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ABSTRACT
Ordered tetrad data yield information on chromatid interference, chiasma interference, and centromere

locations. In this article, we show that the assumption of no chromatid interference imposes certain
constraints on multilocus ordered tetrad probabilities. Assuming no chromatid interference, these con-
straints can be used to order markers under general chiasma processes. We also derive multilocus tetrad
probabilities under a class of chiasma interference models, the chi-square models. Finally, we compare
centromere map functions under the chi-square models with map functions proposed in the literature.
Results in this article can be applied to order genetic markers and map centromeres using multilocus
ordered tetrad data.

GENETIC studies using tetrad data are very valuable Papazian (1952) and Perkins (1955), used only three
loci for the detection of chromatid interference andin studying the chance mechanisms in meiosis,

including: (1) positions of crossovers along the four- one locus for mapping centromeres. Several studies
have taken a multilocus approach: (1) under the as-strand bundle; (2) nonsister strand pairs involved in

each crossover; (3) spindle-centromere attachment at sumption of no chromatid interference (NCI), Risch

and Lange (1983) fitted one class of chiasma interfer-the first meiotic division; and (4) spindle-centromere
attachment at the second meiotic division. Deviation ence models, the count-location model, to one multilo-

cus unordered tetrad data set; (2) Zhao et al. (1995b)from random distributions of crossovers on the four-
fitted another class of chiasma interference models, thestrand bundle is called chiasma interference. Deviation
chi-square model, to several multilocus unordered tet-from random involvement of nonsister chromatid pairs
rad data sets; and (3) Zhao et al. (1995a) derived ain each crossover is called chromatid interference. Com-
set of linear equality and inequality constraints on thepared with single spore data, where the four products
probabilities of unordered tetrad patterns, with an arbi-from a single meiosis can only be recovered separately,
trary number of loci under the assumption of NCI, andtetrad data, where four meiotic products can be recov-
tested these constraints on data sets from a variety ofered together, have several advantages. First, chromatid
organisms reported in the literature.interference and chiasma interference can be distin-

In this article, ordered tetrad data are studied underguished using tetrad data. Second, when chromatid in-
different assumptions on the chance mechanisms. Forterference is absent, chiasma interference can be de-
each assumption, a detailed discussion is provided fortected with only two markers, whereas at least three
single marker and two marker data. General resultsmarkers are needed for single spore data. Chiasma inter-
for multiple markers are then presented. Although theference can even be detected with one marker in some
number of spores is four in a tetrad and eight in anstudies. Third, the position of the centromere can be
octad, there is no loss of generality for discussing onlyinferred. In some organisms, such as Neurospora crassa,
tetrads when aberrant segregations can be ignored.the asci are produced in a linear order corresponding
Half-tetrad data are another type of genetic data thatto the meiotic divisions and are called ordered tetrads.
are closely related to ordered tetrad data and widelyIn other organisms, such as Saccharomyces cerevisiae, the
used in genetic studies. A detailed study of half-tetradasci are produced as a group without order and are
data is given in the accompanying article (Zhao andcalled unordered tetrads.
Speed 1998).Ordered tetrads have been used extensively to study

We adopt the following notation in this article. Mark-the crossover process during meiosis since Lindegren

ers are denoted by script letters; for example, we use(1932, 1933, 1936a,b). However, most studies on or-
A and B to denote markers. Alleles are denoted bydered tetrads and unordered tetrads, for example,
italic letters. For example, A and a denote two alleles
of marker A . We use [X, Y, Z, W] to denote the observed
marker configuration for an ordered tetrad, where X
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TABLE 2TABLE 1

Six possible configurations at marker A Eight ordered tetrad types with the same probability
under RSCA

Type
[1, 2, 3, 4]

1 [A, A, a, a] [1, 2, 4, 3]
2 [a, a, A, A] [2, 1, 3, 4]
3 [A, a, A, a] [2, 1, 4, 3]
4 [a, A, a, A] [3, 4, 1, 2]
5 [A, a, a, A] [3, 4, 2, 1]
6 [a, A, A, a] [4, 3, 1, 2]

[4, 3, 2, 1]

Ab, aB, ab] represents an ordered tetrad with two strands
carrying AB and Ab attached to one centromere and

able patterns, the number of distinct probabilities iswith two strands carrying aB and ab attached to the
seven under RSCA. These seven groups are shown inother centromere. The centromere is denoted by CEN.
Table 3. When A shows FDS, there are three distinctFor patterns between a pair of markers, we use P to
groups corresponding to whether A and B have paren-denote parental ditype where all four strands retain the
tal ditype, nonparental ditype, or tetratype, denoted byparental type, T to denote tetratype where two of the
P1, N1, and T12, respectively, in Table 3. When A showsfour strands show recombination, and N to denote non-
SDS, there are four distinct groups. Two groups corre-parental ditype where all four strands are recombinants.
spond to A and B having parental and nonparental di-
types, denoted by P2 and N2 , respectively, in Table 3. When

METHODS A and B have tetratype, B can show either FDS or SDS.
Under RSCA, these two groups may have different proba-Random spindle-centromere attachment assumption:
bilities, denoted by T21 and T2. RSCA can be tested byRandom spindle-centromere attachment (RSCA) assumes
examining whether all distinguishable patterns withinthat two centromeres have the same chance to go to
each group occur with equal frequency. For example, theeither pole at the first meiotic division, and the divided
8 distinguishable patterns listed above, which correspondcentromeres have the same chance to go to either pole
to group T12 with A showing FDS and A and B havingat the second meiotic division (Griffiths et al. 1996).
tetratype, should occur with equal frequency. These andFor marker A with alleles A and a inherited from
more cases were first studied by Whitehouse (1942).two parents, there are six distinguishable configuration

For n markers, there are 6n distinguishable patterns.types, as illustrated in Table 1. Under RSCA, types 1
Under RSCA, these 6n patterns reduce to (6n 1 5 3and 2 ([A, A, a, a] and [a, a, A, A]) have the same
2n)/8 distinct probabilities. This result was first derivedprobability because of random spindle-centromere at-
by Papazian (1952). In the appendix (Proposition 1),tachment at the first meiotic division, whereas types 3
we present a different derivation of this result throughto 6 ([A, a, A, a], [a, A, a, A], [A, a, a, A], and [a, A,
a more direct counting method. As for the one- andA, a]) have the same probability because of random
two-marker cases, RSCA can be tested by examiningspindle-centromere attachment at the second meiotic
whether all the distinguishable tetrad patterns thatdivision. Types 1 and 2 are called first division segrega-
should have the same probability (as discussed in thetion (FDS) pattern, and types 3 to 6 are called second
proof of Proposition 1 in the appendix) under RSCAdivision segregation (SDS) pattern (Griffiths et al.
do occur equally frequently.1996). For a single marker, RSCA can be tested by exam-

No chromatid interference (one marker): For the caseining whether types 1 and 2 occur with equal frequency
of one marker, A , if NCI holds, the four configurationsand whether types 3, 4, 5, and 6 occur with equal fre-
corresponding to the SDS pattern have the same proba-quency. RSCA is generally confirmed (Fincham et al.
bility before meiotic divisions. Therefore, these four types1979).
should occur with the same frequency even if RSCAFor the two markers A and B, there are six distinguish-
fails. As a result, only when both NCI and RSCA fail canable configurations at A and six distinguishable con-
these four types occur with different probabilities.figurations at B. Therefore, there are 36 distinguishable

As shown by Mather (1935), under NCI, the proba-patterns jointly at two markers. Under RSCA, if one
bilities that A shows FDS and SDS patterns, given kpattern can be changed to another pattern through one
chiasmata between CEN and A , areof the eight permutations in Table 2, these two patterns

should have the same probability. For example, the fol-
F(k)A 5 P (FDS | k chiasmata) 5 2⁄3(1⁄2 1 (21⁄2)k) , (1)lowing eight types have the same probability: [AB, Ab,

aB, ab], [Ab, AB, aB, ab], [AB, Ab, ab, aB], [Ab, AB, ab, and
aB], [aB, ab, AB, Ab], [ab, aB, AB, Ab], [aB, ab, Ab, AB],
and [ab, aB, Ab, AB]. After examining all 36 distinguish- S(k)A 5 P (SDS | k chiasmata) 5 2⁄3(1 2 (21⁄2)k) .
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TABLE 3

Seven distinct groups under RSCA

B
FDS

SDS
P1 N1 T12

FDS [AB, AB, ab, ab] [Ab, Ab, aB, aB] [AB, Ab, aB, ab]
A

SDS [AB, aB, Ab, ab] [AB, ab, AB, ab] [AB, ab, Ab, aB] [Ab, aB, Ab, aB]

T21 P2 T2 N2

Suppose A/a and B/b are both segregating. The 6 3 6 5 36 combinations of ordered tetrads reduce to just
7 under RSCA. P, parental ditype; T, tetratype; N, nonparental ditype.

