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ABSTRACT
Genetic evaluation by best linear unbiased prediction (BLUP) requires modeling genetic means, vari-

ances, and covariances. This paper presents theory to model means, variances, and covariances in a multi-
breed population, given marker and breed information, in the presence of gametic disequilibrium be-
tween the marker locus (ML) and linked quantitative trait locus (MQTL). Theory and algorithms are
presented to construct the matrix of conditional covariances between relatives (

 

G

 

v

 

) for the MQTL effects
in a multibreed population and to obtain the inverse of 

 

G

 

v

 

 efficiently. Theory presented here accounts for
heterogeneity of variances among pure breeds and for segregation variances between pure breeds. A nu-
merical example was used to illustrate how the theory and algorithms can be used for genetic evaluation by
BLUP using marker and trait information in a multibreed population.

 

proach is to combine covariance theory for a marked
quantitative trait locus (W

 

ang

 

 

 

et al

 

. 1995) and covari-
ance theory for a multibreed population (L

 

o

 

 

 

et al

 

.
1993). A numerical example will illustrate the theory
and related algorithms.

 

DEFINITION AND NOTATION

 

A multibreed population comprises individuals from
several breed groups, including purebred and cross-
bred groups (L

 

o

 

 

 

et al

 

. 1993). Founders are assumed to
be unrelated, noninbred, and of known breed; parents
of nonfounders are assumed to be known. Breed infor-
mation, denoted 

 

B

 

, consists of breeds for founders and
parentage for nonfounders. Breed information (

 

B

 

) for
the pedigree in Table 1, for example, consists of breed
groups 

 

B

 

1

 

, 

 

B

 

1

 

, 

 

B

 

2

 

 for founders 1, 2, and 3 and parentage

 

P

 

1,2

 

, 

 

P

 

3,2

 

, and 

 

P

 

4,5

 

 for nonfounders 4, 5, and 6.
Consider a polymorphic marker locus (ML) closely

linked to a QTL (MQTL), and assume the genotype at
this ML is known for each individual in the pedigree.
Information on the genotype will be referred to as
marker information, denoted 

 

M

 

. Following W

 

ang

 

 

 

et al

 

.
(1995), for individual 

 

i

 

, let  and  denote the two
alleles at the ML, and let  and  denote the two al-
leles at the MQTL linked to  and :

Further, let  and  be the additive effects of 
and  in individual 

 

i

 

, and let 

 

u

 

i

 

 be the sum of additive
effects of the remaining QTL alleles (RQTL). Assume

M 1
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i
Q 1

i Q2
i

M 1
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i
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i Q 1

i
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i Q2
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G

 

ENETIC evaluation by best linear unbiased pre-
diction (BLUP) requires modeling genetic means,

variances, and covariances. For genetic evaluation us-
ing only trait information, genetic group theory can be
used to accommodate heterogeneous genetic means
under additive inheritance (T

 

hompson

 

 1979; Q

 

uaas

 

1988; W

 

estell

 

 

 

et al

 

. 1988). This theory was extended to
accommodate heterogeneous genetic variances and co-
variances among genetic groups (E

 

lzo

 

 1990; L

 

o

 

 

 

et al

 

.
1993).

For genetic evaluation using marker and trait infor-
mation, F

 

ernando

 

 and G

 

rossman

 

 (1989) proposed a
theory to model genetic variances and covariances.
They assumed gametic equilibrium between the marker
locus and the linked quantitative trait locus, which
means that the genetic mean does not depend on
marker information. In the presence of gametic dis-
equilibrium, however, genetic means, variances, and
covariances do depend on marker information. In the
presence of gametic disequilibrium resulting from cross-
breeding, G

 

oddard

 

 (1992) showed how genetic group
theory can accommodate marker information. His model
for variances, however, does not accommodate hetero-
geneous variances among pure breeds and the segrega-
tion variance may not be properly modeled (M. E.
G

 

oddard

 

