
Supporting Text

We provide a basic overview of supply and demand for readers not familiar with this material.

In Fig. 1, the upward sloping supply curve indicates the quantity of land of conservation interest

that could be provided for development at a given price. Specifically, suppose every landowner

in the area who currently owns such land has their own “reservation price,” which is the mini-

mum compensation they would need to give up their property. If we arranged the landowners in

order of increasing reservation price, the supply curve would show the cumulative distribution.

The demand curve shows the maximum willingness of developers to pay for each acre of

land. No developer can afford land that costs more than some “choke price.” However, just be-

low this price, a small number of particularly profitable developers are willing to pay a great deal

per acre. As the price drops, an increasing number of developers are willing to purchase land,

which leads to the downward-sloping demand curve. Many factors will determine the particular

shape of the demand curve, such as the availability of substitutes for land for development.

The assumption of perfect competition ensures the market equilibrates at point (q1, p1),

where the supply and demand curves intersect. In this equilibrium, q1 acres that were initially

of conservation interest are developed, each fetching fixed price p1. Although many landowners

would have been willing to allow development of their land for less (those to the left of q1),

competition between developers drives up the market price. The price equilibrates at p1, be-

cause some developers can no longer afford land and drop out of the market as the price rises.

Properties falling to the right of q1 are worth more as open land than the available market price

and remain undeveloped.

To illustrate, we assume linear supply and demand in Fig. 1,

p = msq + ps and p = mdq + pd , [1]

where p is the price, q is the quantity of initially available land demanded or supplied, slopes



ms and md are the inverse sensitivities of supply and demand, and intercepts ps and pd are the

minimum reservation price of current landowners and the choke price, respectively. In this case,

the basic market equilibrium is

q1 =
pd − ps

ms − md

and p1 =
mspd − mdps

ms − md

. [2]

The conservation value of the resulting landscape would be α(A− q1), where A is the total area

initially of conservation interest.

We consider the counterfactual situation in which a conservation group also competes in

the land market and has a budget B to spend on reserves. If the conservation group buys land

titles outright, its demand curve is B = pq. We can construct an aggregate demand curve

(Fig. 1) that includes the conservation group and developers by horizontal addition of their

respective individual demand curves. For example, with the development demand from Eq. [1],

the aggregate demand curve is

p =




1
2
(mdq + pd + ((mdq + pd)

2 − 4mdB)1/2) if p < pd

B/q otherwise .
[3]

Assuming that some development is worthwhile (p < pd) and supply is linear once again

(Eq. [1]), then the new equilibrium price is given by the intersection of the aggregate demand

curve and the supply curve,

p2 =
1

2

(
p1 +

(
p2

1 −
4msmdB

(ms − md)

)1/2
)

. [4]

From this new price, we can find the total amount of land purchased q2 = (p2 − ps)/ms, which

can be partitioned into the amount purchased by developers, qd = (p2 − pd)/md, and by the

conservation group for reserves, qc = B/p2. The remaining area of open land will be A − q2.

The conservation value of the resulting landscape is thus qc + α(A − q2).



The conservation improvement offered by the investment is

∆C = qc + α(A − q2) − α(A − q1) = qc + α(A − (qd + qc)) − α(A − q1)

= (1 − α)qc + α(q1 − qd) .
[5]

Also, ∆C = qc−α(q2−q1), and so, provided open land has some value for biodiversity (α > 0),

the conservation improvement offered by the investment is less than the value of the area set

aside as reserves.

Ecological Heterogeneity

To produce Fig. 3, we assumed there were initially 60 undeveloped parcels, each associated

with a unique list of species or populations of conservation interest, and that in the absence of

conservation investment, 50 of these properties would be developed. We discretized supply and

demand and assumed the reservation prices and demand for development were independent of

the biodiversity value of particular properties.

Over relatively small scales, interspecific occupancy patterns from a wide range of taxo-

nomic groups are characterized by bimodality, with peaks occurring for both rare and common

species (1). For each simulation run, site occupancy lists for each of 400 species were ran-

domly generated in a way that accounted for this pattern. First, the occupancy-extent of each

species was assigned from a β-distribution with its mean and variance matched to occupancy

data for breeding birds across 391 tetrads (2 km x 2 km) from Berkshire, U.K. (2). Then, for

each species a list of occupied sites was drawn at random until this occupancy extent had been

exhausted. A fraction, α, of randomly selected species were assumed able to persist on open

land. The remaining species were assumed to be only able to persist inside reserves. No species

of conservation concern was assumed able to persist in developed areas.

