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ABSTRACT
Mapping quantitative trait loci (QTLs) is usually conducted with a single line cross. The power of such

QTL mapping depends highly on the two parental lines. If the two lines are fixed for the same allele at
a putative QTL, the QTL is undetectable. On the other hand, if a QTL is segregating in the line cross
and is detected, the estimated variance of the QTL cannot be extrapolated beyond the statistical inference
space of the two parental lines. To reduce the likelihood of missing a QTL and to increase the statistical
inference space of the estimated QTL variance, we present a consensus QTL mapping strategy. We adopt
the identical by descent (IBD)-based variance component method originally applied to human linkage
analysis by combining multiple line crosses as independent families. We explore the properties of consensus
QTL mapping and demonstrate the method with F2, backcross (BC), and full-sib (FS) families. In addition,
we examine the effects of the QTL heritability, marker informativeness, QTL position, the number of
families, and family size. We show that F2 families notably outperform BC and FS families in detecting a
QTL. There is a substantial reduction in the standard deviation of the estimated QTL position and the
separation of the QTL and polygenic variance. Finally, we show that the power to detect a QTL is greater
when using a small number of large families than a large number of small families.

LINE crossing is a common experimental design for individuals within that line cross; i.e., the QTL variance
is formulated as conditional on the cross. As a result,mapping quantitative trait loci (QTLs) in plants
the variance itself is a variable that differs from oneand laboratory animals. Crosses are initiated from at
cross to another. Therefore, a QTL variance estimatedleast two inbred lines, such as backcrosses (BC), F2, and
from a single line cross cannot be extended to a statisti-more derived generations. Statistical methods are well
cal inference space beyond that cross. In addition, thedeveloped for QTL mapping using such line crossing
number of founder alleles at any locus is expected todata (Lander and Botstein 1989; Haley and Knott

be small in a line cross. For instance, there are at most1992; Martı́nez and Curnow 1992; Jansen 1993; Zeng

two alleles at each locus in an F2 family. With such a1994). These methods are mainly designed to handle
single line cross, one’s entire effort is invested in thisa single line cross. The characteristics of line crossing
single large family. If the two founder alleles of a QTLexperiments are: (1) a small number of parental lines
are polymorphic, then detection of the QTL is possibleare involved, (2) the linkage phases of the parental
with a relatively large family. On the other hand, if themarkers are known, and (3) family sizes are usually
two parental lines are fixed for the same allele at alarge. These properties allow the effects of a gene substi-
particular QTL, then this QTL is undetectable, indepen-tution to be tested directly. The methods developed by
dent of the sample size. To increase the statistical infer-the above authors all test the effects of a gene substitu-
ence space of the estimated QTL variance and ensuretion (the first moments) and therefore are referred to
that polymorphic alleles are present in the parentalas the fixed model approach (Xu and Atchley 1995).
gene pool, one needs to sample a sufficient numberQuantitative geneticists are interested not only in de-
of parents (Muranty 1996). This can be achieved bytecting QTLs and locating their positions, but also in
combining data from multiple line crosses.estimating the contribution of the detected QTLs to

Suppose that there are 10 F2 families derived from 10a trait. The contribution of a QTL, however, is only
pairs of inbred lines. What is the appropriate statisticalmeaningful when expressed relative to the total pheno-
method for analyzing the data from these F2 families?typic variance. Therefore, the effect of a QTL is actually
One may simply extend the regression approach to fitmeasured by its variance. In a single line cross, the
2 additional parameters, 1 mean and 1 gene substitutionQTL variance is relative to the genetic variance among
effect, for each F2 family added to the data set. This
means estimating 20 parameters and testing 10 additive
effects. If dominance deviations are considered, 10 addi-
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being twice the coancestry coefficients for the polygenic com-a gene substitution into the variance via s2
g 5 a2/2,

ponent, and I is the identity matrix.where a is the average effect of a gene substitution
Under the assumption that y is multivariate normal and P

(Falconer and Mackay 1996). But as the number of is known, the likelihood function for a particular family is
parameters increases, extension of this method becomes
complicated. L(buyP) 5

