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ABSTRACT
Computer simulations are used to evaluate maximum likelihood methods for inferring male fertility in

plant populations. The maximum likelihood method can provide substantial power to characterize male
fertilities at the population level. Results emphasize, however, the importance of adequate experimental
design and evaluation of fertility estimates, as well as limitations to inference (e.g., about the variance in
male fertility or the correlation between fertility and phenotypic trait value) that can be reasonably drawn.

ONE half of the nuclear genes in most plants pass cal analysis of maximum likelihood methods, or exten-
sive computer simulation, to adequately evaluate thethrough the male reproductive pathway, yet esti-

mates of male fertility based on ecological observations accuracy of inferences made.
such as dispersal distances of pollen analogues or ob-
served pollinator movements can be “disappointingly

MATERIALS AND METHODScrude” (Snow and Lewis 1993, p. 332): any one of a
large number of individuals capable of producing male Maximum likelihood estimation: Smouse and Meagher

gametes may potentially sire a particular offspring. This (1994; following Roeder et al. 1989) develop a maximum
likelihood estimator of male fertility for use in conjuction withsituation is attributable to unique features of plant biol-
electrophoretic or other genetic marker data. The problemogy, particularly the difficulty of reliably circumscribing
is to estimate a vector l of male fertilities, using a matrix Xthe pool of potential fathers.
of genetic data. Each element of the fertility vector lj corre-

Genetic markers can assist male fertility estimation. sponds to the fertility of the jth unique male genotype, while
The most powerful marker-based methods (Devlin et the matrix entry Xij is the probability of observing offspring

genotype i given the genotypes of the maternal parent andal. 1988; Roeder et al. 1989; Brown 1990; Adams et
the jth putative paternal parent (Devlin et al. 1988; Roederal. 1992) partition paternity among genetically possible
et al. 1989). The likelihood of a vector of male fertilities, givenfathers using a maximum likelihood argument (Roeder

observed offspring genotypes, is
et al. 1989; Smouse and Meagher 1994). Estimated fer-
tilities may be used to evaluate specific hypotheses (e.g.,

L 5 P
i
1o

j
X ijlj2. (1)that all males have equal fertility) and to describe pat-

terns such as variation in male fertility (e.g., Devlin

The goal is to identify the vector of male fertilities maximizingand Ellstrand 1990; Devlin et al. 1992; Smouse and this likelihood.
Meagher 1994) or the relationship between male trait A maximum of the likelihood can be found using the expec-
value and fertility as a measure of selection (e.g., Schoen tation maximization algorithm (Roeder et al. 1989, p. 373).

One iteration of this algorithm transforms a value of maleand Stewart 1986; Broyles and Wyatt 1990; Conner

fertility lj to a value l9j using the formulaet al. 1996).
Here I use computer simulation to document statisti-

l9j 5 o
i

X ijlj

RlX illl

. (2)cal power of maximum likelihood methods and to iden-
tify conditions when reasonable insight into male fertil-

The product Xij lj in the numerator represents the expectationity variation can be obtained. The focus is on allozyme
step, while the division and outer sum correspond to maximi-

data, where factors contributing to manageable experi- zation. The algorithm used here starts with an initial vector
mental designs are well understood; speculation on pos- of male fertilities l in which elements are equal and sum to

one, Rjlj 5 1. Iteration proceeds until the change in the logsible results from highly variable markers is presented in
of the likelihood is less than 1025 per iteration.

discussion. Results indicate the importance of genetic
Simulation methodology: Simulation was used to evaluateexclusion probability (ε, see Chakraborty et al. 1988;

the statistical power of the estimation procedure and to eval-
Devlin et al. 1988), number and size of maternal prog- uate inference about male fertility. Simulations centered
eny arrays, and estimation of a limited number of fertili- around a “standard” parameter set. The standard set assumed

a dioecious population of 25 male and 25 female parents, withties. Future paternity studies require further mathemati-
20 progeny assayed per maternal family. Genetic data in the
standard set consist of eight loci, each with two equally fre-
quent alleles (expected exclusion probability ε 5 0.81; ob-
served exclusions in simulations, e.g., in Figure 1, are less thanAuthor e-mail: mmorgan@wsu.edu
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this because of the finite number of paternal parents). This The lower panels of Figure 1 suggest that the total num-
parameter set involves assaying a reasonable number of prog- ber of progeny assayed is important because similar
eny for a combination of loci with exclusion probabilities

