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ABSTRACT
A mixture model approach is presented for the mapping of one or more quantitative trait loci (QTLS)
in complex populations. In order to exploit the full power of complete linkage maps the simultaneous like-
lihood of phenotype and a multilocus (all markers and putative QTLS) genotype is computed. Maximum
likelihood estimation in our mixture models is implemented via an Expectation-Maximization algorithm:
exact, stochastic or Monte Carlo EM by using a simple and flexible Gibbs sampler. Parameters include al-
lele frequencies of markers and QTLs, discrete or normal effects of biallelic or multiallelic QTLs, and ho-
mogeneous or heterogeneous residual variances. As an illustration a dairy cattle data set consisting of
twenty half-sib families has been reanalyzed. We discuss the potential which our and other approaches have
for realistic multiple-QTL analyses in complex populations.

HE number of genes identified in humans, plants

and animals has increased notably during the last
decade. The largest increase in number of identified
genes has occurred for qualitative single gene traits. In
contrast, progress in mapping quantitative trait loci
(QTLSs) has been slow, except for species for which in-
bred lines are available. Human pedigrees are often
complex and small, and analysis of pedigree data re-
quires sophisticated statistical techniques, the develop-
ment of which has become a bottleneck in QTL map-
ping (Guo and Thompson 1992). In outbred populations
of animals or plants, this bottleneck is also real but less
severe, because of the high reproduction rate and the
option to design experiments. The main problems to
be dealt with in the analysis of complex populations
can be summarized as follows:

1. The number of alleles and the allele frequencies in
the (base) population are unknown for QTLs as well
as for marker loci;

2. If a parent is homozygous at a marker locus, it is im-
possible to trace which allele from a pair of parental
homologous chromosomes has been transmitted to a
descendant;

3. When two parents are heterozygous and carry the
same alleles at a marker locus, the parental origin of
alleles of a heterozygous descendant cannot be de-
termined;

4. The genotype at a QTL cannot be observed, and we
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therefore do not know which parents are heterozy-
gous for the QTL,;

5. Markers may have been selectively genotyped for
only a subset of the population;

6. Linkage phases between markers and between mark-
ers and QTLs may be unknown.

Markers are used to follow the inheritance of ge-
nome segments from parent to offspring (the pattern
of identity-by-descent or IBD of alleles). If the IBD pat-
tern at a certain marker (or QTL) locus is unknown,
then neighboring markers may be informative, i.e.,
linked markers may indicate the likely IBD pattern at
the locus under study (cf. Haley et al. 1994; Jansen
1996a; Knott et al. 1996). Phenotype also contains in-
formation on genotype, but this information is often ig-
nored to simplify computations (see Modeling QTLs
below). In general, all markers and phenotype should
be used simultaneously so as to recover at each map po-
sition as much information as possible.

One can assume fixed or random effects models or
mixed models for the relation between phenotype and
“known” genotype. As stated above the information
about genotype can be incomplete for various reasons.
We therefore enter the area of so-called mixture models,
where the possible genotypic configurations are the
components of the mixture. An important monograph
on mixture models is written by Titterington et al.
(1985). A popular statistical algorithm for handling
mixture problems is the expectation-maximization
(EM) algorithm. It is an iterative approach, it is rela-
tively easy to program, and it produces maximum likeli-
hood estimates and also empirical Bayesian a posteriori
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estimates (Dempster et al. 1977). Jansen (1992) and
Jansen and Stam (1994) described a general and flexi-
ble EM algorithm for recovering information about a
multilocus genotype in populations obtained from
crosses between inbred lines. In a next article, Jansen
(1996a) developed a Monte Carlo method for multilo-
cus analysis in a simple outbred cross between two
plant cultivars. Here, we will make our EM approach
applicable for complex population structures in which
additional dependencies between individuals may exist.
We propose a stochastic EM algorithm and a Monte
Carlo EM algorithm in which a Markov chain of possi-
ble genotypic configurations is generated via the Gibbs
sampler. With large progeny groups, however, the
chain may show slow changing of genotype states or
can even remain stuck in a certain “subspace” (Janss et
al. 1995). To avoid these problems, we introduce a sim-
ple and flexible scheme, based on different descrip-
tions of the genotype of founders and non-founders of
the population. Furthermore we demonstrate how our
EM approach can be used to fit models for single or
multiple QTLs with fixed or random effects. Recently,
data for paternal half-sib families of dairy cattle have
been adopted for comparison of analytical approaches
developed in the animal breeding community (Boven-
huis et al. 1998). As an illustration, we will analyze
these data. We postulate several mixture models and fit
them by using our Monte Carlo EM algorithm.