, personal communication).
The objective of this paper is to present an alterna-

tive approach to model genetic means, variances, and
covariances for genetic evaluations by BLUP using
marker and trait information in a multibreed popula-
tion in the presence of gametic disequilibrium. Our ap-
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the RQTL are unlinked and in gametic equilibrium
with the MQTL and with the ML; thus, 

 

u

 

i

 

 is uncorre-
lated with  and with . Let 

 

v

 

 be a vector of  and
 for 

 

i

 

 

 

5

 

 1, 2, . . . , 

 

n

 

, and 

 

u

 

 be a vector of 

 

u

 

i

 

 for 

 

i

 

 

 

5

 

 1,
2, . . . , 

 

n

 

. Suppose 

 

J

 

 alleles segregate at the MQTL in a
multibreed population with allele frequencies , 

 

j

 

 

 

5

 

 1,
. . . , 

 

J

 

 in purebred group 

 

B

 

l

 

. Then,  and  are ran-
dom variables with sample space {

 

n

 

1

 

, . . ., 

 

n

 

j

 

, . . ., 

 

n

 

J

 

},
where 

 

n

 

j

 

 is the effect of MQTL allele 

 

j

 

 in some refer-
ence breed group (

 

e.g.

 

, one of the pure breeds). Differ-
ences in allele frequencies among breed groups give
rise to heterogeneous means, variances, and covariances.

To model means, variances, and covariances of addi-
tive genetic values (

 

a

 

i

 

), let 

 

a

 

i

 

 

 

5

 

  

 

1

 

  

 

1

 

 

 

u

 

i

 

. In matrix
notation, the vector of additive genetic values (

 

a

 

) is

(1)

where

is a matrix of order 

 

n

 

 

 

3

 

 2

 

n

 

. Now, the conditional mean
of 

 

a

 

, given breed (

 

B

 

) and marker (

 

M

 

) information, can
be written as E(

 

a

 



 

BM

 

) 

 

5

 

 

 

L

 

E(

 

v

 



 

BM

 

) 

 

1

 

 E(

 

u

 



 

BM

 

). As al-
ready mentioned, RQTL are unlinked with the ML, so
that E(

 

u

 



 

BM

 

) 

 

5

 

 E(

 

u

 



 

B

 

) and

(2)

The second term on the right-hand side of (2) depends
only on breed information, so it can be modeled using
genetic group theory. The first term, however, depends
on breed and marker information, and the modeling
of this term is presented here.

The 

 

u

 

i

 

 is uncorrelated with both  and , so that
the conditional variance and covariance matrix of 

 

a

 

,
given breed and marker information, can be written as

(3)

where 

 

G

 

v

 

 denotes Var(

 

v

 



 

BM

 

) and 

 

G

 

u

 

 denotes Var(

 

u B).
The second term on the right-hand side of (3) depends
only on breed information, so it can be modeled using

v1
i v2

i v1
i

v2
i

p j
Bl

v1
i v2

i

v1
i v2

i

a Lv u+=

L

1 1      
  1 1    
    . . .   
     1 1

=

E a BM( ) LE v BM( ) E u B( )+=

v1
i v2

i

Var a BM( ) LGvL ′ Gu+=

additive covariance theory for a multibreed population
(Lo et al. 1993).

MEANS OF MQTL EFFECTS

Let i be an individual with sire s and dam d (Figure
1). The conditional expectation of the MQTL effect 
for ki 5 1 or 2, given breed (B) and marker (M) infor-
mation, can be written as E(  BM) 5 E[E( 
←Bl,BM)], where ←Bl means that  can be traced
back to pure breed Bl, or that  originates from pure
breed Bl. Then, 

(4)

where  5 E(  ←Bl,BM) 5 nj is the
mean of additive MQTL effects in pure breed Bl, and

 5 Pr( ←Bl BM) is the conditional probability
that MQTL allele  originates from pure breed Bl,
given breed and marker information. This probability
will be also referred to as the conditional breed compo-
sition for MQTL allele , given breed and marker in-
formation.