curves result when comparable total progeny are assayedtoward the high end of that attainable with allozyme markers.
(e.g., 10 progeny from 25 mothers 5 250 total progenyNatural populations are likely to have more than 25 potential

males, but the analyses presented below suggest that this realis- vs. 20 progeny from 12 mothers 5 240 total progeny).
tic situation results in poor statistical properties. Loci are in Estimation of the male fertility variance may be bi-
Hardy-Weinberg and linkage equilibrium and are inherited ased, and there may not be a strong correlation between
in a Mendelian fashion. Parental genotypes are known without

actual and estimated fertility (Table 1). These difficul-error. Expected male fertilities were chosen from a Gaussian
ties are particularly apparent when the actual variancedistribution with mean equal to the number of progeny simu-

lated and coefficient of variation equal to CVg ; zero fertility is limited or when many male fertilities are estimated.
was assigned when negative deviates were drawn. The actual Even in scenarios with 12 loci and, hence, extraordinary
fertility coefficient of variation CVm (i.e., variation in male exclusion probability (expected ε 5 0.92), the maxi-
fertility realized in a simulation) includes this source of varia-

mum likelihood method overestimates variance in maletion and an additional multinomial component associated
fertility by 1.5- to 2-fold. With eight loci and moderatewith sampling. Numbers of male and female parents, progeny

array size, and number of loci were varied one at a time, with exclusion probability (expected ε 5 0.81), the correla-
CVg ranging between zero and one (with CVg , 0.7, virtually tion between actual and estimated fertility ranges from
all males sire some offspring, whereas for CVg 5 1, the distribu- 0.25, when there are many males with limited fertility
tion of male fertilities is nearly Poisson and z35% of males

variation, to 0.65, when substantial fertility variationsire no offspring). Each parameter combination involved 500
among relatively few males is estimated using many orreplicates.

Statistical power was evaluated using the likelihood ratio large maternal families. With the exclusion probability
statistic suggested by Roeder et al. (1989). The test asks offered by 12 loci, the correlation between actual and
whether estimated male fertilities significantly improve the estimated fertility can rise to 0.83. When males have
likelihood of the data when compared with the initial equal

equal expected fertility, replicates with 50 females orfertility vector. The test subtracts the log of the likelihood in
40 progeny per female show a slight decrease in perfor-Equation 1 calculated with the estimated fertilities from the

log of the likelihood with equal fertilities, and is symbolized mance of the estimators compared with standard param-
as D log L. For each statistical test, 500 data sets were simulated eter values involving fewer females or progeny. A similar
assuming equal male fertility, CVg 5 0. The D log L values pattern is observed when male fertility variation is sum-
from these simulations represent the null distribution against

marized as a ratio of expected values, rather than as thewhich fertility distributions with CVg . 0 are to be compared.
expected value of ratios, so that the difference is notStatistical power for each scenario with CVg . 0 is determined

as the proportion of D log L values more extreme (larger) likely to result from uncertainty in the denominator of
than 95% of the values under the assumption of equal ex- CVm/CVm. Instead, this result may reflect an underlying

l

pected fertility. bias in the imperfectly estimated fertilities, reinforced
Two measures were used to characterize estimated vs. actual

by larger sample sizes.fertilities. The first, CVm/CVm, compared the estimated to ac-

l

tual male fertility coefficient of variation (this is also the ratio
of estimated and actual male fertility standard deviations be-

DISCUSSIONcause the mean estimated and actual male fertility is the same).
The fertility coefficient of variation represents the opportunity Maximum likelihood methods can detect significant
for selection (Crow 1958; Arnold and Wade 1984, p. 710),

male fertility variation when applied to appropriate dataand CVm/CVm provides an indication of whether this opportu-

l

sets (Roeder et al. 1989). However, low statistical powernity will be over- or underestimated in paternity analyses. The
second measure, r, is the correlation between estimated and (Figure 1), biased estimates of fertility variation, and
actual fertilities. This correlation is important in analyses of low correlation between actual and estimated fertility
selection attempting to correlate phenotypic trait value with (Table 1) occur with few loci, few maternal progeny
a measure of fitness (Lande 1976; Lande and Arnold 1983)

arrays, few progeny per maternal family, or many poten-because r determines the maximum possible correlation be-
tial fathers. The fertility coefficient of variation, andtween trait and fitness (Li 1955, p. 151). The variance of

individual fertility estimates provides an important method of hence opportunity for selection, can be substantially
assessing accuracy (Roeder et al. 1989), but is not reported overestimated, even with 12 loci and exclusion probabil-
here because of its indirect relation to population fertility ity ε 5 0.92. The correlation between estimated and
variation or selection analysis. actual fertility can reduce the correlation between trait

value and relative fertility in a selection analysis by 50%
or more (Table 1). These results suggest how experi-