There is a growing need for sophisticated analytical
tools to genetically dissect multigenic traits in complex
populations. The theory on QTL mapping is develop-
ing very fast, and we therefore start with a section in
which we briefly review and classify the various recent
developments (Jansen 1996a; Knott et al. 1996; Sata-
gopan et al. 1996; Satagopan and Yandell 1997;
Thaller and Hoeschele 1996; Uimari et al. 1996a; Xu
1996; Grignola et al. 1997). In the discussion, we fo-
cus on the potential that our and other approaches
have for realistic multiple-QTL analyses in complex
populations.

MODELING QTLS

Recent analytical approaches can be classified ac-
cording to three criteria: modeling the full mixture of
possible phenotype-genotype combinations or not, as-
suming fixed or random QTL effects, and adopting the
(restricted) maximum likelihood or Bayesian ap-
proach.

Consider an N-member population on which trait
values and marker scores are observed. Let y; denote
the ith individual’s trait value and let g; denote its com-
bined genotype at all marker loci and one or more pu-
tative QTLs. Wewritey = (y, ...y andg= (g, ...0gy)"-
The population may consist of multiple generations
and marker and trait data need not be observed for all
individuals. For a given genotypic constitution g on the

population, one can model the relation between y and
the “known” genotype g by assuming a model with dis-
crete and fixed QTL-effects and normally distributed
error. The distribution f(ycg) is then a multivariate nor-
mal distribution and the mean, w(y0g), is modeled in
terms of genetic parameters (6) such as additivity and
dominance of (multiple) QTL effects. On the other
hand, one may prefer a random model in case of multi-
allelic QTLs. It is then often assumed that QTL effects
are independent realizations from a normal distribu-
tion, which represents the distribution over many alle-
les in the base population. Now f(yg) is a multivariate
normal distribution with variance-covariance matrix
v(yg) expressed in terms of genetic parameters. Multi-
ple QTLs, random or fixed family (polygenic) effects
and additional (experimental) effects such as QTL-
QTL interaction or QTL-environment interaction can
be included resulting in so-called mixed models. Also
other types of distribution can be assumed in addition
to the commonly assumed normal distribution.

The genotype g includes full multilocus information
about alleles and their IBD pattern, but unfortunately
this information can be observed only partially. For
each possible genotypic configuration g on the popula-
tion (that is, a configuration which is consistent with
the observed marker data), we can calculate a scalar
probability P(g) of occurrence. P(g) is a function of
(known or unknown) recombination and allele fre-
guencies. The exact methods use mixture distributions
to model the full relation between phenotype and pos-
sible genotypes: f(y) = > P(g)f(ymg), where summation
is over all possible genotypes g. Jansen (1992, 1994,
1996a), Thaller and Hoeschele (1996), Uimari et al.
(1996a), Xu (1996) and Satagopan ¢t al. (1996, 1997)
consider mixture models for QTL mapping. Jansen
uses maximum likelihood for QTLs with discrete ef-
fects, Xu uses maximum likelihood for QTLs with nor-
mal effects, Thaller and Hoeschele, Uimari et al.
and Satagopan et al. use Bayesian methods for QTLs
with discrete effects.

An exact mixture analysis can be computationally
demanding, especially if the number of possible geno-
types g is huge. Approximate expectation methods first
calculate an expected trait mean p(y) = > P(@)r(ymg)
if a discrete QTL-effects model is used, where summa-
tion is again over possible genotypes. In the normal
QTL-effects models, an expected variance-covariance
matrix v(y) = Y P(g)v(yrg) is calculated. Next it is as-
sumed that f(y) is normally distributed with mean w(y)
or variance-covariance matrix v(y). Knott et al. (1996)
use the expectation method for discrete QTL-effects
models and Grignola et al. (1997) use it for normal-
QTL effects models. Zeng (1994) assumes discrete
QTL-effects and uses a combination of the mixture and
the expectation method: the expectation method to
deal with missing marker (cofactor) data and the mix-
ture method for the putative QTL.
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Phenotypes contain information on QTL genotypes.
Moreover, if markers are linked to QTLs, phenotypes
also contain information about incomplete marker
genotypes. The exact methods take into account
marker plus phenotype information to retrieve infor-
mation. In contrast, in the approximate expectation
methods, genotype probabilities are calculated on the
basis of marker data only and this calculation is done
only once, namely before QTL analysis.

MAXIMUM LIKELIHOOD IN MIXTURE
MODELS VIA EM ALGORITHMS

Let 6 denote the vector of all parameters for fixed
and random model terms and for recombination and
allele frequencies. In QTL mapping, the genetic map is
usually assumed to be known (i.e., the recombination
frequencies are known). Jansen (1992, 1996a) devel-
oped formulae for simple two-generation designs with
f,(v,h) = I1 f,(y;,h;), where the product is over the mem-
bers of the population and h = (h, . .. hy)’" denotes the
observed marker data. Here we consider a general pop-
ulation structure in which case additional dependency
of individuals can exist so that f,(y,h) can not be ex-
pressed as a simple product of member likelihoods. To
simplify notation, we will write f;, again as f (and P, as P).