Note that the expected value of  for any individ-
ual i in a multibreed population, given breed and
marker information, can be written as a linear combi-
nation of the means ( ) of additive MQTL effects in
pure breeds.

Computation of  in (4) is described below. Recall
that s and d are the parents of individual i, so that
MQTL allele  can originate from a pure breed Bl al-
lele in one of four ways:

(1)  descended from , and  originated from
breed Bl, denoted ( ⇐ , ←Βl)

(2)  descended from , and  originated from
breed Bl, denoted ( ⇐ , ←Βl)

vi
ki

vi
ki vi

ki Q i
ki

Q i
ki Q i
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ki
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ki Q i
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Q i
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Q i
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s Q 1
s

Q i
ki Q 1

s Q 1
s

Q i
ki Q 2

s Q 2
s

Q i
ki Q 2

s Q 2
s

TABLE 1

Pedigree of five individuals with marker genotypes

Individual Sire Dam Phenotype Breed Marker genotype

1 0 0 10.6 B1 m1m1
2 0 0 10.1 B1 m1m1
3 0 0 13.0 B2 m2m2
4 1 2 14.0 — m1m1
5 3 2 11.0 — m1m2
6 4 5 14.0 — m1m1

A zero in columns 2 or 3 indicates an unknown parent;
breed information is required only for founders.

Figure 1.—Chromosomal fragments containing the ML
and the MQTL for individuals s, d, i, and j where s and d are
parents of i and where j is not a direct descendent of i.
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(3)  descended from , and  originated from
breed Bl, denoted ( ⇐ , ←Βl)

(4)  descended from , and  originated from
breed Bl, denoted ( ⇐ , ←Βl)

where, for example,  and  are the MQTL alleles in
parent s. The , therefore, can be written as

(5)

Note that the sampling of  from parents s and d does
not depend on the breed origin of the MQTL alleles in
s and d. Thus, (5) can be computed recursively as

(6)

where Pr( ⇐  BM), for p 5 s or d and kp 5 1 or 2,
is the conditional probability that MQTL allele  de-
scended from . The event ⇐  does not depend
on breed information, so Pr( ⇐  BM) is equal to
Pr( ⇐  M). Wang et al. (1995) referred to this as
the probability of descent for MQTL alleles (PDQ) and
presented a recursive formula for its computation.

VARIANCE OF MQTL EFFECTS

Given random variables X and Y, the variance of X
can be written as

(7)

(Kempthorne and Folks 1971). Using the above for-
mula, the conditional variance of MQTL effect  for
ki 5 1 or 2, given breed and marker information, can
be written as

(8)

The first term of (8) can be expressed in terms of con-
ditional breed compositions as

(9)
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d Q 1
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=
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k i Q i

k i Bl← ,BM( )Pr Q i
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 svBl
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L
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where  5 Var(  ←Bl,BM) 5 (nj 2
)2  is the variance of the MQTL effects in pure

breed Bl. Note that the quantity on the right-hand side
of (9) is the mean of variances  of the MQTL effects
in the pure breeds, weighted by conditional breed com-
positions. Purebred variances , for l 5 1, . . . , L, can
be estimated by maximum likelihood (Weller and Fer-

nando 1991).
The second term of (8) also can be expressed in

terms of conditional breed composition as 

(10)

Note that the quantity on the right-hand side of (10) is
the contribution to the variance due to differences in
MQTL allele frequencies among pure breeds. Note
that (  2 )2 is twice the segregation variance of
the MQTL effect for pure breeds l and l9 (Lande 1981;
Lo et al. 1993).

The variance of  for any individual i in a multibreed
population, therefore, given breed and marker informa-
tion, is obtained by substituting (9) and (10) into (8):

(11)

COVARIANCE BETWEEN RELATIVES FOR
MQTL EFFECTS

Following Wang et al. (1995), conditional covari-
ances between relatives for additive effects of MQTL al-
leles, given marker and breed information, will be de-
rived separately for alleles between the two individuals
and for alleles within an individual.

