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ABSTRACT
A general fine-scale Bayesian quantitative trait locus (QTL) mapping method for outcrossing species is

presented. It is suitable for an analysis of complete and incomplete data from experimental designs of F2

families or backcrosses. The amount of genotyping of parents and grandparents is optional, as well as the
assumption that the QTL alleles in the crossed lines are fixed. Grandparental origin indicators are used,
but without forgetting the original genotype or allelic origin information. The method treats the number
of QTL in the analyzed chromosome as a random variable and allows some QTL effects from other
chromosomes to be taken into account in a composite interval mapping manner. A block-update of
ordered genotypes (haplotypes) of the whole family is sampled once in each marker locus during every
round of the Markov Chain Monte Carlo algorithm used in the numerical estimation. As a byproduct,
the method gives the posterior distributions for linkage phases in the family and therefore it can also be
used as a haplotyping algorithm. The Bayesian method is tested and compared with two frequentist
methods using simulated data sets, considering two different parental crosses and three different levels
of available parental information. The method is implemented as a software package and is freely available
under the name Multimapper/outbred at URL http://www.rni.helsinki.fi/zmjs/.

INBRED line cross designs are routinely used for types) into the analysis; and (2) background variation
can be controlled by marker covariates, instead of usingquantitative trait locus (QTL) mapping in experi-

mental organisms, because then full heterozygosity and polygenic components or unlinked QTL.
When interval mapping, where a putative QTL isperfect coupling between alleles in the QTL and in

nearby marker loci are found in all F1 individuals. Fur- placed somewhere between markers, is applied to out-
bred offspring data, linkage phases (haplotypes) of par-thermore, the biallelic nature of the design suits well

the tradition in genetics, where QTL are treated as bial- ents must be considered. They are needed to determine
whether paternally (or maternally) derived alleles at twolelic and all different heterozygous QTL effects are con-

sidered jointly as a dominance effect. Depending on neighboring loci are of the same grandparental origin
or not. For a comparison, note that the grandparentalthe organism, an attempt to produce inbred lines is not

always practical or even possible (Haley et al. 1994); line origin of alleles found in inbred line-cross offspring
is automatically known in all marker positions.then methods developed for outbred designs are to be

used. Haley et al. (1994) presented a QTL mapping method
for outbred line-cross data (F2) concerning two diver-Presently, there are QTL mapping methods suitable

for the analysis of outbred populations (for a review see gent breeding populations, where a fixation of different
influential QTL alleles in different grandparental linesHoeschele et al. 1997) as well as general pedigrees

(e.g., Heath 1997). However, an application of general was assumed. Their method requires genotyped grand-
parents to establish haplotypes for parents. They reducepedigree analysis methods tends to be statistically inef-

ficient and might actually not be possible for data arising the allelic space by using grandparental origin indica-
tors instead of original marker alleles (see also Landerfrom controlled outcrossing experiments. Therefore

“design-specific” methods are needed. Their main ad- and Green 1987; Thompson 1994; Kruglyak et al.
1995; where a grandparental origin indicator is a binaryvantages over general purpose pedigree methods are

(1) incorporation of design-specific properties (such as digit in the inheritance vector). This work was extended
to four segregating alleles by Knott et al. (1997). Some-a control of maximum number of possible QTL geno-
what earlier Maliepaard and Van Ooijen (1994) and
Jansen (1996) presented more general algorithms for
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but instead require known haplotypes for parents. The mation from several families. A complication arising
from family pooling is that there will then typically bemethod of Jansen (1996) was recently generalized by

Jansen et al. (1998) to more complex populations, a large number of founders and therefore possible QTL
alleles in the data. (Note also that the applicability ofwhere parental haplotypes were not required to be

known in advance. In this method, the full genotypic marker covariates needs to be considered.) To keep the
maximum number of QTL genotypes low (#4) in theand allelic origin information is considered in all found-

ers, but only segregation indicators (i.e., grandparental combined data, one can assume one of the following
alternatives: (1) Grandparents in each family have beenorigins) are used in nonfounders. No information is

lost because the actual allelic forms for nonfounders drawn from the same two gene pools (lines), in which
case they all represent two different QTL alleles in eachcan be traced from the pedigree by following each gene

flow backward. Moreover, this treatment was shown to trait locus. (Fixation of different QTL alleles in these
two lines has been assumed.) (2) All families to be com-lead to more efficient mixing of the sampler than did

methods in which the genotypes for nonfounders also bined are related and share the same two grandparents,
i.e., all parents belong to the same F1 generation. (Fixa-are stored. The same idea was mentioned by Thompson