The simultaneous likelihood £(8) of all observed
trait and marker data is a mixture likelihood with the
possible genotypes as components

%(8) = f(y.h) =S P(@)f (v.hlg)
g

where f(y,hog) = f(yog) if h is consistent with g and
f(y,hog) = 0 otherwise; f(yog) may refer to a fixed, ran-
dom or mixed model. Parameter estimation can be car-
ried out by maximum likelihood. The likelihood equa-
tions are

0
5In(6) = f(yh)aezp(gmy\g)

z”ﬁ%j—,ﬁi“”a"’e'” (P(9) (y]9))

3 P(1y.n) 51 P(g) + 5 P(gly.h)in f(y]0),
g [}

0

where summation is over possible genotypes g consis-
tent with h.

Exact EM: The likelihood equations can be solved
by applying an EM algorithm (Jansen 1992; Jansen
and Stam 1994). Each iteration consists of two steps.
First, in the so-called E-step, the conditional probability
P(goy,h) is evaluated for all possible genotypes g, given
the current parameter estimates and given the ob-
served incomplete information h on the genotype (us-
ing Baye’s theorem). Next, in the so-called M-step, the
likelihood equations are solved by fixing the weights
P(goy,h), which gives updated parameter estimates.

The likelihood equation can be split into two terms: the
first term refers to the genetic linkage between loci, the
second term to the phenotype-complete genotype rela-
tion. Each term can be recognized as a likelihood equa-
tion for non-mixture problems that can be solved with
standard statistical routines or packages for (weighted)
regression or variance component models (see also
Jansen 1992).

Stochastic EM: In each cycle of the EM algorithm,
the likelihood equation can be estimated by using a sin-
gle Monte Carlo realization

0
a6

where in the jth EM cycle a smgle complete genotype
g is generated given y, h and the current parameter
estimates [i.e., by using the distribution P(g®oy,h)].
This expression can be treated as a standard likelihood
equation, and it can be solved with standard statistical
software. The “posterior” distribution of parameter esti-
mates obtained over many EM cycles and after a suit-
able burn-in period is approximately centered at the
maximum likelihood estimate and the mean of the dis-
tribution can be used as an ML estimate (Celeux and
Diebolt 1985). This “posterior” distribution can also
be plotted for parameters of interest. Also a prelimi-
nary short stage of stochastic EM can be run that yields
good starting values for Monte Carlo EM.

Monte Carlo EM: In each cycle of the EM algorithm,
the likelihood equation can be estimated using a num-
ber (M) of Monte Carlo realizations

a A 0 (h,1l<cO ()
aeIn&f(e) Jzaeln P(g )+szaelnf(y\g ),

Zn £(0) & ae'” Pg") +25 In f(y|gMy,

where in the jth Monte Carlo sample, complete geno-
types g are generated given y, h and the current pa-
rameter estimates [i.e., by using the distribution
P(goy,h)]. This expression can be treated as a likeli-
hood equation for standard non-mixture problems of
N X M observations. For sufficiently large genotype
samples, Monte Carlo EM will inherit the properties of
exact EM.

The Monte Carlo samples can also be used for likeli-
hood-ratio estimation in the final EM step. The likeli-
hood ratio is estimated as

£(8)) 1. fo,v19”) Pg (g")
F@,) ° sz " 7197) o, (¢7)

where complete genotypes g() are sampled given y, h
and 8, (Jansen 1996a). Estimation of the likelihood ra-
tio is most effective when 6, and 6, are close. To in-
crease efficiency of estimation, 8, can be related to 6,
via one (or more) intermediate models spanning the
range between 6, and 6,. For instance, calculate £(8,)/
L(6,) = L(0)/L(0,) X L(0,)/L(6,). We used this ap-
proach to compare models with and without a putative
QTL at a certain map position (see our dairy cattle ap-
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plication in the next section). Geyer (1993) described
an alternative approach to increase efficiency of estima-
tion. He noted that the sampling distribution under 6,
need not be in the model and suggested to sample from

finite mixtures of distributions in the model of interest
K

Prix(9y:n) = 5 m(y,h)Pg (9]y:h)
k=1

where m, are the mixing proportions. Again, the 6,s can
be chosen to span the range between the two parame-
ters of interest. If we have a computer code to sample
from P,(y;0g) for any 6, then we can also sample from
the mixture: run the program for each of the 6,s and
combine the samples to form a sample of the mixture
(Geyer 1993). This method can be used to efficiently
calculate the likelihood ratios for pairs (6,,0,.) that are
components of the sampling mixture.