RESULTS
mental design can enhance statistical power, and they

Simulation results in Figure 1 indicate that statistical indicate limits to inference drawn from such experi-
power to reject the null hypothesis of equal male fertility ments.
can be high, provided that male fertility is not too uni- Experimental populations are well suited to inference
formly distributed. Paternity analyses benefit from large of male fertility (Devlin and Ellstrand 1990; Devlin

progeny sizes, many maternal progeny arrays, many loci et al. 1992; Kohn and Barrett 1992; Conner et al.
1996), although some care must be taken in evaluating(highexclusion probabilities), and few paternalparents.
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Figure 1.—Statistical power to reject
the hypothesis of equal male fertility.
Each panel shows the effect of one factor
(number of loci with two equally fre-
quent alleles, progeny array size, num-
ber of potential male parents, number
of maternal progeny arrays) on power,
when the Gaussian component of fertil-
ity variation, CVg , is altered. The heavy,
solid line in each panel represents stan-
dard parameter values (25 male and fe-
male parents, 20 progeny per female,
eight loci with two equally frequent al-
leles). Observed exclusion probabilities
for the standard parameters, but with
different numbers of loci, are shown as
ε in the upper left panel.

male fertility in natural populations. In experimental estimated and actual fertility. Nonetheless, there is rea-
sonable promise for application of paternity estimationpopulations, the number of male fertilities requiring

estimation can be small, and genotypes represented in techniques in populations of 25 possible paternal par-
ents with substantial fertility and allozyme variation pres-the population can be chosen to ensure high exclusion

probability. The most ambitious experimental study to ent. Clearly excluded as candidates for fertility estima-
tion in nature are populations with large numbers ofdate (Conner et al. 1996) involves 60 hermaphroditic

plants, z35 progeny per maternal parent, and exclusion males (including species with extensive gene flow), pop-
ulations with limited or moderate allozyme variation,probability between 0.85 and 0.89. Analysis by Conner

et al. shows that the coefficient of variation of estimated or species with small progeny array sizes.
Genetic information (exclusion probability ε) plays aindividual male fertilities in this study is small (,5%).

The results in Table 1 suggest that even in this data set, prominent but not exclusive role in male fertility estima-
tion. For instance, all parameter sets involving eight locimale fertility variation will be moderately overestimated,

and the ability to detect selection on reproductive traits in Figure 1 have the same exclusion probability, yet
statistical power varies from near zero to one, dependingwill be diminished by the imperfect correlation between

TABLE 1

Characterization of male fertility with allozyme markers

Scenario CVm/CVm r

l

Equal expected fertility, CVg 5 0
Standard 6.92 (2.47–18.8) 0.40 (20.01–0.72)
50 males and females 13.34 (6.60–28.1) 0.25 (20.05–0.51)
50 males 10.02 (5.28–17.5) 0.26 (20.06–0.54)
50 females 7.52 (2.45–20.6) 0.39 (0.01–0.70)
40 progeny 7.13 (2.23–16.1) 0.39 (20.02–0.72)
12 loci 2.07 (1.00–3.96) 0.70 (0.40–0.90)

Substantial fertility variation, CVg 5 0.5
Standard 3.40 (1.45–7.58) 0.56 (0.11–0.82)
50 males and females 6.33 (3.09–12.2) 0.36 (0.04–0.62)
50 males 6.29 (3.25–12.0) 0.34 (0.04–0.61)
50 females 2.75 (1.17–6.42) 0.65 (0.31–0.87)
40 progeny 2.68 (1.17–6.06) 0.63 (0.26–0.86)
12 loci 1.50 (0.91–2.57) 0.83 (0.59–0.95)

Estimated vs. actual male fertility coefficient of variation, CVm/CVm, and correlation between actual and

l

estimated fertility, r. Each line in the table summarizes 500 replicates of the standard parameter set (25 male
and female parents, 20 progeny per female, eight loci with two equally frequent alleles) or scenarios differing
from the standard as indicated, when males have equal expected fertility (CVg 5 0) or substantial fertility
variation (CVg 5 0.5). Numbers in parentheses represent the 95% confidence interval.