As k increases, the probability of SDS tends to 2⁄3. For
p(P (1,1)

2 ) 5 p(N (1,1)
2 ) 5 1⁄4,one marker, A , NCI imposes no constraints on the

probabilities of FDS and SDS, denoted by FA and SA. and
For any observed FDS and SDS proportions, we can

p(T (1,1)
2 ) 5 1⁄2 .

always construct a chiasma process model that gives rise
to the observed FDS and SDS proportions. In fact, the For k 1 , . 2,
process with probability FA having zero chiasmata and

p(P (k,,)
1 ) 5 p(N (k,,)

1 ) 5 1⁄2F (k)A F (,)B ,
with probability SA having one chiasma is the simplest
such model. p(T (k,,)

12 ) 5 F (k)A S (,)B , p(T (k,,)
21 ) 5 S (k)A F (,)B ,

No chromatid interference (two markers): Two mark-
p(P (k,,)

2 ) 5 p(N (k,,)
2 ) 5 1⁄2p(T (k,,)

2 ) 5 1⁄4S (k)A S (,)B ,
ers, A and B, may be (1) on different chromosomes; (2)
on the same chromosome but on different sides of the where F (k)A and S (k)A were defined in (1). For a given chi-
centromere (that is, the order is A–CEN–B); or (3) on asma process along the four-strand bundle, let ck, denote

the joint probability of there being k chiasmata betweenthe same chromosome and on the same side of the centro-
CEN and A and , chiasmata between CEN and B. Themere (that is, the order is CEN–A–B or CEN–B–A). We
above relations can be combined with expressions forstudy these three cases separately. These three cases
(ck,) and summed, to give our desired frequencies. Forwere first discussed in detail by Whitehouse (1942).
example,We use the notation in Table 3 to denote seven distinct

groups. For example, P1 is the group with both markers
frequency of P1 5 o

∞

k50
o
∞

,50

ck,p(P (k,,)
1 )showing FDS and no strand showing recombination be-

tween A and B.
andTwo markers on different chromosomes: Let p and q denote

the probability of SDS at A and B. When both markers
frequency of N1 5 o

∞

k50
o
∞

,50

ck,p(N (k,,)
1 ).have FDS, tetrad types between A and B can be either

parental ditype or nonparental ditype, depending on
On the basis of the above results, it can be shownwhich pair of alleles are separated at the first meiotic

that, for any chiasma process, seven distinct groups candivision—AB vs. ab or Ab vs. aB. The probability of either
have at most five different probabilities: the probabilitiesoutcome, group P1 or N1, is (1 2 p)(1 2 q)/2. Similar
of P1, N1, T12, T21, and (P2 1 T2 1 N2) can differ, andconsiderations lead to the probabilities of the seven
we denote them by a, b, g, d, and ε. The ratio of thegroups in Table 4. These seven probabilities are deter-
probabilities of P2:T2:N2 is 1:2:1. Therefore, the probabil-mined by two independent parameters: p and q.
ities of P2, T2, and N2 are ε/4, ε/2, and ε/4, respectively.Two markers on different sides of the centromere (A–CEN–B):
These are summarized in Table 5.We use p(P (k,,)

1 ), p(N (k,,)
1 ), p(T (k,,)

12 ), p(P (k,,)
2 ), p(N (k,,)

2 ),
The probabilities of these seven groups can be derivedp(T (k,,)

21 ), and p(T (k,,)
2 ) to denote the frequency of ordered

by another approach. If we treat the centromere as atetrads of groups P1, N1, T12, P2, N2, T21, and T2 among
marker, the results for unordered tetrads (Zhao et al.meioses with k chiasmata in A–CEN and , chiasmata in
1995a) can be applied in this context. If the two centro-CEN–B. We can easily check that
meres from the two parents could be distinguished,

p(P (0,0)
1 ) 5 1, p(T (0,1)

12 ) 5 p(T (1,0)
21 ) 5 1, there would be three types, P, T, and N, between A and

CEN, and three types, P, T, and N, between CEN and
p(P (0,2)

1 ) 5 p(P (2,0)
1 ) 5 p(N (0,2)

1 ) 5 p(N (2,0)
1 ) 5 1⁄4, B. This would lead to nine distinct probabilities. Let

pk
0, pk

1, and p k
2 denote the conditional probabilities ofp(T (0,2)

12 ) 5 p(T (2,0)
21 ) 5 1⁄2,
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TABLE 4

The probabilities of seven groups when A and B are on different chromosomes

B
FDS

SDS
P1 N1 T12

FDS 1⁄2(1 2 p)(1 2 q) 1⁄2(1 2 p)(1 2 q) (1 2 p)q
A

SDS p(1 2 q) 1⁄4pq 1⁄2pq 1⁄4pq

T21 P2 T2 N2

p and q are SDS proportions at A and B.

pk
0, p k

1, and pk
2 of P, T, and N, given k chiasmata between derive constraints on ordered tetrad probabilities under

NCI. Following the definition in Zhao et al. (1995a),a pair of markers. Under NCI, Mather (1935) showed
that, for k $ 1, we say a chiasma process is compatible with a given set

of joint tetrad probabilities p if, under NCI, this chiasma
p k

0 5 1⁄3(1⁄2 1 (21⁄2)k),
process gives rise to these joint probabilities. It was
shown in Zhao et al. (1995a) that for any underlyingp k

1 5 2⁄3(1 2 (21⁄2)k), (2)
chiasma process, if NCI holds, there is a chiasma process

p k
2 5 1⁄3(1⁄2 1 (21⁄2)k).

with at most two exhanges between each consecutive
pair of markers, inducing the same tetrad probabilities.When k 5 0, p0

0 5 1 and p0
1 5 p 0

2 5 0. Let pij denote the
probability of joint tetrad pattern (ij), where i, j 5 0, Using this property, Zhao et al. (1995a) showed that,

for a given set of unordered tetrad probabilities p 51, or 2 corresponding to P, T, and N in each interval;
then, (p 0, p1, p 2)9, the probabilities of P, T, and N between

two markers, there is some chiasma process compatible
pij 5 o

∞

k50
o
∞

,50

ck,pk
ip ,

j , with p if and only if T21
1 p $ 0, where

where p k
i and p ,

j were defined in (2). Because the two
centromeres cannot be distinguished, some of these

T1 5






1 0 1⁄4
0 1 1⁄2
0 0 1⁄4






, T21
1 5






1 0 21

0 1 22

0 0 4






,
classes are not distinguishable. For example, (0, 0) and
(2, 2) both give rise to FDS at two markers and no
recombinations between these two markers. Using the and 0 5 (0, 0, 0)9. For two markers, write the pij in
notation in Table 5, we have a 5 p(P1) 5 p00 1 p22, b 5 lexicographical order as p; there is an underlying chi-
p(N1) 5 p02 1 p 20, g 5 p(T12) 5 p 01 1 p21, d 5 p(T21) 5 asma process satisfying NCI compatible with unordered
p10 1 p 12, and ε 5 4p(P2) 5 2p(T2) 5 4p(N2) 5 p 11. tetrad probabilities p if and only if T21

2 p $ 0, where T2 5
It was shown in Zhao et al. (1995a) that NCI imposes T1^T1, T21