Between individuals: Let i be an individual with sire
s and dam d, and let j be another individual who is not
a direct descendant of i (Figure 1). Given random vari-
ables X, Y, and Z, the covariance between X and Y can
be written as

(12)

(Kempthorne and Folks 1971). Using the above for-
mula, the conditional covariance between relatives for
additive MQTL effects  and , given breed and
marker information, can be written as

(13)

s2
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where W is a random variable with sample space
{ ⇐ , ⇐ , ⇐ , ⇐ }. Note that  is
independent of W because j is not a direct descendant
of i (Chang et al. 1991). Thus, E(  BM,W ) does not
depend on W: E(  BM,W ) 5 E(  BM). Therefore,
the second term of (13) is null.

The first term of (13) can be expressed in terms of
PDQs (Wang et al. 1995):

The Cov( ,  ⇐ ,BM) 5 Cov( ,  BM) for
p 5 s or d, so we have

Thus, Cov( ,  BM) can be computed recursively
as

(14)

This recursive formula is identical to that used for pur-
bred populations, given marker information (Hoe-

schele 1993; Wang et al. 1995).
Within an individual: For individual i, we present the

computation of the covariance between additive effects
 and  of MQTL alleles  and .
Following Mendelian inheritance, the pair of homol-

ogous alleles at the MQTL,  and , descended from
one of the following pairs of parents: ( , ),
( , ), ( , ), or ( , ). Let  denote the
event that the pair of alleles in i descended from par-
ents, ( ⇐ , ⇐ ) or ( ⇐ , ⇐ ),  for ks,kd
5 1 or 2. Using the formula (12), the covariance be-
tween relatives for additive MQTL effects  and 
can be written as

(15)

where W is a random variable with sample space { }
for ks,kd 5 1 or 2. The first term in (15) is 
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(16)

Note that event  does not depend on breed infor-
mation, so that Pr(  BM) 5 Pr(  M). Following
Wang et al. (1995), Pr(  M) can be computed as

(17)

The second term in (15) is

(18)

where E[E(  BM,W ) E(  BM,W )] 5 
E(  BM) E(  BM) Pr(  M). Therefore, substi-
tuting (16) and (18) into (15), we have 

(19)

In (19), Cov( ,  BM) is computed recursively using
(14), and means of additive MQTL effects E(  BM),
E(  BM), E(  BM), and E(  BM) are computed
using (4).

TABULAR METHOD TO COMPUTE
COVARIANCE MATRIX G v

Following Wang et al. (1995), we show how (11),
(14), and (19) can be used to construct recursively the
covariance matrix (Gv) between relatives for the MQTL
effects by a tabular method. 

For each individual in the pedigree, matrix Gv in-
cluded a row and a column for each of the two MQTL
alleles. Thus, the order of Gv is 2n, where n is the num-
ber of individuals. Each diagonal element of Gv is given
by (11). Individuals are ordered such that parents pre-
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cede their progeny, and individuals 1 through b are
considered to be unrelated and noninbred. Thus, the
upper left submatrix of Gv is a diagonal matrix of order
2b, which will be expanded sequentially by the two rows
and the two columns corresponding to individual i, for
i 5 b 1 1, . . . ,n.

Let Gi21 be the upper left submatrix of Gv expanded
up through individual i 2 1. For individual i, with par-
ents s and d, Gi 2 1 is expanded to Gi as

(20)

where

(21)

and

(22)

Matrix  is of order 2 3 2 (i 2 1), with at most eight
nonzero elements that are from:

(23)

These nonzero elements in q9 are located in columns
2(s 2 1) 1 1, 2(s 2 1) 1 2, 2(d 2 1) 1 1, and 2(d 2 1)
1 2. Diagonal elements in (21) are computed using
(11) and off-diagonal elements are computed using
(19).

EFFICIENT ALGORITHM TO INVERT 
COVARIANCE MATRIX G v

The  in (22) is sparse, and positions of the non-
zero elements can be determined easily; therefore, Gv
can be inverted efficiently (van Arendonk et al. 1994;
Wang et al. 1995).