1
(2p)n/2uVu1/2

exp[21⁄2(y 2 1m)T V21(y 2 1m)],
Data from multiple line crosses, such as diallelic and

four-way crosses, can occasionally be analyzed using the where b 5 [m s2
g s2

a s2
e ]T are the unknown parameters and the

superscript T stands for matrix transposition.methods of Rebai and Goffinet (1993) and Xu (1996a).
Assume that families are independent so that the overallA survey of the literature shows that the most popular

likelihood function for multiple families is simply the productcomputer software, such as MAPMAKER/QTL (Lin-

of these family-specific likelihoods. Therefore, the overall log
coln et al. 1993), QTL Cartographer (Basten et al. likelihood for N families is:
1997), MapQTL (van Ooijen and Maliepaard 1996),
and MQTL (Tinker and Mather 1995), are designed L 5 o

N

k51

log[Lk(buykPk)],
to handle only a single line cross.

where Lk(buyk Pk) represents the likelihood of the kth family.In contrast to the difficulties of the fixed model, the
To test the presence of a QTL, a log likelihood ratio testIBD-based variance component method initially devel-

statistic is used, which is L 5 22(L0 2 L1), where L1 is theoped for human genetic studies can handle multiple log likelihood value evaluated at the maximum likelihood
families (Haseman and Elston 1972). This method solution under the alternative model (b1 5 [m s2

g s2
a s2

e]T) and
has been referred to as the random model approach L0 is the log likelihood value evaluated at the maximum likeli-

hood solution under the null model (b0 5 [m s2
a s2

e]T).because the QTL variance is directly estimated and
The IBD value between two sibs at a QTL: Because oftested (Xu and Atchley 1995). To separate the QTL

inbreeding, the IBD values among F2 individuals are differentvariance from the polygenic variance, the IBD-based
from those among regular full sibs. If the parental lines are

approach relies on variation in the proportion of genes fixed for alternative QTLs, then F2 individuals have three possi-
IBD shared by relatives at the putative QTL. The random ble genotypes at a QTL: QQ, Qq, and qq. Given the genotypic

configuration of individuals i and j, the IBD value is measuredmodel approach is adopted here for combining data
asfrom different line crosses because each line cross is

effectively a different family.
Before one can apply the random model approach to pij 5 2uij 5 52 for QQ-QQ or qq-qq

1 for QQ-Qq, qq-Qq, or Qq-Qq
0 for QQ-qq,

,
line crosses, one needs to adjust for the fact that regular
full-sib (FS) families and families of line crosses differ

where pij are the ijth elements of P and uij is Malécot’s (1948)in that the latter involves inbreeding (for example, an
coefficient of coancestry. Note that while pij between non-

F2 individual is equivalent to a progeny resulting from inbred, full sibs ranges from zero to one, under inbreeding
a selfing parent). The traditional IBD-based method pij ranges from zero to two. In this usage, pij is not interpreted

as the proportion of alleles IBD, but rather as twice the coeffi-must therefore be modified to reflect the inbreeding
cient of coancestry (Kempthorne 1955; Harris 1964; Cock-effect. Our purpose here is to develop such an IBD-
erham 1983). For example, when the two individuals have abased random model methodology for combining data genotypic configuration of QQ-Qq, the coefficient of coances-

from different line crosses. We examine two types of try is
line crosses: F2 and BC. We then compare the results

uij 5 1⁄4[Pr(Q;Q) 1 Pr(Q;q)1 Pr(Q;Q) 1 Pr(Q;q)]with regular noninbred, FS families.
5 1⁄4[1 1 0 1 1 1 0] 5 1⁄2.