1102 M. T. Morgan

TABLE 2

Characterization of male fertility with highly polymorphic markers

Number of potential male parents

Loci Alleles 25 100 200

Estimated to actual male fertility coefficient of variation, CVm/CVm

l

4 4 2.3 (1.05–4.59) 4.4 (2.96–6.15) 4.7 (3.46–6.25)
6 1.2 (0.85–1.73) 1.9 (1.43–2.54) 2.4 (1.86–3.04)
8 1.1 (0.89–1.30) 1.3 (1.07–1.60) 1.5 (1.29–1.88)

8 4 1.0 (0.88–1.25) 1.2 (1.01–1.44) 1.3 (1.13–1.57)
6 1.0 (0.97–1.05) 1.0 (0.98–1.06) 1.0 (0.99–1.07)
8 1.0 (0.99–1.01) 1.0 (0.99–1.02) 1.0 (0.99–1.03)

Correlation between actual and estimated fertility, r
4 4 0.68 (0.39–0.89) 0.34 (0.11–0.54) 0.22 (0.08–0.37)

6 0.91 (0.77–0.98) 0.69 (0.55–0.81) 0.52 (0.38–0.65)
8 0.97 (0.91–0.99) 0.87 (0.79–0.93) 0.76 (0.67–0.84)

8 4 0.98 (0.95–1.00) 0.92 (0.87–0.96) 0.84 (0.77–0.90)
6 1.00 (0.99–1.00) 1.00 (0.99–1.00) 0.99 (0.97–1.00)
8 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (0.99–1.00)

Estimated vs. actual male fertility coefficient of variation, CVm/CVm, and correlation between actual and

l

estimated fertility, r, with varying numbers of equally frequent alleles at four or eight loci. Each line in the
table summarizes 500 replicates with 10 progeny assayed from 25 females (250 total progeny), with varying
numbers of potential male parents having equal expected fertility (CVg 5 0). Numbers in parentheses represent
the 95% confidence interval.

on other aspects of experimental design and the actual and 5.24 were found in Pithecellobium elegans (Mimo-
soideae; Chase et al. 1996), while a single locus with sixamount of fertility variation. The results of Table 1 simi-

larly show the importance of factors other than exclu- alleles was identified in the tropical tree Gliricidia sepium
(Dawson et al. 1997). Table 2 shows simulation resultssion probability in characterizing fertility variation. Even

if exclusion were complete and fertility assigned without when highly polymorphic loci are assayed in 250 prog-
eny (10 offspring from 25 maternal parents) with be-error, under the hypothesis of uniform expected male

fertility, the error of individual fertility estimates follows tween 25 and 200 potential male parents and male fertil-
ity differences resulting entirely from sampling (i.e.,a multinomial distribution with sampling variance in-

versely proportional to the total number of progeny CVg 5 0). Variation similar to that reported from natural
populations (e.g., four alleles at four loci) continues tosurveyed (Roeder et al. 1989). Thus, the best strategy

for increasing accuracy of fertility estimates may not provide biased estimates of male fertility variation and
low correlation between actual and estimated fertility,be maximizing genetic exclusion (e.g., through use of

hypervariable markers). Perhaps the most encouraging even with only 25 potential male parents. A greater
number of alleles per locus results in very favorableresult is the benefit of increasing the number of progeny

sampled for statistical power (either sampling more prospects for paternity analysis, but observation of many
alleles per locus may be precluded by genetic drift inprogeny per mother or more maternal parents, see Fig-

ure 1) because assaying additional progeny is the factor the small populations assumed here. Investing in devel-
opment of additional loci offers very effective paternitymost easily manipulated by the investigator interested

in natural populations. Admittedly, Table 1 shows that analysis, even in moderate-sized populations.
Computer simulation and resampling techniques mayincreasing progeny sampled may only modestly increase

the precision of estimated male fertility parameters. continue to play an important part in paternity studies.
Preliminary analysis, using knowledge of marker varia-Modern molecular markers may substantially expand

the applicability of paternity analyses, although available tion, population structure, and proposed experimental
design, might help to determine whether a full-scaledata sets only hint at appropriate parameters for further

investigation. Simple sequence repeats (SSRs) are one study will be informative (Roeder et al. 1989) and to
identify an appropriate sampling strategy (e.g., polymor-promising genetic marker with abundant polymor-