2 5 T21
1 ^T21

1 and 0 is a column vector with
equality and inequality constraints on the probabilities nine 0’s, plus equality constraints described in Zhao et
of distinguishable unordered tetrad patterns. Here we al. (1995a). The operator ^ is the standard tensor prod-

uct (see, e.g., Bellman 1970). If the chiasma process
has at most two chiasmata in each interval, the corre-TABLE 5
spondence between p and c 5 (ck,) is simply c 5

The probabilities of seven groups when A and B are
T21

2 p. Using the property that, for any underlying chi-on different sides of the centromere
asma process, there is a compatible chiasma process
with at most two chiasmata in each interval, we mayB
focus on the study of chiasma processes with at most

FDS two chiasmata in each interval. Using the notation inSDS
Table 5, we have the following proposition, whose proofP1 N1 T12

is given in the appendix (Proposition 2): under NCI,
FDS a b g for any joint ordered tetrad probabilities with two mark-A ers on different sides of the centromere, there is anSDS d 1⁄4ε 1⁄2ε 1⁄4ε underlying chiasma process that is compatible with

T21 P2 T2 N2 these probabilities if and only if a $ b and g 1 d $ 2b
and the ratios of p(P2):p(T2):p(N2) are 1:2:1.In the table, a, b, g, d, ε all $ 0, a 1 b 1 g 1 d 1 ε 5 1,

with constraints a $ b, g 1 d $ 2b. Using a, b, g, d, and ε, we may express the probability
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TABLE 6 each pair of consecutive markers, there are three types:
P, T, and N. Each of these 2 3 3n21 types can be repre-The probabilities of seven groups when A and B are on
sented as (i1i2 · · · in), where i1 5 0 or 1 correspondingone side of the centromere and in the order of CEN–A–B
to FDS or SDS at A1, and ir 5 0, 1, or 2 corresponding
to P, T, or N between A r21 and A r , for r 5 2, . . . , n.B
For unordered tetrads with n markers (n 2 1 intervals),

FDS
SDS there are 3n21 distinct probabilities because FDS and SDS

P1 N1 T12 cannot be differentiated at A1; that is, i1 cannot be deter-
mined. Write the probabilities of the observable patternsFDS a b g
(i2 . . . in) from unordered tetrads, denoted by pt

i2...in, inA
SDS 1⁄2φ d 1⁄2φ ε lexicographical order as pt. It was shown that there is an

underlying chiasma process satisfying NCI compatible withT21 P2 T2 N2

unordered tetrad probabilities if and only if T21
n21pt $ 0,

In the table, a, b, g, d, ε, φ all $ 0, a 1 b 1 g 1 d 1 ε 1 where Tn21 5 T1 ^ . . . ^ T1 (n 2 1 terms), plus equality
φ 5 1. The constraints are: a $ b, g $ 2b, d $ ε, φ $ 2ε.

constraints described in Zhao et al. (1995a).
In our discussion of multiple marker ordered tetrad

data, the p t
0i2...in and p t

1i2...in are considered separately. Writethat A and B show P, T, and N, as p(P) 5 a 1 ε/4,
the p t

0i2...in in lexicographical order as pt
0, the p t

1i2...inin lex-p(T) 5 g 1 d 1 ε/2, and p(N) 5 b 1 ε/4, respectively.
icographical order as pt

1. If for a given (0i2 . . . in), thereIn the unordered tetrad case, the constraints imposed
are k $ 2 tetratypes in the n 2 1 intervals, these tetratypeby NCI are: p(P) $ P(N) and p(T) $ 2p(N) (Zhao et
combinations may be subdivided further into 4k21 sub-al. 1995a). Substituting a, b, g, d, and ε in these two
cells as follows. First, the strands can be labeled such thatinequalities, we get a $ b and g 1 d $ 2b. Therefore,
strands 1 and 3 always show recombination between twofor markers on different sides of the centromere, the
markers that have tetratype closest to the centromere. Foronly extra constraints added by ordered tetrads are the
the other k 2 1 intervals showing tetratype, recombina-1:2:1 proportionality constriants among p(P2), P(T2),
tions can occur on four possible pairs of strands. There-and p(N2).
fore, there are 4k21 subtypes. The probability of eachTwo markers on the same side of the centromere (CEN–A–B;
subcell can be denoted by p 0i2...in

(h1 . . . hk21), where eachthe case of CEN–B–A can be discussed similarly): As in the
previous discussion, we use (i, j) to denote the nine hj is 1, 2, 3, or 4. If for a given (1i2 . . . in), there are k $ 1
distinct groups if the centromere can be treated as a tetratypes in the n 2 1 intervals, these tetratype combina-
marker. Because the centromere cannot be observed, tions may be subdivided further into 2 3 4k21 subcells
(0, 0) and (2, 0) cannot be distinguished. Both (0, 0) as follows. Suppose the first pair of markers showing
and (2, 0) show FDS at A and parental ditype between tetratype from the centromere is A r21 and A r . Marker
A and B. Therefore, we have p(P1) 5 p00 1 p20. Similarly, Ar21 must show SDS, because otherwise there must be
p(N1) 5 p02 1 p 22, p(T12) 5 p01 1 p21, p(P2) 5 p 10, p(N2) 5 a tetratype before Ar21. Marker Ar can show either FDS
p 12, and p(T21) 5 p(T2) 5 p 11/2. Therefore, these seven or SDS. Two types can thus be distinguished, depending
groups can have at most six different probabilities. Each on whether Ar shows FDS or SDS. The strands can be
of these 2 3 3 types can be represented as (i 1i 2), with labeled such that strands 1 and 3 always show recombina-
i 1 5 0 or 1 corresponding to FDS or SDS at A , and i2 5 tion between Ar21 and A r. For the other k 2 1 intervals
0, 1, or 2 corresponding to P, T, or N between A and showing tetratype, recombinations can occur on four
B. Denote these probabilities by a 5 p(P1), b 5 p(N1), possible pairs of strands. The probability of each subcell
g 5 p(T12), d 5 p(P2), ε 5 p(N2), and φ 5 2p(T21) 5 can be denoted by p1i2...in(h 0, h 1 . . . h k21), where h 0 is 0
2p(T2) (Table 6). It can be shown, as in Zhao et al. or 1 if Ar shows FDS or SDS, and each hj is 1, 2, 3, or
(1995a), that for joint tetrad probabilities with two mark- 4 for j $ 1. Using arguments similar to those in Zhao

ers on the same side of the centromere, there is a com- et al. (1995a), it can be shown that there is an underlying
patible chiasma process under NCI if and only if a $ chiasma process satisfying NCI compatible with pt

0 and
b, g $ 2b, d $ ε, φ $ 2ε, and p(T21) 5 p(T2). pt

1 if and only if T21
n21pt

0 $ 0, T21
n21pt

1 $ 0, all the subcell
No chromatid interference (multiple markers): Here probabilities pt

0i2...in(h1, . . . , hr) in a cell i 2 . . . in with
we consider only markers on the same chromosome. Mark-

ir 5 1 for more than one r are equal, and all the subcellers on the same side of the centromere and markers on
probabilities pt

1i2...in(h 0, h1, . . . , hr) in a cell i2 . . . in withdifferent sides of the centromere are discussed separately.
ir 5 1 for one ore more r are equal.Markers on the same side of the centromere: Under the

Markers on different sides of the centromere: Considerassumption of NCI, there are 2 3 3n21 distinct probabili-
markers on one side of the centromere in the order ofties for n markers in the order of CEN–A1–A2– · · · –
CEN–A1–A2– · · · –An1

and markers on the other sideAn. Each of these 2 3 3n21 classes can be identified as
follows: FDS and SDS are distinguished at A1 , and for in the order of CEN–B1–B2– · · · –Bn2

. If the centromere
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model is the Poisson process, which imposes no chiasmacould be observed, any joint tetrad pattern can be repre-
interference. In this model, the probability of k chias-sented by (i1i2 . . . in1

; j1j2 . . . jn2
), where ir 5 0, 1, or 2

mata between CEN and A is e22d(2d)k/k!. Therefore,corresponding to P, T, or N between Ar21 and Ar, js 5
from (1),0, 1, or 2 corresponding to P, T, or N between Bs21 and

Bs , and A0 and B0 both denote the same centromere.
FA(d) 5 o

∞

k50
1e22d(2d)k

k ! 2323112 1 121
22

k

24 5
1
3
(1 1 2e23d),Because the centromere is not observable, both (0i2 . . .

in1
; 0 j2 . . . jn2

) and (2i2 . . . in1
; 2j2 . . . jn2

) show FDS at A1 (3)
and B1 and parental ditype between A1 and B1, they are

andnot distinguishable. Similarly, (0i2 . . . in1
; 1j2 . . . jn2

) is not
distinguishable from (2i2 . . . in1

; 1j 2 . . . jn2
), (1i2 . . . in1

; SA(d) 5 1 2 FA(d) 5
2
3
(1 2 e23d).