Without inbreeding, the IBD value of an individual with
STATISTICAL METHODS itself (pjj) always takes a value of 1. Under inbreeding, pjj can

be greater than 1, depending on whether the individual isLinear model and likelihood function: We combine line
homozygous or heterozygous, i.e.,crosses by treating each line cross as a family and using a

multipoint QTL mapping methodology. Consider a family
pjj 5 1 1 φj 5 52 if QQ-QQ or qq-qq

1 if Qq-Qq
,with n individuals; the phenotypic value (yi) of the ith individ-

ual is described as yi 5 m 1 gi 1 ai 1 ei (Goldgar 1990; Xu

and Atchley 1995), where m is the overall mean, gi is the where φj is the inbreeding coefficient of individual j at the
additive effect of a putative QTL with mean 0 and variance QTL. Here, pjj can be interpreted as 1 plus the inbreeding
s2

g , ai is the polygenic effect (excluding gi) with mean 0 and coefficient (Harris 1964; Cockerham 1983).
variance s2

a, and ei is the residual error distributed as The elements in the additive relationship matrix A are IBD
N(0, s2

e). Inclusion of a dominance effect is discussed later. values of the polygenic component and can be obtained by
In matrix notation, the model is y 5 1m 1 g 1 a 1 e. The taking the unconditional expectation of pij. In an F2 family,
expectation and variance of the model are E(y) 5 1m and A has elements of Aij 5 E(pij) 5 1 and Ajj 5 E(pjj) 5 3⁄2, in
Var(y) 5 V 5 Ps2

g 1 As2
a 1 Is2

e , respectively, where 1 is a contrast to Aij 5 1⁄2 and Ajj 5 1 in a regular FS family.
column vector of order n, P 5 {pij}n3n is a square matrix of In BC populations, the p’s are derived similarly. They are
order n with the element of the ith row and the jth column
being the shared IBD value between sibs i and j at the QTL, pij 5 2uij 5 52 for QQ-QQ

1 for QQ-Qq or Qq-QqA is an additive relationship matrix of order n with its elements
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for between individuals and nent to the total phenotypic variance was 50%, with 25% for
each component. We referred to this as the standard setting.

To examine the effect of different factors on the perfor-pjj 5 1 1 φj 5 52 for QQ-QQ
1 for Qq-Qq mance of the methods, we varied each of the following factors

successively: (a) the number of families 3 family size: 20 3
for the individual with itself. A has elements of Aij 5 5⁄4 and 25, 250 3 2, or 500 3 2, (b) QTL heritability, h2

g 5 0.10 (s2
a 5

Ajj 5 3⁄2. 12.5, s2
g 5 5.0, and s2

e 5 32.5) or h2
g 5 0.5 (s2

a 5 12.5, s2
g 5

Inferring the IBD value of a QTL from markers: The IBD 25.0, and s2
e 5 12.5), (c) true QTL position at 10 cM or 30

value is completely determined by the genotypes of two indi- cM, (d) low marker information (two alleles, one with a fre-
viduals at the QTL of interest. The actual genotype of an quency of 0.9 and the other with 0.1) and high marker infor-
individual, however, is not observable and it must be inferred mation (six equally frequent alleles at each marker), and (e)
from its marker information. In F2 and BC populations, two 11 markers each with two alleles spaced every 10 cM. We
flanking markers are sufficient if Haldane’s mapping function report results of 100 repeated simulations for each parametric
is assumed and the markers are completely informative. The setting.
conditional distribution of the QTL genotype given the geno- To estimate the strength of a false positive signal, we ran
types of the flanking markers is given by Jiang and Zeng an additional 1000 simulations with no QTL segregating. We
(1996). Denote the conditional probabilities of the three ge- augmented the polygenic variance such that the total genetic
notypes of the QTL by pj 2 5 Pr(QQ uIM), pj 1 5 Pr(QquIM), and variance remained unchanged. From each simulation we
p j 0 5 Pr(qquIM), and let pi 5 [pi 2 pi1 pi 0]T and pj 5 chose the maximum observed likelihood ratio (LR) found
[p j 2 pj 1 pj 0]T. The conditional expectations of the IBD val- across the chromosome and then determined the 95th percen-
ues are p̂ij 5 E(pijuIM) 5 pT

i Cpj for between individuals, and tile from the list of 1000 runs as an estimate of the chromo-
p̂ij 5 E(pjjuIM) 5 cTpj for the individual with itself, where some-wise critical value.