In the main text, Fig. 3 shows the results when α = 1 and open lands and reserves are of

equal value to biodiversity. The equivalent figures when α = [0, 1/3, 2/3] are shown in Figs. 5-

7, respectively. As α is decreased, the change in the number of species that will persist with



investment over the baseline that persist with no conservation investment increases. It increases,

because the only way in which a growing fraction of species can persist is if the conservation

group acquire properties to set aside as reserves. Also, as α tends to zero the distinction between

the ecological-economic strategy and the maximal coverage strategy disappears, because there

is no longer any additional benefit to considering the impacts of conservation investments on

biodiversity in the wider landscape. Finally, as predicted with the deterministic models, the

importance of the slopes of supply and demand is diminished when α becomes small.

Optimal Allocation Across Land Markets

To illustrate how variation in supply and demand should determine conservation priorities over

larger scales, we examine the optimal allocation of a fixed budget across two distinct land

markets. For brevity, we restrict attention to the case where α = 1. An additional subscript

signifies the relevant location; e.g., the equilibrium in market i with no investment is (q1i, p1i).

We assume linear dynamics as before, but we now need to account for the possible displace-

ment of development pressure across land markets. We represent development demand and the

supply of land as

p = Mdq + pd , p = Msq + ps , [6]

in vector notation.

Here, the elements of inverse development demand matrix M−1
d determine the change in the

quantity of land demanded in market i, ∆qi, as a consequence of a change to the price in market

j, ∆pj. For example, although an increase in the price of land in market i would decrease local

development demand, it might increase development pressure in market j. We assume that the

proximity of the two land markets determines when such spilllovers of development occur and

measure proximity with parameter γ. We represent the inverse demand matrix with

M−1
d =

[
∆q1/∆p1 ∆q1/∆p2

∆q2/∆p1 ∆q2/∆p2

]
=

[ −1 − γ γ
γ −1 − γ

]
, [7]



We assume that there are other substitutes for land for development available in the broader

economy (accounted for by the −1 term in the diagonal elements). In addition, we assume that

the nearer the markets are to one another the more likely a price rise in market i is to displace

development pressure on to market j. I.e., the diagonal elements become more negative (local

demand undergoes a larger decrease with a local price rise) and the off-diagonal elements more

positive (demand elsewhere undergoes a larger increase with a local price rise) the nearer the

markets are to one another. With this formulation, the overall change in development demand

resulting from a price increase (∆q1 + ∆q2)/∆pi remains constant.

We illustrate the case where there are no supply-side spillovers, meaning that Ms is diag-

onal, perhaps because reservation prices for open lands are set primarily by global prices for

agricultural commodities. To produce the figures, we set Ms equal to the identity matrix.

The amount of land facing development in each market in the absence of conservation in-

vestment is given by

q1 = (Md − Ms)
−1(ps − pd) . [8]

The amount facing development or set aside as reserves given a particular allocation of conser-

vation funds B = [B1, B2]
T can be found from solving

M−1
d (p2 − pd) +

[
B1/p21

B2/p22

]
= M−1

s (p2 − ps) . [9]

The number of species in each land market is assumed to be given by a species-area rela-

tionship, Si = ci(Ai − qdi)
zi , where larger ci and zi values indicate greater biodiversity per unit

area. Here Ai is the total land area initially of conservation interest and we let Ti = ciA
zi
i denote

the size of the original species pool. If the land markets are near one another then we should

expect considerable overlap in the species’ assemblages. We let Γ signify the number of shared

species in the original communities. Then, if we assume no biases in the species “sampled” by



conservation investments, the total number of species that will persist in the landscape is

S = S1 + S2 − Γ
S1

T1

S2

T2
. [10]

The optimal allocation of the conservation budget (B = B1 + B2) maximizes S.

If we first restrict attention to isolated land markets (Γ = γ = 0), we see that our single

market predictions generalize; all else being equal, land markets where the demand curve is flat

or the supply curve is steep should be investment priorities (Fig. 8).

However, the level of supply and demand also matter, because these determine the un-

derlying market equilibrium (p1,q1) and, hence, the overall cost of buying reserves and the

distribution of threats to biodiversity. Variations in the underlying market price can arise both

from variations in the level of demand and the level of supply (Fig. 9). When it is the level

of development demand that varies across land markets, we face an inevitable trade-off be-

tween cost and threat in conservation priority setting; in Fig. 9a, biodiversity is most threatened

in region 2 where land is most expensive. The optimal allocation of investments across land

markets in this case is equivocal (Fig. 10a). However, if variations in land prices arise from

variations in the levels of supply (Fig. 9b), perhaps because of variability in land rents derived

from biodiversity-friendly production, then biodiversity is most threatened where land can be

acquired most cheaply. In this case, the optimal allocation of investment is more clear-cut

(Fig. 10b), because our conservation dollars will go furthest where they are most needed.