0j 2 . . . jn2
) is not distinguishable from (1i2 . . . in1

; 2j 2 . . .
jn2

), and (0i2 . . . in1
; 2j 2 . . . jn2

) is not distinguishable from Under the complete interference model, the SDS pro-
portion is twice the map distance. Under the Poisson(2i2 . . . in1

; 0j 2 . . . jn2
). For SDS at both A1 and B1 , that

model, which imposes no chiasma interference, the SDSis, tetratype in the intervals A1–CEN and CEN–B1, there
proportion will never exceed 2⁄3. Therefore, for orderedare three distinguishable types based on the configuration
tetrad data, the presence of chiasma interference canbetween A1 and B1: P, T, or N.
be shown with just a single marker if NCI is assumedWe combine tetrad types having P between A1 and
and the observed SDS proportion is significantly aboveB1, (0i2 . . . in1

; 0j 2 . . . jn2
), (2i 2 . . . in1

; 2j2 . . . jn2
), and

2⁄3. In many organisms, the SDS proportion was observedone of the three types of (1i 2 . . . in1
; 1j 2 . . . jn2

) showing
to be larger than 2⁄3 for some markers (Weinstein 1936;

P between A1 and B1, and denote the grouped type by
Barratt et al. 1954; Perkins 1962; Deka et al. 1990).

(P; i2 . . . in1
; j 2 . . . jn2

). Similarly, we obtain new grouped On the other hand, for many markers, the observed
types, (T; i 2 . . . in1

; j 2 . . . jn2
) and (N; i 2 . . . in1

; j 2 . . . SDS proportion is less than twice the map distance,
especially for markers far from the centromere, indicat-jn2

), where the tetrad types between A1 and B1 are T
ing less than complete interference.and P. It can be shown that the inequality constraints

There are several proposals in the literature to incor-imposed by NCI on ordered tetrads are the same as the
porate chiasma interference in relating the map distanceinequality constraints imposed on unordered tetrads
and the SDS proportion. The earliest one appears to beapplied to the above new grouped types. In the new
the model proposed by Barratt et al. (1954). In theirgrouped types, FDS or SDS information is ignored at
model, the probability of having r $ 1 chiasmata isA1 and B1. The equality constraints can be established

but are more complex; we omit the details here.
e22x(2x)r

r !
ar21Sa51

Sa

, (4)Genetic mapping (one marker): The probabilities of
FDS and SDS at a marker A can be related to the map

wheredistance between CEN and A if a chiasma process model
is specified. We study several chiasma models and com-

Sa 5 o
∞

r51

e22x(2x)r

r !
ar21.pare various map functions derived from these models

and map functions proposed in the literature. Note that
Map distances and SDS proportions can be expressedcentromeres can be mapped using other types of data.

in terms of x and a. Barratt et al. (1954) used k insteadWhen markers at the centromere are available, the cen-
of a in (4). To avoid confusion with other notation intromere can be treated as a marker and standard mapping
this article, a is used in the following discussion. Bar-procedures can be used to map centromeres (Ferguson-

ratt et al. (1954) found that a between 0.2 and 0.3
Smith et al. 1975). For unordered tetrads, centromeres

provided good fit to Drosophila and Neurospora data.can be mapped with three markers on three chromo-
After trying out many candidates for simple map func-somes (Perkins 1949).

tions for SDS proportions, Ott et al. (1976) found that,Complete interference model: If there is at most one chi-
for SDS proportions between 0 and 0.6, the functionasma between CEN and A , let c 0 and c 1 denote the
SA 5 2⁄3 sin(3d) was in excellent agreement with the

probabilities of having 0 and 1 chiasma; then, FA 5
empirical data in Perkins (1962).

p(FDS) 5 c 0 and SA 5 p(SDS) 5 c 1. The map distance On the basis of a map function relating the map
d between CEN and A is c1/2. Therefore, FA 5 1 2 2d distance d and the recombination fraction u between
and SA 5 2d. two markers proposed by Rao et al. (1977),

If more than one chiasma is allowed, map distance d
cannot be estimated from FA and SA unless the chiasma d 5 {p(2p 2 1)(1 2 4p) ln(1 2 2u)
process is fully specified with the map distance as the 1 16p(p 2 1)(2p 2 1) tan21(2u)
only unknown parameter. 1 2p(1 2 p)(8p 1 2) tanh21(2u)

1 6(1 2 p)(1 2 2p)(1 2 4p)u}/6,Poisson model: The most widely used chiasma process
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Morton et al. (1990) proposed the map function SA 5
3u 2 d.

Here we will compare these map functions with map
functions derived from the chi-square chiasma interfer-
ence models. The chi-square model, first introduced
by Fisher et al. (1947), was suggested as a plausible
biological model by Foss et al. (1993), although there
are now doubts concerning the appropriateness of this
motivation (Foss and Stahl 1995). In the Foss et al.
(1993) study, the model is represented in the form of
Cx(Co)m, as follows: assume the crossover intermediates
are randomly distributed along the four strand bundle,
and every intermediate resolves either as a crossover
(Cx) or not (Co). When an intermediate resolves as a
Cx, the next m intermediates must resolve as a Co, and
after mCo’s the next intermediate must resolve as a Cx.

Figure 1.—Map function relating the map distance be-The process is made stationary by allowing the leftmost
tween the centromere and the marker to the second divisioncrossover intermediate an equal chance to be one of
segregation proportion under different chi-square models.Cx(Co)m. The chi-square model was found to provide
The upper limit for the frequency of SDS under the Poisson

good fit to data from different organisms (Zhao et al. model, y 5 2⁄3, is also plotted in the figure.
1995b). One nice property of the chi-square model is
that the probability of any ordered tetrad pattern has
a closed-form expression, thus facilitating genetic data

5
e2y

6 12ey 1 4 cos1 y

√22 1 √2 sin1 y

√222 ,analysis under this model.
Let p 5 m 1 1, and define Dk(y) to be the matrix

whose (i, j)th entry is dk(ij) 5 e2yy pk1j2i/(pk 1 j 2 i)! if where d is related to y by d 5 y/4 from the above discus-
sion. The expressions of FA(y) and SA(y) are more com-pk 1 j 2 i $ 0, and dk(ij) 5 0 otherwise. Let 1 5 (1,

1, . . . , 1)9 and a 5 (1/p)19. For an interval defined by plicated for m . 1. Map functions relating the SDS
proportion and the map distance for different m’s areparameter y, the map distance d is y/2p because (1)

the average number of crossover intermediates between plotted in Figure 1. Note that m 5 0 corresponds to
the no-interference model, that is, the Poisson model.these two markers is y; (2) one out of every p 5 m 1 1

intermediates resolves as a crossover; and (3) each Under the no interference model, the SDS proportion
never goes above 2⁄3. For m . 0, the SDS proportionstrand has a chance of 1⁄2 of being involved in each

crossover. Therefore, a given strand is involved in a rises above 2⁄3. As m increases, the maximal value of
SA increases, and it is achieved at smaller d. For m . 0,crossover for every 2p crossover intermediates. The

probability of having k chiasmata between two markers there is no one-to-one correspondence between SA and
d. Therefore, the centromere cannot be uniquelyis ck 5 aDk1 (Zhao et al. 1995b). For the simple case of

m 5 1, mapped when the SDS proportion is larger than 0.6,
and chiasma interference cannot be ruled out.