C 5 32 1 0
1 1 1
0 1 2

4 and c 5 321
2
4 RESULTS

The conditional expectations of the IBD in a BC population The average likelihood ratio (test statistic) profiles
are over 100 replications of the three mating designs under

the standard setting are depicted in Figure 1. It is evidentp̂ij 5 E(pijuIM) 5 2pi 2pj 2 1 pi2 pj 1 1 pj 1 pi2 1 pi 1 pj1

that the F2 families notably outperform the two other
for between individuals, and mating designs. The benefit of QTL mapping using F2

p̂jj 5 E(pjjuIM) 5 2pj 2 1 pj1 families is manifest as a signal 70% higher than BC
families, with BC families having a slightly higher signal

for an individual with itself. When the maximum likeli-
than FS families. Since the critical values of the LRhood method is performed, p̂ij 5 E(pijuIM) is used in substitu-
test statistic in the three mating populations are nearlytion of pij.

SIMULATION STUDIES

Individuals within an F2 family are equivalent to full sibs
resulting from selfing a single parent. As a consequence, we
randomly sampled a single parent from an infinitely large
panmictic (or base) population. This single parent was then
selfed to produce an F2 family. Individuals within a BC family
were derived by crossing an F1 hybrid with one of its homozy-
gous parents. The regular (noninbred) FS families were gener-
ated from the mating of two unrelated parents sampled from
the base population. Families, including those of regular (non-
inbred) FS families, were analyzed via the maximum likelihood
method (Xu and Atchley 1995).

To infer the IBD value of a QTL from markers, we used a
multipoint methodology (Fulker et al. 1995; Kruglyak and
Lander 1995; Olson 1995). In most cases, we simulated one
chromosome of length 100 cM with six biallelic markers evenly
spaced along the chromosome. The two alleles at each marker
were equally frequent. A single QTL with six equally frequent
alleles was simulated at position 50. In addition to the QTL
of interest, we also simulated 12 independent biallelic loci of
equal effects to form the polygenic contribution. A detailed
description of the simulation process for random mating pop-
ulations can be found in Gessler and Xu (1996).

We simulated 50 families each with 10 siblings (a total of
500 individuals). For each run, a single set of phenotypic Figure 1.—Comparison of the LR profiles of the standard
values was generated with a QTL, polygenic, and residual setting for F2, backcross (BC), and full-sib (FS) families. The
variance of s2

g 5 12.5, s2
a 5 12.5, and s2

e 5 25, respectively. horizontal dotted line indicates the corresponding 5% empiri-
cal threshold.The joint contribution of the QTL and the polygenic compo-



1142 C. Xie, D. D. G. Gessler and S. Xu

TABLE 1

Estimates of the position, total phenotypic variance (s2
P), and QTL (h2

g) and polygenic (h2
a) heritabilities

in the standard setting

Family Position s2
P h2

g h2
a

F2 50.86 (13.67) 49.06 (3.38) 0.25 (0.076) 0.22 (0.121)
BC 51.46 (18.85) 49.05 (4.17) 0.26 (0.106) 0.22 (0.131)
FS 50.66 (17.32) 49.49 (3.77) 0.24 (0.146) 0.25 (0.177)

The standard setting is a QTL at position 50 cM, a phenotypic variance of 40, h2
g 5 h2

a 5 0.25, medium
marker informativeness (defined in the text), a 20-cM marker interval, with 50 families 3 10 sibs. Standard
deviations among 100 replicates are given in parentheses.

TABLE 2

Estimates of QTL parameters under two levels of heritabilities for three mating populations

Family True h2
g Position s2

P h2
g h2

a

F2 0.50 50.58 (5.44) 49.03 (4.64) 0.46 (0.097) 0.28 (0.166)
0.10 48.58 (22.76) 49.94 (3.27) 0.13 (0.068) 0.23 (0.116)

BC 0.50 49.82 (6.93) 48.43 (4.75) 0.47 (0.138) 0.26 (0.181)
0.10 49.16 (26.81) 49.97 (3.89) 0.11 (0.096) 0.22 (0.117)

FS 0.50 48.84 (7.17) 49.84 (4.18) 0.50 (0.094) 0.26 (0.174)
0.10 49.32 (27.76) 49.72 (3.71) 0.14 (0.090) 0.20 (0.122)

See Table 1 for the standard setting. Each additional run differs from the standard setting by parameter
change noted in the second column. Standard deviations among 100 replicates are given in parentheses.