The underlying biodiversity value of markets will differ. As one would expect, more spe-

ciose areas should be investment priorities. However, the degree of community overlap is also

important. When the two areas share few species, a distributed investment (B1, B2 > 0) is fa-

vored for a larger region of parameter space. However, the optimal allocation strategy becomes

an either/or one if we relax our assumption that the two land markets are isolated and gradually

increase proximity (by increasing γ and Γ).



We used our two land market models to examine the optimal conservation strategy when

the distribution of reserves differentiates markets for developers. Specifically, we used inverse

demand matrix

M−1
d =

[ −1 − γ(1 − ε|qc(2) − qc(1)|) γ(1 − ε|qc(2) − qc(1)|)
γ(1 − ε|qc(2) − qc(1)|) −1 − γ(1 − ε|qc(2) − qc(1)|)

]
. [11]

Suppose the conservation group establishes more reserves in one land market. The difference

in reserve creation could result in land elsewhere becoming a poorer substitute for local land

in the development process than one would expect based on proximity alone. The parame-

ter ε determines the importance of nature reserves and conservation amenities in determining

substitutability of land for development across the markets relative to other factors. To focus

attention on differentiation of the markets, we first maintained the same overall level of demand,

as represented by (q1,p1).

We also considered the situation where establishing reserves opened up new opportunities

to developers and could attract additional development pressure. To represent this scenario, we

replaced the underlying market equilibrium (q1,p1) with (q1 +νqc, Ms(q1 +νqc)+ps), while

also accounting for the change in substitutability of land as before.

To produce Figs. 4, 11, and 12, we assumed the spatial scales over which economic and

ecological interactions between the land markets played out were related to each other by γ/4 =

Γ/ min(Ti). We also assumed that the strength of changes to substitutability across the land

markets and of overall levels of demand when considering new development opportunities were

linearly related, ν = 4ε in Figs. 4b and 12.

We illustrate the effects of assuming that conservation investments differentiate the two mar-

kets and open new opportunities for developers for a given investment strategy in Figs. 11 and

12, respectively. If conservation investments have no impact on the substitutability of land in

each market for development, then the two prices converge with increasing proximity (solid



curves in Fig. 11 a and b). However, if variations in the level of conservation investment dif-

ferentiate the markets, then the effect of proximity in equalizing prices is tempered. Now, the

displacement of development pressure across land markets is only partial and two distinct prices

can be maintained once more (dashed, dot-dash, and dotted curves in Fig. 11 a and b respec-

tively).

These dynamics determine the amount of land developed, qdi, and set aside as reserves,

qci, in each market (Fig. 11 c-f ). Consider the case illustrated where conservation investment

is concentrated in market 2. When variation in the distribution of reserves is unimportant to

developers (solid curves for ε = 0), development pressure redistributes itself across the markets

in such a way that an increasing amount of land faces development in market 1 and a decreasing

amount in market 2, as proximity is increased. This effect is moderated by increasing ε values.

The variation in prices with changes to substitutability have consequences for how much

land can be bought for conservation with a given level of investment (Fig. 11 e and f ). When

development demand is unresponsive to conservation investment levels, conservation funds

stretch further in market 2 where investments are concentrated, because the conservation group

no longer have to work against price increases that result from increased local demand. Instead,

some of that price increase is dispersed to market 1, where less land can be purchased as a re-

sult. These effects are also tempered when land in market 1 is considered a poor substitute for

land in market 2, because of variation in levels of conservation investment.

Finally, Fig. 12 shows the analogous results for the case where establishing reserves create

new development opportunities and attracts increased development pressure, as well as serving

to differentiate the two markets for developers. As discussed, when developers are unrespon-

sive to conservation investment (solid curves in Fig. 12; ε, ν = 0) prices equalize with increased

proximity with knock-on effects for qd and qc. However, as both ε and ν increase, price differ-

ences are no longer dispersed. Moreover, the additional local development demand attracted by



establishing reserves exaggerates price differences (especially in market 2, which enjoys greater

conservation investment) with associated consequences for qd and qc.
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