To compare map functions proposed in the literature,Dk(y) 5 e2y1 y 2k/(2k)! y 2k11/(2k 1 1)!

y2k21/(2k 2 1)! y2k/(2k)! 2 ,
we plot different map functions in Figure 2. The map
functions presented are: (1) the map function underfor k $ 1.
the complete-interference model, (2) the map function

Therefore, from (1), under the no-interference model, (3) the map function
proposed by Barratt et al. (1954) with a 5 0.3, (4)

FA(y) 5 o
∞

k50

ck3231
1
2

1 121
22

k

24 the map function proposed by Ott et al. (1976), (5)
the map function proposed by Morton et al. (1990)
with p 5 0.40, and (6) the map function under the5 a1o

∞

k50
3231

1
2

1 121
22

k

24Dk(y)21
Cx(Co)2 model. It is clear from Figure 2 that all map
functions, except those under the complete-interfer-

5
1
2
(1,1)e2y1

6 ence model and the no-interference model, agree with
each other fairly well for SA up to 2⁄3. Therefore, the
map functions proposed in the literature can be well
approximated by the map functions under the Cx(Co)2

model. In the context of single-spore data, it was also3
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1112 found that map functions under the chi-square model
can approximate most map functions in the literature
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model): The chi-square model Cx(Co)m assumes that the
chiasma process is stationary. This model has been ap-
plied mostly to markers on the same side of the centro-
mere. Because the chiasma interference pattern may be
different across the centromere, two chi-square models
starting from the centromere toward two different telo-
meres may be necessary to model the chiasma process.
In general, we may model interference across the cen-
tromere by relating the two most proximal crossover
intermediates on two sides of the centromere. For exam-
ple, we may assign the most proximal crossover interme-
diates on both sides of the centromere as the first Co
after a Cx, thus inducing a higher chiasma interference
in the centromere region than those in other regions.
Or we may assign these crossover intermediates as the
mth Co after a Cx. This will induce a lower chiasma

Figure 2.—Comparison of different map functions pro- interference in the centromere region than those in
posed in the literature. The upper limit for the frequency of other regions. For simplicity, in this discussion we as-
SDS under the Poisson model, y 5 2⁄3, is also plotted in the sume that starting from the centromere, there are twofigure.

stationary chiasma processes on the two arms of the
chromosome. In this case, there is no chiasma interfer-
ence between the two arms.

(Zhao and Speed 1996). Therefore, the chi-square
For marker A , if the centromeres from the two par-

model is a good candidate for multilocus analysis of
ents could be distinguished, the probabilities p 0, p 1, andordered tetrad data.
p2 of P, T, or N between CEN and A can be evaluatedGenetic mapping (two markers): From two-marker
as follows. Let Dk(y) be as defined above; the probabilityordered tetrad data, the map distances among two mark-
of having k chiasmata between CEN and A is ck 5 aDk1.ers and the centromere can be estimated for a given
Define P(y) 5 R∞

k50p k
0Dk(y), T(y) 5 R∞

k50pk
1Dk(y), andchiasma process model. Here we derive joint ordered

N(y) 5 R∞
k50p k

2Dk(y), where pk
0, pk

1, and p k
2 were definedtetrad probabilities under the chi-square model. A spe-

in (2). Then p0 5 aP(y)1, p1 5 aT(y)1, and p2 5 aN(y)1.cial case of the chi-square model, the Poisson model, is
The relation between the map distance d and the param-studied separately, because joint tetrad probabilities can
eter y is d 5 y/2(m 1 1). Using these results, p0(d 1),be expressed rather easily under this model. We con-
p1(d 1), and p 2(d 1) can be obtained. Similarly, the proba-sider markers on different sides of the centromere and
bility of P, T, or N between CEN and B, p0(d 2), p1(d 2),markers on the same side of the centromere in turn.
and p2(d 2) can be evaluated. The joint tetrad probabilityMarkers on different sides of the centromere (Poisson model):
pij is pi(d 1)pj(d2). Therefore, the five probabilities canFor a Poisson chiasma process, if the map distance be-
be obtained as in the Poisson model.tween CEN and A is d1, and if the centromere could be

When m 5 1, it can be shown thatobserved, p 0(d 1) 5 1⁄6(1 1 2e23d1 1 3e22d1), p1(d1) 5 1⁄3(2 2

2e23d1), and p 2(d1) 5 1⁄6(1 1 2e23d1 2 3e22d1), where p 0(d1),
P(y) 5 e2y 1

12p1(d1), and p 2(d1) are the probabilities of P, T, and N
between CEN and A , respectively (Haldane 1931). If
the map distance between CEN and B is d 2, similarly we
obtain p 0(d 2), p1(d 2), and p 2(d 2), the probabilities of P,

3
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

6 1 e y1 e2y14 cos1 y

√22 6y1 e y2 e2y 14√2 sin1 y

√22
e y2 e2y22√2 sin1 y

√22 61ey 1 e2y14 cos1 y

√22







,T, and N between CEN and B. The joint tetrad probabil-
ity pij for type (ij), where i, j 5 0, 1, or 2, is pi(d1)pj(d 2).
Therefore, the five probabilities in Table 5 are:

T(y) 5 e2y1
3a 5 p00 1 p 22 5 p 0(d 1)p0(d2) 1 p 2(d1)p2(d 2),

b 5 p02 1 p 20 5 p 0(d 1)p2(d2) 1 p 2(d1)p0(d 2),

g 5 p01 1 p 21 5 p0(d 1)p 1(d 2) 1 p 2(d1)p1(d 2),

3
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
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,d 5 p10 1 p 12 5 p1(d 1)p0(d2) 1 p 1(d1)p2(d 2),

ε 5 p11 5 p 1(d1)p1(d 2).

Markers on different sides of the centromere (chi-square and
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ers on the same side of the centromere and on differentN(y) 5 e2y 1
12 sides of the centromere are considered separately.

Markers on the same side of the centromere: Consider n
markers A1, A 2, · · · , An in the order of CEN–A 1–A2–
· · · –An. Under NCI, there are 2 3 3n21 different proba-

3
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
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

, bilities corresponding to patterns (i1i 2 . . . in). These 2 3
3n21 types were mentioned in the discussion of the NCI
assumption for the multiple marker case. Denote the
map distance between A r21 and A r by dr , where A0 iswhere d 5 y/4. Even for this simple model, the analytical
the centromere.forms are not so simple. No general results for arbitrary

For a Poisson chiasma process, from the previous discus-m are presented in this article.
sion, FA1

(d1) 5 1⁄3(1 1 2e23d1), SA1
(d1) 5 2⁄3(1 2 e23d1),Markers on the same side of the centromere (Poisson model):

p0(dr) 5 1⁄6(1 1 2e23dr 1 3e22dr), p1(dr) 5 2⁄3(1 2 e23dr),For a Poisson chiasma process, if the map distance be-
tween CEN and A is d1, as shown in Equation 3, then and p 2(dr) 5 1⁄6(1 1 2e23dr 2 3e22dr). The probability of
FA(d1) 5 1⁄3(1 1 2e23d1) and SA(d1) 5 2⁄3(1 2 e23d1). If the tetrad pattern (i1i 2 . . . in) is f 3 Pn

r52pir(dr), where f is
map distance between A and B is d 2, p 0(d 2) 5 1⁄6(1 1 FA1(d1) or SA1(d1) when i1 5 0 or 1.
2e23d 2 1 3e22d 2), p1(d2) 5 2⁄3(1 2 e23d 2), and p 2(d2) 5 Under the chi-square model, define F(y), S(y), P(y),
1⁄6(1 1 2e23d 2 2 3e22d 2), where p0(d 2), p 1(d 2), and p 2(d2) T(y), and N(y) as above. The probability of tetrad pat-

tern (i1i 2 . . . in) is a(Pn
r51Mr)1, where M1 5 F(y1) orare the probabilities of P, T, and N between A and B,