TABLE 3

Estimates of QTL parameters with high (or low) marker informativeness and a 10-cM marker interval

Family Parameter Position s2
P h2

g h2
a

F2 High 49.84 (8.53) 49.69 (3.55) 0.24 (0.071) 0.26 (0.130)
Low 46.50 (25.92) 49.90 (6.17) 0.21 (0.136) 0.27 (0.156)
10 cM 50.22 (7.07) 49.83 (3.67) 0.25 (0.076) 0.23 (0.128)

BC High 51.84 (15.76) 49.76 (4.23) 0.26 (0.094) 0.23 (0.120)
Low 46.24 (23.52) 50.16 (7.23) 0.27 (0.181) 0.22 (0.186)
10 cM 48.14 (9.44) 48.67 (4.12) 0.27 (0.099) 0.22 (0.127)

FS High 50.83 (10.11) 49.47 (4.38) 0.23 (0.087) 0.25 (0.149)
Low 52.55 (21.70) 50.63 (5.53) 0.26 (0.155) 0.22 (0.189)
10 cM 49.30 (9.36) 49.41 (4.33) 0.27 (0.094) 0.21 (0.139)

See Table 1 for the standard setting. Each additional run differs from the standard setting by the parameter
change noted in the second column. Standard deviations among 100 replicates are given in parentheses.

equivalent, we conclude that QTL mapping using F2 estimated QTL position. As expected, a higher QTL
effect or higher marker informativeness decreases thefamilies has a higher power than BC and FS families

under the standard parameter setting. standard deviation of the estimated QTL position (Ta-
bles 2 and 3). However, the levels of QTL heritabilityUnder the standard setting, the QTL position and

the total phenotypic variance are successfully estimated, or marker informativeness have a smaller effect on the
precision of the phenotypic variance and estimated heri-while the sum of the heritabilities, h2

g 1 h2
a, is as expected

for all three mating designs, implying a fair partitioning tabilities. Higher marker informativeness tends to de-
crease the standard deviation of various ML estimates,of the genetic and residual variances (Table 1). In addi-

tion, F2 families provide more accurate estimates than while a decrease in marker informativeness leads to an
increase in the confounding of h2

g and h2
a. In contrast,BC and FS families in the estimated QTL position and

various variance components. higher heritability levels tend to be associated with a
slightly larger standard deviation in the estimated phe-The levels of the QTL effect (proportional to the

heritability value at the QTL) and marker informa- notypic variance and heritabilities.
One clear feature in the simulations is that using ativeness produce a strong effect on the precision of the



Figure 2.—Comparison of the LR profiles for (a) F2, (b)
backcross, and (c) full-sib families in three experimental designs
(families 3 family size): 20 3 25, 50 3 10, and 250 3 2.

TABLE 4

Estimates of QTL parameters under different experimental designs

Family Designa Position s2
P h2

g h2
a

F2 20 3 25 48.92 (10.24) 48.94 (4.92) 0.23 (0.085) 0.24 (0.190)
250 3 2 48.57 (22.41) 49.84 (2.95) 0.30 (0.120) 0.20 (0.148)
500 3 2 49.16 (18.54) 50.15 (2.15) 0.26 (0.087) 0.24 (0.103)

BC 20 3 25 49.72 (13.10) 48.76 (5.59) 0.25 (0.111) 0.22 (0.155)
250 3 2 49.80 (27.54) 49.70 (3.39) 0.32 (0.152) 0.18 (0.160)
500 3 2 51.64 (22.78) 50.24 (2.04) 0.30 (0.130) 0.20 (0.133)

DS 20 3 25 50.28 (11.64) 48.88 (5.30) 0.26 (0.093) 0.20 (0.165)
250 3 2 50.09 (29.93) 49.88 (3.48) 0.30 (0.192) 0.20 (0.212)
500 3 2 47.47 (28.47) 49.81 (2.18) 0.25 (0.178) 0.25 (0.195)