(1994), and it was used by Sobel and Lange (1996) for tion of different QTL alleles in the two lines is again
assumed.) (3) All families in the (combined) data aredescent graphs in pedigree analysis. Jansen et al. (1998)

tested many different models. related and share the same four grandparents (num-
bered from 1 to 4) in such a way that one parent inRecently we presented a Bayesian QTL mapping

method from incomplete inbred line-cross data (Sil- each family is always progeny of grandparents 1 and 2
and the other parent is always progeny of grandparentslanpää and Arjas 1998). This article also contains nu-

merous references to other Bayesian works on QTL 3 and 4; parents descending from grandparents 1 and
4, or 2 and 3, are excluded. Fixation of different QTLmapping. In this framework, the number of influential

QTL in the analyzed chromosome is treated as an unob- alleles in all four grandparental lines and that these
lines show somewhat different phenotypic values hasserved random variable, and then the algorithmic ideas

of Green (1995) are applied to deal with the varying been assumed. If these assumptions are met, the re-
sulting offspring population will have four differentdimension of the parameter space. We used an idea

similar to composite interval mapping (Jansen 1993; QTL alleles segregating in each trait locus.
In the following, we focus mainly on data from a one-Zeng 1993, 1994; Jansen and Stam 1994; Kao and Zeng

1997) to account for the influence of some QTL in family experiment. Our model is described next, fol-
lowed by the results from simulation experiments andother chromosomes. We also advocated the use of the

posterior QTL intensity as a new probabilistic summary a discussion. In two appendixes, parameter estimation
and summary measures for statistical inference are con-measure for the inference. Now we generalize this ap-

proach to cover also backcross and F2 (full-sib) offspring sidered.
data, or multiple F2 families from outcrossing experi-
ments. In the method, the assumption concerning the

MODEL
fixation of QTL alleles in the crossed lines, as well as
the degree in which the haplotypes or genotypes in We use the notation of Sillanpää and Arjas (1998)

for the following entities: phenotype vector (y), theparents or in grandparents are known, are optional.
number of offspring individuals (Nind), the number ofThe assumption concerning fixation of QTL, together
QTL (Nqtl), QTL location vector (l), QTL genotype ma-with the design (BC or F2), determines the maximal
trix (x), the number of background controls (Nbc), in-number of QTL genotypes that can segregate in a family
complete and complete background control genotypestructure. We assume that the offspring are at least partly
information including parents (Xo and X *

o), the numbergenotyped and that corresponding quantitative pheno-
of QTL genotypes (Ngen), QTL genotypic effect (regres-typic measurements from the trait are available. If the
sion coefficient) vectors (b 1, b 2, . . . , bNqtl), genotypicparents and/or grandparents are not genotyped, we use

information from progeny to impute consistent multi- effects for background controls (C), residual variance
(s2), fixed marker map m, and consistency betweenple random haplotypes for the parents, following a
complete and incomplete information (A* z A).Markov Chain Monte Carlo (MCMC) scheme. We also

Let I 5 (Ii) be the indicator vector, where elementuse grandparental origin indicators as in Haley et al.
Ii 5 1{yi observed} takes the value one or zero depending on(1994), but the coding is redone for each haplotype

arrangement (imputation) in parents. As a byproduct, whether yi is observed or not. Let H * and H be the
this approach produces the linkage-phase distributions corresponding complete and incomplete (observed)
for each offspring and their parents. Therefore it can haplotype information (genotype 1 allelic origin infor-
also be used for haplotyping, in data with at least par- mation:paternal/maternal) in the marker positions. In
tially genotyped parents (see discussion). each case, we indicate the split between maternally and

If the F2 family sizes in the studied plant or animal paternally inherited haplotypes by writing H * 5 (H *F,
H *M) and H 5 (H F, HM). Here H * and H are taken toorganism are relatively small, one has to combine infor-
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be (Nind 1 2) 3 N matrices, where N is the number H *
F. We consider the simple product form prior for the

complete haplotypes in the family: p(H *|m) 5 p(H *
F |of markers in the considered chromosome. Note that

incomplete haplotype information often covers com- m) p(H *
M|m) pNind

i51 p(H *
i |H *

F , H *
M, m). Furthermore, for

plete genotypic information but not the allelic origin. each offspring i we can further factorize the prior and
In the chosen experimental design, let a 5 (a1, . . . , compute it as the product

aNgen) be the vector containing all possible QTL geno-
p(H *

i |H *
F , H *

M, m) 5 p(H *F
i |H *

F , m)p(H *M
i |H *

M, m) 1{H *Fi zH *F , H *Mi zH *M}types at any locus, so that their actual allelic forms are
unknown. These QTL genotypes correspond to combi-

5 p(G F
1,i(H *)) p

N21

s51

[p(G F
s11,i(H *)|G F

s,i(H *))]nations of QTL alleles that were present in the crossed
grandparents (founders) and that were transmitted to