Gibbs sampler: Unfortunately there may be no di-
rect feasible way to generate the Monte Carlo samples
because of the huge amount of possible genotypic
states g in complex populations with many loci. A solu-
tion to this problem is to utilize the Gibbs sampler (cf.
Guo and Thompson 1992; Janss et al. 1995). Jansen
(1996a) considered a situation with multiple loci in a
simple outbred cross between two plant cultivars and
described a simple Gibbs sampler in which the off-
spring genotype is updated in a stepwise manner for
only a single locus and a single individual at a time,
while taking “for granted” the remaining part of the
genotype. In this way, the number of possible genotypic
states is small and sampling can easily be done (of
course states have to be consistent with observed
marker data).

In this article, we deal with general population struc-
tures in which case there are serious problems if we
specify genotype in terms of allelic constitution only.
For instance, in a half-sib analysis, a parent (sire) with
current QTL-state a/b produces offspring carrying al-
lele a or b, and a change of the parent’s genotype to a/a
or b/h is practically prohibited if the male has many off-
spring (Janss et al. 1995). To avoid this kind of prob-
lem, we now introduce different descriptions of the
genotype of founders and non-founders in the popula-
tion. We specify the genotypic state of any founder by
the alleles at each of its two homologues. We express
the state of any non-founder by IBD values indicating
parental origin of its alleles. In the above half-sib exam-
ple, an offspring of the sire a/b inherits the allele of ei-
ther the first homologue of its parent (IBD = 1) or the
second (IBD = 2). In a marker-QTL-marker situation, a
sire may have current genotype aaa/hbb, i.e., aaa on ho-
mologue 1 and bbb on homologue 2. An offspring of
this sire may have current genotype aab/ccc, withc alleles
originating from the dam, and we will write this as 112/
cce by using an IBD indicator rather than the actual al-
lele type (a or b). The same can be done in other types
of populations (e.g., with more generations).

We will now briefly consider the three steps used in
our Gibbs sampler for updating the genotype of
founders (their QTL states and linkages phases be-
tween loci) and the genotype of non-founders (via IBD
pattern).

Step 1: To take all possible QTL states of founders
into account, one can sample allelic configurations
QTL by QTL. For instance, consider a change of
marker-QTL-marker genotype aaa/hbb of a sire to aaa/
bab, aba/bab or aba/bbb without changing the “known”
IBD pattern (e.g., offspring 112/ccc). One can calculate
the corresponding conditional probabilities given “known”
IBD pattern and given phenotypes, and next sample
one of the four possible states.

Step 2: To take all possible linkages phases in the gen-
otypes of founders into account, one can sample link-
age phases interval by interval and founder by founder.
For instance, consider a change of the linkage phase
between the proximal and distal part of the chromo-
some at a certain interval for a certain founder. In the
case of a phase switch, the distal part of its homologue
1 is attached to the proximal part of homologue 2 (i.e.,
becomes part of the new homologue 2) and vice versa.
IBD values are used for the description of genotypes of
non-founders, and, in case of a phase switch, one
should change the IBD values at the distal part of the
chromosome accordingly (1 becomes 2 and vice versa).
One can calculate the conditional probabilities for the
two options “phase switch” and “no phase switch” and
sample one of them.

Step 3: To generate genotypes of non-founders, one
can sample a new IBD pattern given “known” genotype
of founders. This can be done individual by individual
and locus by locus. If we update the IBD at a certain
marker locus, then the two flanking loci (with “known”
IBD!) are fully informative and no other loci are
needed (no matter whether the two flanking loci are
markers and/or QTLs). If we update the IBD at a puta-
tive QTL, the update step also depends on the ex-
pected phenotype (i.e., ‘fitted values’) given “known”
genotype at other putative QTLs. As stated above, only
genotypic states consistent with observed marker data
are allowed.

Our notation has two important advantages. First,
one can now change the genotype of founders inde-
pendently of the IBD pattern and vice versa, therewith
avoiding the problems discussed by Janss et al. (1995).
Second, an IBD pattern is generated at all loci and
therefore IBD is “known” in the Gibbs sampling pro-
cess even if a parent is homozygous for a marker or if
both parents and offspring are heterozygous carrying
the same alleles at a certain marker. Computer imple-
mentation is then rather straightforward (using three-
locus information instead of multilocus information),
not only for the single-QTL models, but also for the more
powerful multiple-QTL models. However if two (or
more) loci are closely linked, it may be more efficient to
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update the genotype at these loci together (“in blocks™)
to reduce auto-correlation in the Gibbs sampler, at the
cost of more computer programming (Janss et al. 1995).
In our application, we blocked marker and QTL when fit-
ting a QTL close to or on top of the marker.