S(y1) for i1 5 0 or 1, and Mr 5 P(yr), T(yr), or N(yr) forrespectively. The six probabilities in Table 6 are
ir 5 0, 1, or 2 when r $ 2. The parameter yr and the

a 5 FA(d 1)p 0(d 2), map distance dr are related by dr 5 yr/2(m 1 1).
Markers on different sides of the centromere: Consider mark-b 5 FA(d 1)p 1(d 2),

ers in the order of Bn2
– · · · –B1–CEN–A1–A2– · · · –

g 5 FA(d 1)p 2(d 2), An1
. If the two chiasma processes on different sides of the

d 5 SA(d 1)p 0(d 2), centromere are independent, we may first consider the
case in which the centromere could be observed. Forφ 5 SA(d 1)p 1(d 2),
tetrad pattern (i1i 2 . . . in) on markers CEN, A1, A2, · · · ,

ε 5 SA(d 1)p 2(d 2). and An, p(i1i2...in1
) 5 a(Pn1r51Mr)1, where Mr 5 P(yr), T(yr),

and N(yr) for ir 5 0, 1, and 2. The map distance betweenMarkers on the same side of the centromere (chi-square model):
Ar21 and Ar is dr 5 yr/2(m 1 1). For tetrad patternUnder the chi-square model, the joint tetrad probability
(j1j 2 . . . jn2

) on markers CEN, B1, B2, · · · , and Bn2
,cj, of having k and , chiasmata in the intervals (CEN, A)

and (A , B) is aDk(y1)D,(y2)1, where a, Dk(y), and 1 were p( j1j2...jn2
) 5 a(Pn2s51Ms)1, where Ms 5 P(ys), T(ys), and N(ys)

defined above (Zhao et al. 1995b). For joint tetrad type for is 5 0, 1, and 2. The map distance between Bs21 and
(i 1i 2), Bs is ds 5 ys/2(m 1 1). Because the centromere is not

observable, instead of 3n11n2 probabilities, there are 5 3
pi1i2 5 o

∞

k50
o
∞

,50

ck,pk
i1
p ,

i2 3n11n222 distinct probabilities. These 5 3 3n11n222 distinct
probabilities can be denoted by (o; i 2 . . .in1

; j 2 . . . jn2
),

5 o
∞

k50
o
∞

,50

[aDk(y1)D,(y2)1]pk
i1p

,
i2 where o 5 0 corresponds to FDS at both A1 and B1

and the tetrad type between A1 and B1 being P, o 5 1
5 a3o

∞

k50

pk
i1Dk(y1)43o

∞

,50

p ,
i2D,(y 2)41, corresponds to FDS at both A1 and B1 and the tetrad

type between A1 and B1 being N, o 5 2 corresponds to
FDS at A1 and SDS at B1, o 5 3 corresponds to SDS atwhere p k

i1 is the conditional probability for FDS (i1 5 0)
A1 and FDS at B1, and o 5 4 corresponds to SDS ator SDS (i1 5 1) defined in Equation 1, and p ,

i2 is the
both A1 and B1. The probability of type (o;i 2 . . . in1

;
conditional tetrad type probability defined in Equation

j 2 . . . jn2
) is2. Define F(y) 5 R∞

k50[2⁄3(1⁄2 1 (21⁄2)k)]Dk(y) and S(y) 5
R∞

k50[2⁄3(1 2 (21⁄2)k)]Dk(y). For any joint tetrad pattern p(0;i2...in1
;j2...jn2

) 5 p(0i2...in1
)p(0j2...jn2

) 1 p(2i2...in1
)p(2j2...jn2

),
(i 1i 2), pi1i2 5 aM1(y 1)M2(y 2)1, where M1(y1) 5 F(y1) or

p(1;i2...in1
;j2...jn2

) 5 p(0i2...in1
)p(2j2...jn2

) 1 p(2i2...in1
)p(0j2...jn2

),S(y 1) when i1 5 0 or 1, and M2(y2) 5 P(y2), T(y 2), or
N(y 2) when i 2 5 0, 1, or 2. The matrices P(y 2), T(y 2), p(2;i2...in1

;j2...jn2
) 5 p(0i2...in1

)p(1j2...jn2
) 1 p(2i2...in1

)p(1j2...jn2
),

and N(y 2) were defined above. Explicit expressions for
F(y), S(y), P(y), T(y), and N(y) were obtained in previ- p(3;i2...in1

;j2...jn2
) 5 p(1i2...in1

)p(0j2...jn2
) 1 p(1i2...in1

)p(2j2...jn2
),

ous discussion under the CxCo model.
p(4;i2...in1

;j2...jn2
) 5 p(1i2...in1

)p(1j2...jn2
) .Genetic mapping (multiple markers): As before, mark-
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TABLE 7

Observed and expected counts of seven groups for markers MT
and AD under four possible orders for MT and AD

Type Observed (1) (2) (3) (4)

[AB, AB, ab, ab] 1014 486 1014 1014 1014
[Ab, Ab, aB, aB] 0 486 0 0 0
[AB, Ab, aB, ab] 97 140 97 97 48
[AB, aB, Ab, ab] 1 44 1 0 1
[AB, ab, AB, ab] 49 2 12 49 49
[AB, ab, Ab, aB] 0 3 25 0 48
[Ab, aB, Ab, aB] 0 2 12 0 0
log-likelihood 21416 2609 2541 2607

(1) On different chromosomes (CEN1–MT and CEN2–AD); (2) on different sides of the centromere
(MT–CEN–AD); (3) on the same side of the centromere in the order of CEN–AD–MT; and (4) on the
same side of the centromere in the order of CEN–MT–AD. The two alleles at AD are represented by A and
a, and the two alleles at MT are represented by B and b.

RESULTS MT. The second pair of markers analyzed are MT and
VIS. The observations as well as the expected valuesIn this section, the methods developed and described
and maximized log-likelihoods under the four ordersin methods are used to find the order of a set of markers
are summarized in Table 8. Comparing the maximizedand to estimate map distances between the centromere
log-likelihoods under the four orders leads to the orderand genetic markers. MT–CEN–VIS. The last pair of markers studied areOrder markers under NCI (two markers): As discussed MT and RIB (Table 9). The data are consistent withabove and summarized in Tables 4–6, different orders
MT and RIB being on different chromosomes. Per-of two markers impose different constraints among the
kins (1953) discussed the detection of linkage usingprobabilities of seven groups in Table 3. These constraints
unordered tetrads. With ordered tetrads, as can be seencan be used to order two markers. Data from Howe (1956)
from these examples, it is not only possible to detectare analyzed here to illustrate the procedure. The first
linkage, but it is also possible to order the two markerspair of markers analyzed are MT and AD. The observed
relative to the centromere. This results from the extranumbers of tetrads for the seven groups are shown in
information in ordered tetrads.Table 7. It is clear that the data satisfy the constraints

