This yields a timestep ∆t = ∆τ/p. The following Euler

update scheme is then executed p times:

xi
j(t + ∆t) = xi

j(t) +
∆t

ζ
(F elastic)i

j(t) +

√
2kBT (∆t)

ζ(∆s)
wi

j(t), |j| < N [7]

xi
j(t + ∆t) = xi

j(t) +
∆t

ζ
(F elastic)i

j(t) +

√
2kBT (∆t)

ζ(∆s/2)
wi

j(t), |j| = N, [8]

where i is the index of the spatial component, j is the segment (node) index, (F elastic)i
j(t)

refers to the elastic force density at time t, and wi
j(t) is chosen (independently for different

values of (j, i, t)) from a Gaussian distribution with mean 0 and unit variance. In practice,
the lattice parameter ∆x is chosen small enough that the probability of more than one Euler
step being needed to traverse any one of the randomly chosen time increments ∆τ is very
low. After p Euler steps have been taken, x0 is set to (q, 0, 0), where q is the final position of
the kinetochore that was chosen in the first part of the algorithm, in which a random choice
was made whether to move one lattice step forward or one lattice step backward.

Note that in the Euler-Maruyama step(s) as described above, only the elastic force density
is used, the motor potential U(x) is ignored. Moreover, the kinetochore is treated like any

2

other node of the chromosome during this part of the algorithm. In particular, it moves
freely in 3D space even though it will be put back on the computational lattice at the
predetermined (randomly chosen) position (q, 0, 0) as soon as the p Euler-Maruyama steps
have been completed. An alternative that may occur to the reader is to freeze the position
of the kinetochore during the Euler-Maruyama step(s), holding it at the lattice point where
it was at the beginning of the timestep while the p Euler-Maruyama steps are being carried
out for the rest of the chromosome, and then finally moving the kinetochore to (q, 0, 0) at
the end of the time step. We remark that these two possible schemes are identical for p = 1,
and only differ for p > 1. In practice, we choose parameters so that p > 1 is a rare event,
and thus there is little practical difference between these two alternatives.

One must, of course, demonstrate convergence of this numerical scheme. One difficulty
in checking for convergence in a stochastic numerical scheme is that result of a simulation is
different every time. To circumvent this difficulty, we chose to look for convergence of steady
chromosome velocity as measured over the duration of a long simulation run, thus averaging
out the variability inherent in the stochastic method.

In this manner, we checked for convergence of the steady chromosome velocity with
respect to ∆x and ∆s. We ran simulations by using parameters for the long chromosomes
(s0 = 1.5µm) for 1.92×1010 iterations with ∆φ = 0. This choice of ∆φ is, of course, different
from the value of 8 kBT used in the text. However, at 8 kBT , the chromosomes moved too
slowly to allow one to obtain statistically significant values for steady chromosome velocity
within a reasonable amount of computational time. We expect the convergence properties to
be similar regardless of the choice of ∆φ, though, as ∆φ does not introduce any significant
discontinuities into the motor potential.

For ∆x, velocities were computed for N = 25 over a range of ∆x values. For ∆s, velocities
were computed for ∆x = L/512 over a range of ∆s values (the ranges are shown in Figs. 3
and 4, respectively). In general, determining the convergence rate from these data presents
a challenge because there is no theoretical value with which to compare our computed values
to find an error. Usually, this is circumvented by considering the “error” at each data point
be the difference between successive runs; for instance, the error in the computed velocity
for N = 6 is the difference between the velocity at N = 6 and N = 12, the error for N = 12
is the difference between N = 12 and N = 24, etc. However, this approach is limited in that
it reduces the number of data points by one and also may not accurately reflect the error.
To circumvent these difficulties, we took the approach of considering the actual theoretical
value of the velocity, to which our data is then compared, to be a variable. Then the problem
becomes a nonlinear optimization problem: one must find the theoretical value such that it
makes a plot of the error versus ∆x (or ∆s) as linear as possible, on a log-log scale. To be
more precise, for a prospective theoretical velocity v∗, we define the log of the errors lerr(∆x)
by:

lerr(∆x) = log(|v(∆x) − v∗|), [9]

where v(∆x) is the computed velocity for the given value of ∆x. The optimization problem
is then to find v∗ that maximizes the correlation coefficient between log(∆x) and lerr(∆x)
over the range of ∆x for which velocities were computed. This procedure was done to find
convergence rates for both ∆x and ∆s; the results are shown in Figs. 3 and 4, respectively.

3

The rates of convergence are 1.76 for ∆x and 2.61 for ∆s, with corresponding theoretical
velocities v∗ of 8.742× 10−7m/s and 8.777 × 10−7 m/s.

These rates are reasonable given the nature of the numerical scheme. For ∆x, the nature
of the scheme is such that 〈∆τ〉 ∝ (∆x)2, yielding a convergence rate of 0.88 with respect
to 〈∆τ〉. This is higher than the 0.5 rate of convergence one generally finds for an Euler-
Maruyama scheme. This may be caused by the distributed rather than deterministic nature
of ∆τ .

There is a slight subtlety when trying to understand the rate of convergence of ∆s. This
arises from the manner in which the jump transition rates are chosen in Eqs. 3 and 4.
Because Deff depends on ∆s, as indicated in Eqs. 1 and 2, varying ∆s will also effectively
cause a decrease in 〈∆τ〉. Thus, the convergence rate should actually slighly higher than what
one might expect solely based on the nature of the spatial discretization of the chromosome.
This is indeed the case, as we have obtained a convergence rate of 2.61, which is more than
one would expect given our use of a second-order discretization scheme. The fact that the
additional convergence gained is slightly lower than the rate of convergence with respect to
∆τ may be because Deff does not depend on ∆s in a linear fashion.

References

1. Wang, H. Y., Peskin, C. S. & Elston, T. C. (2003) J. Theor. Biol. 221, 491–511.

2. Gillespie, D. T. (1977) J. Phys. Chem. 81, 2340–2361.

3. Kloeden, P. & Platen, E. (1993) Numerical Solution of Stochastic Differential Equations
(Springer, New York).

4