APPLICATION

In this section, our focus will be on the dairy cattle ex-
periment (Bovenhuis et al. 1998). Data were available
for 20 sires and their families of half-sib sons. Nine mo-
lecular markers on chromosome 6 were scored in sires
and sons, and marker alleles were encoded within fami-
lies (code a and b for alleles of paternal type and code ¢
for maternal alleles that differ from the sire alleles).
Protein percentage data were available for sons only
(obtained as averages for milk production data of
daughters of the sons). We refer to Spelman et al.
(1996) for more information on the experiment. It
should be noted that we analyzed the data as they were
released to the animal breeding community. Spelman
et al. (1996) analyzed slightly different data (corrected
for some suspicious data).

Many different models can be formulated by making
(combinations of) assumptions about the number of
genes involved (monogenic, oligogenic or polygenic in-
heritance), about the number of alleles per QTL (bial-
lelic or multiallelic), about the allelic effects (fixed or
random model terms), about interaction effects (QTL-
family, QTL-QTL), about residual variance (homoge-
neity of residual variance over families or heterogene-
ity), about the effect of the dam (ignored or included
in the model), or about linkage phases between loci
(unknown, or fixed at a likely configuration). As an il-
lustration, some of the proposed models will be applied
to the dairy cattle data (see Table 1 for a description),
and our results are compared with those published by
Spelman et al. (1996).

We have to do with a “serious” mixture problem,
since there are several sources of missing information:
each marker isuninformative (homozygous) for several
families; in a number of cases, it cannot be assessed
which of the two marker alleles of an offspring origi-

nates from the sire; all QTL scores and some marker
scores of offspring are missing; all marker scores of
dams are missing; marker and QTL allele frequencies
are unknown; and linkage phases of all loci are un-
known. Clearly the total number of possible configura-
tions g consistent with observed marker data is huge,
making an exact analysis demanding. We assume that
the recombination frequencies are known (fixed ge-
netic map). Let y; be the trait value of the jth son of the
ith sire.

Model I: Spelman et al. (1996) used the expectation
method developed by Knott et al. (1994). To simplify
the computational work, the most likely linkage phase
was determined and taken for each sire, and when dif-
ferent phases were equally likely, one was chosen at ran-
dom. Effects of dams were ignored. Information on
marker allele frequencies was not used. In the approxi-
mate method, P(g) is calculated on the basis of marker
data only and this calculation is done only once,
namely before QTL analysis. At the map position under
study their expectation QTL model reads

Yij = K +s;+aj; X Proby;; +aj, X Proby, +¢;;

where s, is the (polygenic) fixed effect of the ith sire,l
a;; is the fixed effect of the QTL allele at the first homo-
logue of the ith sire at the map position under study,
Proby, is the (previously calculated) probability that
the jth son of the ith sire has received this allele given
the observed marker data, a;, and Prob;, are defined
analogously, and ¢; is a random normally distributed re-
sidual with homogeneous residual variance over fami-
lies. Note that this model can also be reparameterized
in terms of the allele-substitution effects (a;, — a;;) X
Prob;, of the sires, and in this sense, the model is a
multiallelic-QTL model.

Model II: A mixture model for a multiallelic QTL is
considered (similar to Spelman’s model I). At the map
position under study the model for phenotype given
“known” genotype reads

Yij = R+ S+ a0 X 0jjg T @5 X Qjjo T &5

where gj; = 1 — ¢, is an IBD indicator: gy, = 1 if the
son has inherited the QTL allele of its sire’s first homo-

TABLE 1

Outline of the models used in the cattle application

Approach used to deal
with missing marker

Residual variance QTL contribution

Model and QTL information QTL over families of dam
| Expectation Multiallelic Homogeneous Ignored
] Mixture Multiallelic Homogeneous Ignored
1l Mixture Multiallelic Homogeneous Ignored
\% Mixture Biallelic Homogeneous Included




396 R. C. Jansen, D. L. Johnson and J. A. M. Van Arendonk

logue at the map position under study, otherwise g;; =
0. It was assumed that residual variance was homoge-
neous over the families. Parameters now include (known)
recombination frequencies and (unknown) marker al-
lele frequencies within families (markers were encoded
within families). The mixture distribution is obtained
by summing over all possible genotypes. In contrast to
Spelman et al. (1996), we here take all possible linkage
phases into account and we also use information on
marker allele frequencies and information on pheno-
type plus marker observations in the calculation of gen-
otype probabilities Prob;; and Proby;, (at each EM itera-
tion).

Model I11: As model Il, but now we assume hetero-
geneous residual variance over families (that is, a sepa-
rate variance parameter per family was used). As an ex-
ample of fitting multiple QTLs, we also extended
model 111 and fitted two QTLs simultaneously.