See Table 1 for the standard setting. Each additional run differs from the standard setting by the parameter
change noted in the second column. Standard deviations among 100 replicates are given in parentheses.

a Number of families 3 family size.
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TABLE 6

Observed 95th percentile likelihood ratios under the
hypothesis of no QTL segregation

Case F2 Backcross Full-sib

Standard 4.97 4.88 5.00
h2

a 5 0.75a 5.76 5.18 5.89
h2

a 5 0.35a 5.40 4.83 5.54
Marker informativeness:

High 5.75 5.22 5.72
Low 5.29 4.88 4.58

10-cM interval 4.19 4.19 4.63
500 families 3 2 sibs 5.13 5.88 5.52

See Table 1 for the standard setting. Each additional run
differs from the standard setting by the parameter change
noted in the first column.

a h2
g 5 0.

cM. It is generated by taking the average value at each
position, and this method shows no bias in predicting
the position of the QTL. Alternatively, taking the aver-Figure 3.—Comparison of the LR profiles for F2, backcross

(BC), and full-sib (FS) families. All other information is the age maximum value of each run produces a slight bias
same as that in Figure 1 except that a single QTL is located toward the center of the chromosome, as reported in
at 10 cM for the left set of curves and at 30 cM for the right Table 5. Of the three populations, the BC populationset of curves.

has the largest bias in the estimated QTL position. This
bias is caused by some runs where the QTL effect is not
significant. In these situations, the QTL position, on
average, tends to be close to the center.large sibship per family has a pronounced effect on the

ability to detect the QTL. Figure 2 presents the results The empirical threshold values of LR test statistics
over 1000 replicated simulations are reported in Tableof sibships for three mating populations. The signal at

the QTL with 10 or 25 sibs per family is 250 or 500% 6. It can be seen that all three mating populations have
nearly equivalent critical values. The average LR testhigher, respectively, than that for two sibs per family.

In addition, with a fixed number of 500 individuals statistics and the power estimates (Type I error rate at
a 5 0.05) over 100 replicated simulations are summa-tested, increasing family size from 2 to 25 decreases the

standard deviation of the estimated QTL position. It rized in Table 7. First, the average LR in F2 families is
notably greater than that in BC or FS families, whereasalso increases the ability to separate the genetic variance

into the polygenic and the QTL components (Tables 1 both BC and FS families have similar test statistics and
powers. Second, under the condition of low markerand 4). The standard deviation of the estimated pheno-

typic variance increases as the number of families de- informativeness, FS families have a power in QTL detec-
tion relatively higher than that of either F2 or BC fami-creases (Table 4).

Figure 3 shows the simulation results with the QTL lies. Recall that an F2 family is generated from a single
parent by selfing. Accordingly, only two alleles at a spe-at position 10 or 30 of a chromosome of length 100

TABLE 5

Estimates of QTL parameters with the QTL located at position 10 or 30 cM

True Estimated
Family position position s2

P h2
g h2

a

F2 10 13.96 (18.56) 49.12 (3.44) 0.23 (0.084) 0.26 (0.125)
30 31.78 (11.19) 50.77 (4.16) 0.24 (0.086) 0.24 (0.136)

BC 10 17.90 (18.43) 49.42 (4.12) 0.27 (0.107) 0.22 (0.141)
30 36.25 (20.08) 49.83 (4.75) 0.26 (0.109) 0.23 (0.135)

FS 10 14.75 (16.17) 50.13 (4.20) 0.28 (0.101) 0.21 (0.159)
30 31.58 (13.26) 49.87 (3.72) 0.27 (0.107) 0.20 (0.153)

See Table 1 for the standard setting. Each additional run differs from the standard setting by the parameter
change noted in the second column. Standard deviations among 100 replicates are given in parentheses.
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TABLE 7

Test statistic and power to detect QTLs

F2 Backcross Full-sib

Power Power Power
Case Test statistic (%) Test statistic (%) Test statistic (%)