Following Wang et al. (1995), three matrices will be
used to described the rules to invert Gv: Di, Wi, and Pi.
The first matrix is 

(24)

where Cs,d is the 4 3 4 matrix of conditional covari-
ances between s and d, the parents of i, for additive
MQTL effects, and Ti is the matrix of PDQs defined in
(23). The second matrix is 
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where I2 is an identity matrix of order 2. The third ma-
trix is

(26)

where  5 2(a 2 1) 1 b for a 5 s, d, or i, and b 5 1 or
2. If both parents of individual i are known, then all el-
ements in Pi are defined. If at least one parent is un-
known, then elements in Pi associated with the un-
known parent(s) are not defined.

Rules to invert Gv are as follows: (1) Set  equal
to the null matrix of order 2n. (2) For individual i, i 5
1, . . . , n, (a) if both parents are unknown, then (i) add
Var(  BM) to ( ) and (ii) add Var(  BM)
to ( ); (b) if at least one parent is known, then (i)
compute Ti according to (23), (ii) compute Di accord-
ing to (24), (iii) compute Wi according to (25), and
(iv) for each “defined” element (l, k) in Pi, add ele-
ment Wi(l, k) to  at the position given by Pi(l, k).

NUMERICAL EXAMPLE

To illustrate how the theory and algorithms in this
paper can be used for genetic evaluation by BLUP us-
ing marker and trait information in a multibreed popu-
lation, we use the pedigree in Table 1. The pedigree
consists of six individuals from a multibreed population
with two purebred groups, B1 and B2, and two crossbred
groups, B1 3 B2 and B1B1 3 B1B2. Individuals are or-
dered such that parents precede their progeny.

The mixed linear model

(27)

will be used for genetic evaluation by BLUP, where bv is
a vector of purebred means for additive MQTL effects,
bu is a vector of the fixed effects, v* and u* are vectors
of additive MQTL and RQTL effects deviated from
their respective means, e is a vector of residuals, and Xv,
Xu, Zu, and Zu are incidence matrices. For simplicity, as-
sume that bu contains only means of RQTL effects for
pure breeds B1 and B2, i.e.,  5 [ ]. From the
definition of v* and u*, it follows that each of v* and u*
has null mean and that Var(v*) 5 Var(v) 5 (Gv) and
Var(u*) 5 Var(u) 5 (Gu). Assume also that the resid-
ual (e) has null mean and variance .

For this numerical example, the following hypotheti-
cal values will be used:  5 20.1,  5 20.3,  5
0.29,  5 0.81,  5 1.2,  5 1.6,  5 0.9, 

Π i
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5 1.0. The estimation of these parameters are dis-
cussed in the discussion.

The best linear unbiased estimate (BLUE) of bu and
BLUP of v* and of u* can be obtained by solving the
mixed model equations (Henderson 1973) given below

(28)

Construction of the incidence matrices and covariance
matrices in (28) are presented in the following sec-
tions. To construct Xv and Gv requires conditional
breed compositions , and their computations are
discussed next.

Computing conditional breed compositions : In-
dividuals 1 and 2 are founders from pure breed B1, and
3 is a founder from pure breed B2. Thus, their breed
compositions are

and

For nonfounders 4, 5, and 6, their conditional breed
compositions can be computed using recursive formula
(6), given PDQs. The PDQs for 4, 5, and 6 (Wang et al.
1995) are

and

These PDQs are used now to compute conditional
breed compositions , for i 5 4, 5, 6, using (6):

X ′u Xu X ′u Zv X ′u Zu

Z ′v Xu Z ′v Zv Gv
1– σe

2⁄+ Z ′v Zu

Z ′u Xu Z ′u Zv Z ′u Zu Gu
1– σe

2⁄+

bu
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and

Incidence matrices: Incidence matrix Xv is con-
structed such that E( ) 1 E( )5 bv where , is
row i of Xv . From (4), 

Thus, 

Incidence matrix Xu is constructed such that E(ui) 5
bu, where  is row i of Xu. From Thompson

(1979), 

where  and  are conditional breed compositions,
given breed information only. Thus, 
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Matrix Zv 5 I6 ⊗ J2 is the Kronecker product of an
identity matrix of order 6 and a 2 3 1 vector of ones.
Matrix Zu is an identity matrix of order 6.