Model IV: Models I-I1l are multiallelic-QTL models,
and dam contributions were ignored. Now we consider
a biallelic QTL and we also include the (unobserved)
dam contributions. The estimate of the polygenic effect
of a sire is affected by the QTL genotype being consid-
ered for that sire (Knott et al. 1992). To deal with that
We USE o, Moq @Nd g, instead of p. If the ith sire has
genotype QQ, the model for phenotype given “known”
genotype reads

Yij = Hoq * Si+ a1 X Gjjy + a5 X Qjjp +ay X djj; +
a X dij, g5

where a, and a, are the effects of the two QTL alleles at
the map position under study, and the additional vari-
able dj; = 1 — dj;, is the indicator for the dam contribu-
tion: d;; = 1 if the ith son of the jth sire has inherited
allele a, from its dam, otherwise dj;; = 0. The term p,,
is replaced by p.q, if the sire’s genotype is Qq and by p,
if it is qq. We assumed homogeneity of residual variance
over families. The mixture distribution is again ob-
tained by summing over all possible genotypes and the
parameters include (known) recombination frequen-
cies, (unknown) marker allele frequencies within fami-
lies and (unknown) QTL allele frequencies in the base
population. Marker scores of dams are missing. In our
analysis, phenotypes of the sons and marker scores of
the sires and sons are used to recover as much informa-
tion on dam contribution as possible.

QTL likelihoods: Figure 1 shows the four QTL likeli-
hood plots for models I-1V. At each map position, the
value of the test statistic is plotted for the comparison
of the two models with and without a QTL at the given
map position. The solid curve of model | is obtained by
converting the F values reported by Spelman et al.
(1996) into likelihood ratio values (likelihood ratio test
~pF where p = 20 is the d.f. for the test, see Haley and
Knott 1992). Like in model I, the tests for a multial-
lelic QTL in models Il and Il have 20 d.f. In contrast,

the test for the biallelic QTL in model IV has ~2 d.f.
one for the QTL effect (assuming additivity) and one
for the frequency of the QTL allele.

To obtain empirical critical values, Spelman et al.
(1996) analyzed original marker data with randomly
permuted trait values over many permutations. A QTL
for protein percentage was detected near marker two
with a single-test significance value of 0.01% and an ex-
periment-wise significance value of 1%. The evidence
was mainly coming from two families (families 1 and 16).

Parameter estimation for models Il1-1V was imple-
mented via Monte Carlo EM, using 1000 Gibbs cycles
per EM iteration and using the genotypic state in each
tenth cycle as a Monte Carlo realization. In the final
EM iteration, QTL likelihood was evaluated at marker
positions by running 25,000 Gibbs cycles, using every
20th cycle for Monte Carlo evaluation of the likelihood
ratio, and using =20 intermediate models spanning
the range between the model with the QTL and that
without a QTL. Running 25,000 Gibbs cycles for model
1l took ~15 min CPU time on a DEC AlphaServer
2100 at 275 MHz.

Figure 1 clearly shows that all curves peak in the first
marker bracket, that is, there is similarity of the four
QTL likelihood curves in the region between markers
one and four. In contrast, large differences between the
curves appear in the region between markers six and
nine. We will propose several explanations for these dis-
similarities below.

Comparison of models I and II: Note that these mod-
els assume homogeneity of residual variance, although
variances differ significantly between families (not
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Figure 1.—QTL likelihood under various models for pro-

tein percentage in the dairy cattle experiment (see Table 1
for a description of the models).
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shown). The significant heterogeneity of residual vari-
ance is (partially) due to (non-)segregation of the puta-
tive QTL near marker two. The QTL likelihood curves
differ in particular at marker nine. This marker is
loosely linked to the other markers and also uninfor-
mative for families with the largest values of total vari-
ance (families 1 and 16 are among them; data not
shown). Under model I1—with the faulty assumption of
homogeneity of residual variance—we can fit a mixture
to those families to reduce their within-family residual
variance to the average residual variance; this signifi-
cantly improves the fit to the data and explains the
high value of the test statistic at marker nine under
model I1.