Standard 17.27 (9.41) 97 9.58 (5.94) 76 9.35 (7.80) 72
h2

g 5 0.50 66.29 (24.16) 100 40.64 (18.70) 99 37.31 (12.32) 100
h2

g 5 0.10 5.50 (4.37) 46 2.59 (3.15) 21 3.32 (3.21) 15
Marker informativeness:

High 22.63 (11.39) 98 12.33 (7.21) 85 12.54 (6.86) 86
Low 8.07 (8.57) 46 6.60 (7.08) 48 6.39 (5.93) 54
10-cM interval 24.22 (11.61) 100 13.10 (7.51) 90 14.16 (8.42) 89

Number of families 3 family size:
500 3 2 7.67 (4.57) 68 6.75 (4.74) 55 3.09 (3.53) 28
250 3 2 5.56 (4.02) — 4.63 (3.32) — 2.45 (2.97) —
20 3 25 30.72 (16.40) — 15.74 (9.75) — 17.61 (9.29) —

QTL position:
P10 cM 16.01 (9.56) — 9.74 (5.98) — 10.13 (5.75) —
P30 cM 17.50 (9.29) — 9.95 (6.81) — 9.82 (6.58) —

See Table 1 for the standard setting. Each additional run differs from the standard setting by the parameter
change noted in the first column.

— Simulations are not performed under the hypothesis of no QTL segregation of these schemes.

cific locus are randomly sampled from the reference component (genetic drift) and decreases the standard
deviation for the within-family component. When thepopulation. The two alleles have a large probability be-

ing the same state under the condition of low marker increase is greater than the decrease, the net effect
on the estimated phenotypic variance is an increasedinformativeness. In contrast, to generate FS families, two

parents or four alleles at a specific locus are randomly standard deviation.
To make the most efficient use of marker data, manysampled. This process essentially reduces the chance

of a locus being monomorphic and thus increases the QTL mapping experiments are designed to detect a
number of economic traits, rather than only one traitmarker and QTL informativeness. This explains why the

FS design is more powerful than the F2 and BC when (e.g., Edwards et al. 1987). How to select parental lines
that are fixed for alternative QTLs for multiple traits isthe marker information content is low.
a difficult task. The natural choice is to use more than
two parental lines in a mating design. Limited investiga-

DISCUSSION
tions have shown that QTL mapping by using multiple
line crosses has several advantages. First, it can handleWhat contributes to the variance in the estimate of

the total phenotypic variance s2
P? For example, in Table multiple alleles at any locus and thus has a wider statisti-

cal inference space than a single line cross. Second, the2 the standard deviation is higher for the high heritabil-
ity—something counter to expectation. This is due to a use of mating designs with an increased number of

parents is more efficient than the use of only one F2-scaling effect, i.e., the standard deviation being positively
correlated with the mean. The phenotypic variance is like FS family in outbred populations. This is because

the variance attributable to the QTL is better estimatedestimated by s2
P 5 s2

a 1 s2
g 1 s2

e , and thus is the sum of
three random variables. Because of the relation V 5 as the number of parents increases (Muranty 1996).

However, with a fixed number of individuals, there isAs2
a 1 Ps2

g 1 Is2
e, the variance in estimates of s2

g is
greater than that for s2

e . This is due in part to a con- an optimal allocation between the number of families
and the number of individuals per family where QTLfounding between s2

g and s2
a greater than that between

s2
g and s2

e. This means that the variance in s2
P increases mapping reaches its maximum power and minimum

estimation error (Soller and Genizi 1978). Third, awith s2
g, rendering a standard deviation for h2 5 0.5

higher than that for h2 5 0.10. joint test for multiple line crosses is more powerful than
a test considering crosses independently (Rebai andSimilarly, in Table 4 small families have smaller stan-

dard deviations. Note that the phenotypic variance can Goffinet 1993).
For convenience of presentation, the consensusbe partitioned into variance between families and vari-

ance within families. When the total number of individu- method of QTL mapping described above assumes that
a dominance effect is absent. We now discuss how toals is fixed, reducing the number of families increases

the standard deviation for the between-family variance relax this assumption using F2 family data as an example.
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