phism and codominant expression. Although many SSR phism such as that in Table 2 suggests few progeny
per maternal parent compared with that in Table 1).loci are found in rice (Chen et al. 1997) or maize (Smith

et al. 1997), published studies of natural plant popula- Interpretation of hypothesis tests and inferences from
a paternity study also requires investigation of statisticaltions document SSR variants at relatively few loci. For

instance, four polymorphic loci with effective number properties of the inference to determine the expected
bias in estimates of male fertility variation or the ex-of alleles (Hartl and Clark 1989, p. 126) between 1.9
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Genetic Resources, edited by A. H. D. Brown, M. T. Clegg, A. L.pected correlation between estimated and actual fertil-
Kahler and B. S. Weir. Sinauer Associates, Sunderland, MA.

ity. Computer simulation also offers the opportunity to
Broyles, S. B., and R. Wyatt, 1990 Paternity analysis in a natural

population of Asclepias exaltata: multiple paternity, functional gen-incorporate idiosyncrasies of the data set under investi-
der, and the ‘pollen-donation’ hypothesis. Evolution 44: 1454–gation. For instance, using many marker loci increases
1468.

the likelihood of linkage, parental genotypes may not
Burczyk, J., W. T. Adams and J. Y. Shimizu, 1996 Mating patterns

and pollen dispersal in a natural knobcone pine (Pinus attenuatabe in Hardy-Weinberg proportions, and markers may
Lemmon.) stand. Heredity 77: 251–260.violate Mendelian patterns of segregation.

Chakraborty, R., P. E. Smouse and T. R. Meagher,1988 Parentage
Finally, the method of estimating paternity used here analysis with genetic markers in natural populations. I. The ex-

pected proportion of offspring with unambiguous paternity. Ge-represents only one form of analysis. Adams and co-
netics 118: 527–536.workers (Adams and Birkes 1991; Adams 1992; Burc-

Chase, M., R. Kesseli and K. Bawa, 1996 Microsatellite markers
zyk et al. 1996) use electrophoretic data to estimate the for population and conservation genetics. Am. J. Bot. 83: 51–57.

Chen, X., S. Temnykh, Y. Xu, Y. G. Cho and S. R. McCouch, 1997fraction of self-fertilizations, matings between neigh-
Development of a microsatellite framework map providing ge-boring individuals, and mating between individuals out- nome-wide coverage in rice (Oryza sativa L.). Theor. Appl. Genet.
95: 553–567.side the local neighborhood. Matings between neigh-

Conner, J. K., S. Rush,S. Kercher and P.Jennetten, 1996 Measure-boring individuals are further estimated as a function
ments of natural selection on floral traits in wild radish (Raphanus

of plant or population attributes (e.g., size of putative raphanistrum).2. Selection through lifetime male and total fitness.
Evolution 50: 1137–1146.paternal parent, distance between maternal and puta-

Crow, J. F., 1958 Some possibilities for measuring selection intensi-tive paternal parent). This procedure has much to rec-
ties in man. Hum. Biol. 30: 1–13.

ommend it, because it restricts the pool of potential Dawson, I. K., R. Waugh, A. J. Simons and W. Powell, 1997 Simple
sequence repeats provide a direct estimate of pollen-mediatedfathers (through estimation of neighborhood size) and
gene dispersal in the tropical tree Gliricidia sepium. Mol. Ecol. 6:directly estimates a small number of biologically inter- 179–183.

esting parameters (e.g., relationship between plant size Devlin, B., and N. C. Ellstrand, 1990 Male and female fertility
variation in wild radish, a hermaphrodite. Am. Nat. 136: 87–107.and fertility) rather than relying on intermediary esti-

Devlin, B., K. Roeder and N. C. Ellstrand, 1988 Fractional pater-
mates of a large number of male fertilities. These meth- nity assignment: theoretical development and comparison to

other methods. Theor. Appl. Genet. 76: 369–380.ods were developed for seed orchards with relatively few
Devlin, B., J. Clegg and N. C. Ellstrand, 1992 The effect ofmaternal parents and well-defined populations, so

flower production on male reproductive success in wild radish
their application to natural populations should be ap- populations. Evolution 46: 1030–1042.

Hartl, D. L., and A. G. Clark, 1989 Principles of Population Genetics.proached with caution.
Sinauer Associates, Sunderland, MA.
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