Comparison of models Il and I1I: In model 11, we as-
sume homogeneity of residual variance, whereas in
model 111 we allow for heterogeneity of residual vari-
ance. Clearly, under model Ill, the high QTL likeli-
hood at marker nine has disappeared. Analysis by mod-
els Il and Il demonstrates that the assumption of
homogeneous variance is not appropriate when fitting
a QTL at marker nine. Between markers one and four
the QTL likelihood is much higher under model Il
than under model 111 (single-test significance levels of
0.0003 and 0.04%, respectively). Under model Ill, a
larger total variance for a certain family can be met by a
larger estimate of residual variance, and therefore the
evidence for QTL activity will now originate only from
differences between the means of genotype classes at a
marker. Under model 11, reduction of residual variance
(ultimately to the average residual variance) will in-
crease the test statistic value. Therefore QTL likelihood
is expected to be higher under model Il than under
model 111 if a QTL is segregating near marker two.
However, differences between total variances can par-
tially originate from segregation of different sets of
QTLs at other parts of the genome and, if that is the
case, a certain degree of artificial inflation of QTL like-
lihood is expected under models | and Il (although
model I is probably more robust).

QTL activity near marker eight is suggested by
model I11. We extended model 111 and fitted a two-QTL
model with QTLs at markers two and eight (we have
chosen marker two, because markers one and three are
uninformative for families 1 and 16). We compared this
model with the single-QTL model with a QTL at
marker two only. This (conditional) likelihood ratio
test for QTL activity near marker eight was significant
at a 0.2% single-test significance level. It is interesting
to note that this region is known to contain multiple
casein loci that affect protein percentage (Bovenhuis
etal. 1992).

Comparison of models 11-1V: Models Il and Il as-
sume a multiallelic QTL but ignore the dam contribu-
tion. Model IV assumes a biallelic QTL and takes the
dam contribution into account. It is somewhat difficult
to compare the QTL likelihood curves because of the

difference of degrees of freedom involved in the two
tests: 20 in models Il and 111 and only two in model IV.
The peak in the first marker bracket is more significant
under model IV than under model Il or 111 (single-test
significance levels of >0.00001, 0.0003 and 0.04%, re-
spectively). Similar power for models I-1V is expected if
the true situation is indeed a biallelic-QTL configura-
tion with small QTL effect (Knott et al. 1996). The
models indicate a large QTL effect (more than one ge-
netic standard deviation) (Spelman et al. 1996), so that
power will be improved significantly by taking the dam
contribution into account (model 1V). Combining
these results, evidence is provided for the presence of a
biallelic QTL near marker two. In contrast, models I,
111 and 1V clearly differ for QTL likelihood near marker
eight, and we conclude that putative QTL activity in
this region cannot be explained by the presence of a
single biallelic QTL. The true situation may consist of a
multiallelic QTL or cluster of biallelic QTLs. It is
known that several casein loci are clustered in this re-
gion of chromosome 6 (Bovenhuis et al. 1992).

Comparison of models IV and I: Spelman et al. (1996)
used model | and reported that the QTL near marker
two affects protein percentage in families 1 and 16. The
results from our analysis, using model 1V, are in agree-
ment with the previous results: the sire is heterozygous
in all Gibbs cycles for family 16 and in ~95% of the
Gibbs cycles for family 1 (the conditional probability of
being heterozygous is high). Under model 1V, the
other 18 families are homozygous for the QTL in most
Gibbs cycles, but they still follow a mixture distribution:
each son inherits one of the two QTL alleles from his
dam (equivalent to standard segregation analysis within
families).

DISCUSSION

Currently, single-QTL methods are still widely used
in plant, animal and human genetics, but they are in-
trinsically inappropriate for complex traits affected by
multiple QTLs. In experimental plant applications,
multiple-QTL models (MQM) are now used more and
more frequently; background QTLs are taken into ac-
count by including them (via linked markers) as cofac-
tors in the model (proposed by Jansen 1992; see Jan-
sen 1996b for a review). This can be done in plants
because complete marker maps are available for many
plant species and also because experimental plant pop-
ulations, e.g., F, or BC, are easier to deal with from the
analytical point of view. In animal and human applica-
tions, the effects of background QTLs are often mod-
eled by a single variance component term because
complete markers maps are not (yet) available for live-
stock or human populations. In general populations, a
marker can be segregating in some families whereas
the QTL is not and vice versa. Then we cannot use a
marker linked to a putative QTL as the cofactor in the
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(expectation or mixture) model, as also indicated by
e.g., Spelman et al. (1996). In such cases, we should re-
ally include the QTL instead of the marker as cofactor
in the model, although we can put the putative QTL
close to or even on top of a marker. Eventually dense
marker maps may become available in human and ani-
mal applications, and, with cofactors for background
QTLs, it may not be necessary to include other parame-
ters for genetic background control. Modeling via co-
factors will also make it possible to explain differences
in variances between families originating from segre-
gating of different sets of genes and therefore residual
variance may be assumed to be homogeneous; this can
not be achieved by a model term for polygenic back-
ground effect. We believe that our mixture model ap-
proach via stochastic or Monte Carlo EM brings MQM
mapping in complex populations within reach. More-
over, our approach uses data imputation via the Gibbs
sampler (to generate one possible genotype in stochas-
tic EM and multiple genotypes in Monte Carlo EM)
and with these “known” genotypes standard software
routines for linear regression, variance component or
mixed models can be applied. Our Gibbs sampler is im-
plemented in an easy locus-by-locus and individual-by-
individual manner. In particular, the stochastic EM al-
gorithm is relatively easy to program. We have mainly
used stochastic EM to provide starting values for Monte
Carlo EM. More research has to be done to compare
the efficiency of stochastic and Monte Carlo EM in vari-
ous situations.