Order markers under NCI (three markers): Considerunder the order CEN–AD–MT but not the constraints
three markers A , B, and C. Under RSCA, there are 32under other orders. Thus, the order CEN–AD–MT can
distinct probabilities (appendix: Proposition 1). When A ,be established. To make the inference more rigorous, the
B, and C are on the same chromosome, there are a totalmaximum likelihood estimates of the probabilities for the
of 12 possible orders among them: (1) CEN–A–B–C,seven groups and the corresponding maximum likeli-
(2) CEN–A–C–B, (3) CEN–B–A–C, (4) CEN–B–C–A,hoods were calculated under the four possible orders:
(5) CEN–C–A–B, (6) CEN–C–B–A , (7) A–CEN–B–C,(1) CEN1–AD, CEN2–MT, (2) AD–CEN–MT, (3)
(8) A–CEN–C–B, (9) B–CEN–A–C, (10) B–CEN–C–A ,CEN–AD–MT, and (4) CEN–MT–AD. It is straight-
(11) C–CEN–A–B, and (12) C–CEN–B–A . For a givenforward to obtain the maximum likelihood estimates
order, NCI imposes linear equality and inequality con-under order (1). To find the maximum likelihood esti-
straints among these 32 probabilities. The maximummates under the linear inequality constraints among
likelihood estimates of the 32 probabilities under thesethe seven probabilities for orders (2), (3), and (4), an
constraints can be derived using the EM algorithm (ap-expectation maximization (EM) algorithm (Dempster

pendix, EM algorithm). Here we study the same dataet al. 1977) was implemented to find the maximum
set analyzed for the two-marker case except that we arelikelihood estimates under each order. This algorithm
simultaneously analyzing three markers, MT, AD, andis similar to the EM algorithm used in Zhao et al. (1995a,
VIS. Although there are 32 groups with distinct proba-p. 1061) in that it treats the unobserved chiasma fre-
bilities under RSCA, only 12 groups were observed forquencies as constituting the complete data. The details
this data set. The number of observations for each groupof this algorithm are provided in the appendix (EM
is given in Table 10. Because of limited space, we summa-algorithm). The expected number of observations for
rize only the maximized log-likelihoods under 12 differ-each group and the maximized log-likelihood under
ent orders in Table 11 without giving the expected num-each order are given in Table 7. Among the four orders,
ber of observations for each group under each order.the order CEN–AD–MT yielded the largest maximized

log-likelihood, thus establishing the order CEN–AD– Comparing the log-likelihoods, the order of VIS–CEN–
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TABLE 8

Observed and expected counts of seven groups for markers MT
and VIS under four possible orders for MT and VIS

Type Observed (1) (2) (3) (4)

[AB, AB, ab, ab] 888 445 888 888 888
[Ab, Ab, aB, aB] 1 445 1 1 1
[AB, Ab, aB, ab] 128 128 128 128 69
[AB, aB, Ab, ab] 126 126 126 68 126
[AB, ab, AB, ab] 5 5 5 5 5
[AB, ab, Ab, aB] 10 9 9 68 69
[Ab, aB, Ab, aB] 3 5 5 3 3
log-likelihood 21509 2900 2958 2960

(1) On different chromosomes (CEN1–MT and CEN2–VIS ); (2) on different sides of the centromere
(MT–CEN–VIS); (3) on the same side of the centromere in the order of CEN–VIS–MT; and (4) on the
same side of the centromere in the order of CEN–MT–VIS. The two alleles at VIS are represented by A and
a, and the two alleles at MT are represented by B and b.

TABLE 9

Observed and expected counts of seven groups for markers MT
and RIB under four possible orders for MT and RIB

Type Observed (1) (2) (3) (4)

[AB, AB, ab, ab] 473 497 473 473 473
[Ab, Ab, aB, aB] 521 497 228 181 221
[AB, Ab, aB, ab] 21 21 58 361 11
[AB, aB, Ab, ab] 143 143 398 72 443
[AB, ab, AB, ab] 2 1 1 2 2
[AB, ab, Ab, aB] 1 2 2 72 11
[Ab, aB, Ab, aB] 0 1 1 0 0
log-likelihood 21248 21509 21832 21541

(1) On different chromosomes (CEN1–MT and CEN2–RIB); (2) on different sides of the centromere
(MT–CEN–RIB); (3) on the same side of the centromere in the order of CEN–MT–RIB; and (4) on the
same side of the centromere in the order of CEN–RIB–MT. The two alleles at MT are represented by A and
a, and the two alleles at RIB are represented by B and b.

TABLE 11TABLE 10

The maximum log-likelihoods for the 12 possible ordersObserved counts for markers MT, AD, and VIS
among MT, AD, and VIS under the assumption

of no chromatid interferenceType Observed counts

[ABD, ABD, ABD, ABD] 888 Order log-likelihood
[ABD, aBD, Abd, abd] 85
[ABD, abD, ABd, abd] 43 CEN–MT–AD–VIS 21090
[ABD, ABd, abD, abd] 126 CEN–MT–VIS–AD 21311
[ABD, aBd, AbD, abd] 3 CEN–AD–MT–VIS 21119
[ABD, abd, ABD, abd] 2 CEN–AD–VIS–MT 21238
[ABD, aBd, abD, abd] 5 CEN–VIS–MT–AD 21208
[aBD, ABd, AbD, abd] 3 CEN–VIS–AD–MT 21087
[ABD, abd, ABd, abD] 2 MT–CEN–AD–VIS 21091
[aBD, abD, ABd, Abd] 1 MT–CEN–VIS–AD 21246
[aBD, ABd, abD, Abd] 1 AD–CEN–MT–VIS 21183
[ABd, abD, ABd, abD] 2 AD–CEN–VIS–MT 21218

VIS–CEN–MT–AD 21126
The two alleles at MT are represented by A and a, the two VIS–CEN–AD–MT 21000

alleles at AD are represented by B and b, and the two alleles
at VIS are represented by D and d.
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TABLE 12 simulating data sets with the same sample size under the
chi-square model, assuming the estimated parameterObserved and expected number of individuals under
values; (2) estimating model parameters for each simu-different chi-square models for Neurospora
lated data set; and (3) approximating the standard er-
rors of the parameter estimates using the standard er-Expected
rors of the estimated parameter values from these

Type Observed Cx CxCo Cx(Co)2

simulated data sets. Using this method, the standard
000 104 115 100 89 errors were estimated to be 1, 1, and 2 cM, respectively.
100 34 34 40 44 Note that the Cx(Co)2 model was found to be the best
010 26 22 31 38 model using different sets of Neurospora data (Zhao

001 76 61 70 75 et al. 1995b). The data analyzed in Zhao et al. (1995b)
110 11 7 5 3

were of unordered type. The difference between the101 15 18 18 18
estimated best chi-square model could be the result of011 7 12 10 8
sampling errors or real difference in chiasma interfer-002 2 3 1 1

111 3 3 1 1 ence among the Neurospora strains used in different
log-likelihood 2471 2469 2476 genetic experiments.

Data from Whitehouse (1942). Three markers on the sec-
ond chromosome were studied in the order of CEN–Pe–Tu–F. DISCUSSION
The observed types are represented by i1i2i3, where i1 5 0 or
1 corresponding to FDS or SDS pattern at Pe, i 2 5 0, 1, or 2 Ordered tetrads studied in this article offer informa-
corresponding to parental ditype, tetratype, or nonparental tion both on chromatid interference and on chiasma
ditype between Pe and Tu, and i3 5 0, 1, or 2 corresponding

interference. In addition, they can be used to map cen-to parental ditype, tetratype, or nonparental ditype between
tromeres. Although the number of distinguishable pat-Tu and F.
terns for ordered tetrad is 6n, under RSCA these distin-
guishable types reduce to (6n 1 5 3 2n)/8 distinct
groups. The NCI assumption further reduces the num-AD–MT can be clearly established. The difference

between the maximized log-likelihood under this order ber of distinct probabilities.
The equality and inequality constraints among or-and the largest maximized log-likelihood under the

other orders is 90. Note that when two markers on dered tetrad probabilities imposed by NCI were derived.
We showed how these general constraints can be usedthe same chromosome were analyzed, the differences

between the maximized log-likelihood under the best to order markers.
Because it makes use of all the data available, multilo-order and the largest maximized log-likelihood under

other orders were 66 (Table 7) and 58 (Table 8). This cus analysis is advantageous over the analysis in which
only a limited number of markers can be analyzed. Forincreased difference between the maximized log-likeli-

hoods using three markers, 90 vs. 66 and 58, demonstrates example, for four markers in the order of A–B–C–D,
using the multilocus approach described above, if mark-the power gained in discriminating different marker or-

ders by simultaneously considering multiple markers. ers A , B, and D are studied in one experiment and
markers A , C, and D are studied in another experi-Gene-centromere mapping: To illustrate the applica-

tion of the chi-square model to analyzing ordered tetrad ment, data from these two experiments can be analyzed
together to infer the genetic distances among thesedata, Neurospora data discussed by Whitehouse (1942,