Constructing Gv: Recall that individuals 1 and 2 are
founders from pure breed B1 and 3 is a founder from
pure breed B2 and that founders are unrelated and
noninbred. Thus, the upper-left submatrix of Gv is di-
agonal and of order 6, with diagonal elements ,

, , , , and . For nonfounders 4, 5,
and 6, this upper-left submatrix can be expanded by
the tabular method using (20).

For individual 4, the matrix  for use in (20) is

The first six elements in rows 7 and 8 of Gv are com-
puted as G3 (Table 2); columns 7 and 8 are obtained
by symmetry. Each of the two diagonal elements of C4 is
computed using (11). Individual 4 is from pure breed
B1; therefore, each diagonal of C4 is . Parents of 4
are unrelated, so off-diagonal elements of C4 are null.
Thus,

For individual 5, the matrix  for use in (20) is

Each diagonal element of C5 is computed using (11):
Var(  BM) 5 (0.29)(0.5) 1 (0.81)(0.5) 1 (20.1 2
(20.3))2(0.5)(0.5) 5 0.559. The Var(  BM) happens
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5

v2
5

to have the same value as Var(  BM). Parents of 5 are
unrelated, so off-diagonal elements of C5 are null.
Thus,

For individual 6, the matrix  for use in (20) is

Parents of 6 are related, so now we have to compute
the conditional covariance Cov( ,  BM), which
requires Cov( ,  BM), Pr(  M), E(  BM),
E(  BM), and E(  BM) for k4, k5, k6 5 1 or 2. The
Cov( ,  BM) for k4, k5 5 1 or 2 have already been
computed as Cov( ,  BM) 5 Cov( ,  BM) 5
Cov( ,  BM) 5 Cov( ,  BM) 5 0.036. The Pr
(  M) can be computed using (17); for example,

Similarly, Pr(  M) 5 Pr(  M) 5 Pr(  M) 5 0.25.
The conditional expected values of additive MQTL ef-
fects, E(  BM), E(  BM), and E(  BM), are com-
puted using (4) as
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TABLE 2

The conditional covariance matrix (Gv) for MQTL effects

v1
1 v2

1 v1
2 v2

2 v1
3 v2

3 v1
4 v2

4 v1
5 v2

5 v1
6 v2

6

v1
1 0.290 0.000 0.000 0.000 0.000 0.000 0.073 0.073 0.000 0.000 0.036 0.073

v2
1 0.000 0.290 0.000 0.000 0.000 0.000 0.073 0.073 0.000 0.000 0.036 0.073

v1
2 0.000 0.000 0.290 0.000 0.000 0.000 0.073 0.073 0.015 0.131 0.073 0.073

v2
2 0.000 0.000 0.000 0.290 0.000 0.000 0.073 0.073 0.131 0.015 0.073 0.073

v1
3 0.000 0.000 0.000 0.000 0.810 0.000 0.000 0.000 0.045 0.365 0.102 0.000

v2
3 0.000 0.000 0.000 0.000 0.000 0.810 0.000 0.000 0.365 0.045 0.102 0.000

v1
4 0.073 0.073 0.073 0.073 0.000 0.000 0.290 0.000 0.036 0.036 0.091 0.145

v2
4 0.073 0.073 0.073 0.073 0.000 0.000 0.000 0.290 0.036 0.036 0.091 0.145

v1
5 0.000 0.000 0.015 0.131 0.045 0.365 0.036 0.036 0.559 0.000 0.158 0.036

v2
5 0.000 0.000 0.131 0.015 0.365 0.045 0.036 0.036 0.000 0.549 0.158 0.036

v1
6 0.036 0.036 0.073 0.073 0.102 0.102 0.091 0.091 0.158 0.158 0.428 0.041

v2
6 0.073 0.073 0.073 0.073 0.000 0.000 0.145 0.145 0.036 0.036 0.041 0.290
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Therefore, 