A Bayesian approach developed by Satagopan et al.
(1997) offers an alternative to the MQM mapping ap-
proach. These authors assume a Poisson prior distribu-
tion for the unknown number of QTLs with discrete ef-
fects. By using recent MCMC techniques, the “birth” or
“death” of a QTL can be sampled to have great flexibil-
ity with respect to the number of QTLs in the model.
Other groups now work on similar approaches (I. Hoe-
schele, personal communication; M. Sillanpaa, per-
sonal communication).

We expect that ML or Bayesian approaches for mul-
tiple-QTL with discrete effects are computationally
manageable in complex populations. In contrast, in the
case of multiple QTLs of normal effects the computa-
tion of multiple variance components may already be
much more intensive for three or more QTLs. There-
fore, practical computational considerations may pre-
vent the use of variance component models, although
multiallelic QTLs may exist, and drawing inferences
about multiallelic QTL variance via normal QTL-effects
models would be the natural way to characterize ge-
netic variation in the (base) population.

Although the structure of a population may be very
complex, a simplified analysis may often be possible.
This can be done by either focusing on a well-designed
and simple subset of the entire population or by relax-
ing assumptions and ignoring possible sources of (ge-

netic) variation. For instance, with multiple families,
one can estimate allele contrasts for the parents of the
families without considering their relationships; one
can ignore full-sib relationships within families and per-
form half-sib analyses for males and females separately;
one can select the most likely linkage phases in parents
and ignore other configurations; etc. One can then
first use an approximate (expectation) method that is
computationally inexpensive (Knott et al. 1996; Grig-
nolacetal. 1997) and apply the data simulation method
(“parametric bootstrapping”) (Jansen 1994) or per-
mutation method (Churchill and Doerge 1994) to
obtain genome-wide significance thresholds for QTL
detection. In this way, the entire genome would be
screened relatively fast to pinpoint regions for further
investigation by exact methods that need more com-
puter time. Knott’s approximate method uses one
step of regression (least squares) analysis at each map
location, whereas Jansen’s exact method uses multiple
cycles of regression analysis (iteratively reweighted least
squares). The exact approach is computationally more
demanding than the approximate approach. But this
may be just a matter of seconds only if markers are
highly informative. Moreover, the power and efficiency
of the methods will then be similar. In more complex
situations, however, we expect the exact (mixture) ap-
proaches to be more powerful and efficient than the
approximate (expectation) methods at the cost of
more computation. Particularly when markers are not
fully informative, when individuals are selectively geno-
typed, when QTLs with large(r) effects are present, or
when population structure is complex and much infor-
mation is lost by simplification, the power and preci-
sion can increase considerably by the exact mixture ap-
proaches.

As indicated by our analysis of the cattle data set, it
can be useful to compare various models with rather
different assumptions such as for instance biallelic vs.
multiallelic QTLs or homogeneous vs. heterogeneous
residual variance over families. Our analysis suggested
the presence of a biallelic QTL near marker two of
chromosome 6, and the presence of a cluster of bial-
lelic QTLs or a multiallelic QTL in the region of known
casein genes near marker eight. We also demonstrated
the pitfall of detecting ghost QTLs when erroneously
assuming homogeneity of residual variance. Spelman’s,
Uimari’s and our analyses produce slightly different
but still consistent results (Spelman et al. 1996; Uimari
et al. 1996b). This may not be too surprising because
multilocus information for paternal inheritance was
relatively high for markers 2-8 (see Figure 5 in
Spelman et al. 1996). The data set was adopted by the
animal breeding community to stimulate the develop-
ment and comparison of (recent) analytical approaches
to QTL mapping in complex situations. These cattle
data have generated our study, but our methods can
handle more complex situations. To investigate proper-
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ties of the new methodology in a more thorough way,
simulation studies are currently being carried out. For
instance, we now study the performance of our mixture
approach in the presence of selective genotyping.
When marker scores are missing, we sample possible al-
lelic configurations by using the Gibbs sampler, as for
the case of the unknown QTL. Preliminary results indi-
cate that the estimates of QTL effects are not biased by
selection.

We are grateful to Livestock Improvement Corporation, Holland
Genetics and the Department of Genetics of the University of Liege
for data access.
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