Table 12) are presented in Table 12, along with the markers. However, if only one or two markers can be
studied in a single analysis, data from the second experi-expected number of observations for each ordered tet-

rad type under the Poisson model, the CxCo model, and ment cannot be used to infer the map distances between
B and other markers.the Cx(Co)2 model. Three genes were studied: Pe, Tu,

and F on the second chromosome of Neurospora. The We have assumed that genotypes are available at all
markers for all tetrads in our discussion. If genotypes fororder of these genes is CEN–Pe–Tu–f. A total of 278

asci were genotyped at these three genes. The largest some markers are missing, the EMalgorithm (Dempster et
al. 1977) can be employed to carry out the likelihoodmaximized likelihood was obtained under the CxCo

model in the chi-square model class. Although this indi- analysis efficiently.
Chiasma interference has been observed in many or-cates the presence of chiasma interference, the differ-

ence between the maximum likelihoods under the Pois- ganisms. One difficulty in multilocus analysis has been
to find a good model that both incorporates chiasmason model and the CxCo model is too small to make

any definite conclusions. Under the CxCo model, the interference and permits tractable analysis. Interference
was considered for the analysis of unordered tetrad datamap distances were estimated to be 12, 9, and 20 cM

in the three intervals: CEN–Pe, Pe–Tu, and Tu–F. We (Risch and Lange 1983; Zhao et al. 1995b). Risch and
Lange’s tetrad analysis used the count-location modelestimated the standard errors of the parameter esti-

mates using the parametric bootstrap method by: (1) for the chiasma process. The count-location model was
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tetrasperma. Bull. Torrey Bot. Cl. 59: 119–138.

tions (McPeek and Speed 1995). On the other hand,
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butions. In this article, it was shown that three map
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Ott, J., D. Linder, B. K. McCaw, E. W. Lovrien and F. Hecht, 1976
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ovarian teratomas in man. Ann. Hum. Genet. 49: 191–196.SDS proportion is less than 2⁄3. Therefore, multilocus
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188.
should provide a tractable and flexible approach to

Perkins, D. D., 1949 Biochemical mutants in the smut fungus Usti-
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marked chromosome arm of Neurospora. Genetics 47: 1253–
data. A detailed study of half-tetrad data is given in the 1274.
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[Ab, aB, aB, Ab], [aB, Ab, Ab, aB], and [aB, Ab, aB, c 11 5 ε, and all other c k, 5 0. All the c k, are nonnega-
tive, and they are compatible with (a, b, g, d, ε).Ab] have the same probability. Likewise when all

(c) The case of d 2 b , 0 is similar to the case g 2markers are either type 5 or 6, each pattern has
b , 0.three other patterns with the same probability. This

Combining (a) to (c), this proves the necessity.gives (2n 1 2n)/4 5 2n21 distinct probabilities.
For any underlying chiasma process, if NCI holds,(c) When all markers have configurations 3, 4, 5, or 6,

there is a chiasma process with at most two exhangesand with at least one being 3 or 4 and at least one
between each consecutive pair of markers, inducing thebeing 5 or 6, each pattern has seven other patterns
same tetrad probabilities (Zhao et al. 1995a). Therefore,with the same probability. For example, [AB, ab,
we may consider only processes with no more than twoAb, aB], [AB, ab, aB, Ab], [ab, AB, Ab, aB], [ab, AB,
chiasmata in each interval, that is, the ck, with ck, 5 0aB, Ab], [Ab, aB, AB, ab], [Ab, aB, ab, AB], [aB,
for either k . 2 or , . 2. From the relations in EquationAb, AB, ab], and [aB, Ab, ab, AB] have the same
5, it is easy to check that a $ b and g 1 d $ 2b. Thisprobability. This gives (4n 2 2n 2 2n)/8 distinct
proves the sufficiency.probabilities.

EM Algorithm. Here we sketch the EM algorithm(d) When at least one marker has type 1 or 2 and at
used to obtain the maximum likelihood estimates underleast one marker has type 3, 4, 5, or 6, there are
the linear constraints imposed by a given marker order.seven other patterns with the same probability. For
First, consider two markers in the order of A–CEN–B,example, [AB, Ab, aB, ab], [AB, Ab, ab, aB], [Ab,
which was discussed in the proof of Proposition 2. TheAB, aB, ab], [Ab, AB, ab, aB], [aB, ab, AB, Ab], [aB,
“complete” data constitute ck,, the joint probability ofab, Ab, AB], [ab, aB, AB, Ab], and [ab, aB, Ab, AB]
there being k chiasmata between CEN and A and ,all have the same probability. This gives (6n 2 2n 2
chiasmata between CEN and B. We consider only the4n)/8 distinct probabilities.
c k, with k, , 5 0, 1, and 2. This is because for any chiasmaAdding (a) to (d), there are at most (6n 1 5 3 2n)/8
process, under NCI, there is a chiasma process with atdistinct probabilities.
most two exchanges between each consecutive pair of
markers inducing the same tetrad probabilities (ZhaoProposition 2. Under NCI, for any joint ordered tetrad
et al. 1995a). Let pi denote the probability of group i,probabilities with two markers on different sides of the centro-
where i 5 1, . . . , 7 is one of the seven distinct groupsmere, there is an underlying chiasma process that is compatible
in Table 3. Each pi is a linear function of the ck,, thatwith these probabilities if and only if a $ b and g 1 d $
is, pi 5 Rti,k,ck,. Let xi denote the number of observations2b and the ratio of p(P2):p(T2):p(N2) is 1:2:1.
for group i in the sample and n denote the sample size.Proof. It is easy to see that, under NCI, the ratio of
Then the EM algorithm proceeds as follows:p(P2):p(T2):p(N2) being 1:2:1 is a necessary and sufficient

1. Start with some initial estimates c 0
k, of the c k,.condition. Let ck, denote the joint probability of there

2. Update the c k, usingbeing k chiasmata between CEN and A and , chiasmata
between CEN and B. If ck, 5 0 for either k . 2 or , .

cnew
k, 5

1
n 5o

7

i51
3 ti,k,cold

k,

oti,k,c old
k,

4xi62, the relations between ck, and a, b, g, d, and ε defined
in Table 5 are

until the convergence criterion is satisfied.
a 5 c 00 1 1⁄4c 02 1 1⁄4c 20 1 1⁄8c 22 , If the two markers are in the order of CEN–A–B, we

only consider the ck, with k 5 0 and 1 and , 5 0, 1, andb 5 1⁄4c 02 1 1⁄4c 20 1 1⁄8c 22 ,
2. This is because under this order, for any chiasma

g 5 c 01 1 1⁄2c 02 1 1⁄2c 21 1 1⁄4c 22 ,
process under NCI, there is a chiasma process with ck, 5

d 5 c 10 1 1⁄2c 12 1 1⁄2c 20 1 1⁄4c 22 , 0 for k . 1 or , . 2 inducing the same tetrad probabili-
ties.ε 5 c 11 1 1⁄2c 12 1 1⁄2c 21 1 1⁄4c 22 .

The same procedure can be applied to more than two
Suppose a $ b and g 1 d $ 2b. markers. For example, when there are three markers in
(a) If g 2 b $ 0 and d 2 b $ 0, let c00 5 a 2 b, c 01 5 the order of A–CEN–B–C, there are 32 distinct groups

g 2 b, c 10 5 d 2 b, c 02 5 c 20 5 2b, c11 5 ε, and all under RSCA, and the “complete” data constitute 27 joint
other c k, 5 0. All the c k, are nonnegative, and they chiasma probabilities c k,m across three intervals (A–CEN,
are compatible with (a, b, g, d, ε). CEN–B, and B–C) with k, ,, m 5 0, 1, and 2. After

(b) If g 2 b # 0, 4b 2 2g must be $ 0 because 4b 2 establishing the relationships between the pi and the
2g $ 2b 2 2g $ 0. Let c 00 5 a 2 b, c 01 5 0, c k,m, the EM algorithm proceeds exactly the same as

above.c 10 5 g 1 d 2 2b, c 02 5 2g, c 20 5 4b 2 2g,