Diagonal elements of C6 are computed using (11) as

Thus, 

The complete Gv is in Table 2.
BLUE and BLUP: The covariance matrix Gu for ad-

ditive RQTL effects (Lo et al. 1993) is 

Now all elements in (28) are available. The BLUE of
bu ( u) and the BLUP of v* ( *) and of u* ( *) were
obtained by solving (28):

DISCUSSION

Linear-model methods use only information con-
tained in means, variances, and covariances. When
there is gametic disequilibrium between a marker locus
(ML) and a closely linked QTL (MQTL), differences
between means and between variances provide infor-
mation on the association between the ML and the
MQTL. In the absence of disequilibrium, however, dif-
ferences between means and between variances do not
provide any information on the association between
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=

Gu

1.2 0 0 0.6 0 0.3
0 1.2 0 0.6 0.6 0.6
0 0 1.6 0 0.8 0.4
0.6 0.6 0 1.2 0.3 0.75
0 0.6 0.8 0.3 1.4 0.85
0.3 0.6 0.4 0.75 0.85 1.9

=

b̂ v̂ û

b̂ ′u [11.3049, 13.6325]
v̂* ′ [0.0547, 0.0547, 0.0277, – 0.0277, – 0.0695– , 

20.0695, 0.2773, 0.2773, 0.1570, – 0.1570, –
0.2307, 0.3404]

û* ′ [0.12050, 0.12050, – 0.0000, 1.0023, 0.2094, –
1.1275]

=

=
=

the ML and the MQTL, but differences between covari-
ances do provide information on this association. Some
methods that have been proposed for ML-MQTL stud-
ies use only information contained in means (Lande

and Thompson 1990; Weigel et al. 1990; Zhang and
Smith 1992; Haley et al. 1994). Other methods use in-
formation contained in covariances (Fernando and
Grossman 1989; Weller et al. 1990; Hoeschele 1993;
Hoeschele and VanRaden 1993; Wang et al. 1995; van

Arendonk et al. 1994). The method proposed in this
paper for genetic evaluation by BLUP uses all informa-
tion contained in means, variances, and covariances.

The conditional covariance matrix Gv is a function
of purebred means and variances for additive MQTL
effects, and Gu is a function of purebred variances and
segregation variances for RQTL effects (Lo et al. 1993).
Thus, genetic evaluation by BLUP requires purebred
means  5 [ , ] and variances ( , ) for ad-
ditive MQTL effects and purebred variances ( , )
and segregation variance for RQTL effects ( ). These
parameters can be established by maximum likelihood,
in principle, based on the theory and algorithms pre-
sented here.

For genetic evaluation by BLUP using only trait in-
formation in multibreed populations, Elzo (1990) and
Lo et al. (1993) presented a theory to account for het-
erogeneity of variances among pure breeds and for seg-
regation variances between pure breeds at the RQTL.
Goddard (1992) proposed a method for genetic evalu-
ation by BLUP using marker and trait information in
multibreed populations. His model for means is the
same as that presented here, but he uses the Westell
method of phantom parents (Westell et al. 1988) to
efficiently set up the mixed model equations. His
model for variances, however, does not accommodate
heterogeneous variances among pure breeds. Further,
his formula, for the variance does not have the second
term of (14), and thus the segregation variance is not
properly modeled (M. E. Goddard, personal commu-
nication). Theory presented in this paper does account
for heterogeneity of variances among pure breeds and
for segregation variances between pure breeds at the
MQTL and at the RQTL.

Theory presented here for use of marker informa-
tion relies on results from Wang et al. (1995). For a
purebred population, they gave an exact algorithm to
construct Gv and to compute its inverse for complete
marker data. They also proposed two approximate al-
gorithms to construct Gv and to compute its inverse for
incomplete marker data. For a multibreed population,
the same approximations can be used to construct Gv
and to compute its inverse forincomplete marker data.
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