3 p(G M
1,i(H *)) p

N21

s51

[p(G M
s11,i(H *)|G M

s,i (H *))]the F1 parents. Let gk 5 (gk1, . . . , gkN
bc(k)
gen ) be the vector

containing all possible background control genotypes
3 1{H *Fi zH *F , H *Mi zH *M}. (4)and let N bc(k)

gen be their number (maximally four) at the
kth background control. Let B 5 (Bi), where Bi is a

Here, G F
s,i(x) (GM

s,i(x)) is a function of haplotype informa-vector of covariates (e.g., age, sex, or treatment) for
tion x, and it determines the grandparental origin ofoffspring i. Let r be a vector of regression coefficients
the maternal (paternal) allele of individual i at markerof these covariates (including also class means if some
locus s. The probabilities p(GM

1,i(H *) 5 F) 5 p(GM
1,i (H *) 5covariate is a classification variable). In case there is no

M) 5 p(G F
1,i(H*) 5 F) 5 p(G F

1,i(H *) 5 M) 5 1⁄2 are theindividual control, we let all Bi reduce to Bi 5 1 and r
prior probabilities of different grandparental originsto a common regression intercept r 5 a. Here we con-
under Mendelian segregation for paternally and mater-sider only the case where no covariate values are missing.
nally inherited alleles at marker locus 1 in offspring i.We consider the following composite interval map-
When only maternally inherited alleles of offspring iping (Kao and Zeng 1997) model for y:
are considered, then

yi 5 r9Bi 1 o
Nqtl

q51
o

Ngen

j51

bq j1{xqi5aj } p(G F
s11,i(H *)|G F

s,i(H *)) 5 rs,s111{GFs11,i(H *)?GFs,i(H *)}

1 (1 2 rs,s11)1{GFs11,i(H *)5GFs,i(H *)}

1o
Nbc

k51
o

N bc(k)
gen

j51

ckj1{x*ik5gkj } 1 ei. (1) (5)

is the conditional probability that in individual i the
Here 1{xqi5aj } and 1{X*ik 5 gkj } are indicator variables (cf. Sil- marker at position s 1 1 is of grandparental origin
lanpää and Arjas 1998). For contrast parameteriza- G F

s11,i(H *) provided that the marker at position s has
tion, we can impose constraints bq1 5 0 and ck1 5 0 here grandparental origin G F

s,i(H *). Here rs,s11 is the recombi-
for all values of q and k (see appendix b). nation fraction between the markers s and s 1 1. The

We use the shorthand notation d 5 (b1, . . . , bNqtl, structure of p(GM
s11,i(H *)|GM

s,i(H *)) derived for paternally
s2, r, C) and u 5 (d, x, l, H *, X *

o , Nqtl). Under natural inherited alleles is similar.
conditional independence assumptions (cf. Sillanpää Let the complete background control marker infor-
and Arjas 1998) the joint prior density function for u mation in parents F and M be X *

o,F and X *
o,M, respectively.

can be presented in the product form We assume the following prior form for background
control genotypes in the other chromosomes: p(X *

o ) 5p(u|m) 5 p(H *|m)p(Nqtl|m)p(l |m, Nqtl)
p(X *

o,F)p(X *
o,M) pN ind

i51 p(X *
o,i|X *

o,F, X *
o,M), where p(X *

o,i|X *
o,F, X *

o,M)
3 p(x|H *, l, m, Nqtl)p(d|Nqtl)p(X *

o ). (2) ~ p(X *
o,i)1{X *o,i zX *o,F, X *o,i zX *o,M}. We also assume marker indepen-

dence and that all (consistent) genotypes are a prioriThe posterior density of u is then proportional to the
equally likely.right-hand side of

The prior distribution of the number of QTL is as-
p(u|y, I, H, Xo, m) ~ p(u|m)p(y, I, H, Xo|u, m) sumed to be truncated Poisson (see Sillanpää and

Arjas 1998). For all QTL locations, we assume the uni-5 p(u|m)p(y|u, I, m)1{H *zH, X *o zXo}, (3)
form prior distribution on the considered chromosome.
The prior for QTL genotype coefficients is assumed towhere p(y | u, I, m) is the likelihood function (normal
be normal with zero mean and zero correlation, the vari-density) constructed from those independent residuals
ance being a hyperparameter specified by the analyst.ei in (1) in which the observation indicator Ii 5 1. Here

As in Sillanpää and Arjas (1998), we use the termthe complete background control genotypes are deter-
object to represent any marker or QTL in the consideredmined uniquely from X *

o .
chromosome and the term flanking object (of the QTLThe ingredients of the prior density (2) are specified
q) to represent any combination of two entities [markersas follows. Denote complete haplotype information at
and/or QTL: 1, . . . , (q 2 1)] having their loci closestthe marker positions of the ith offspring by H *

i , and
similarly that of male and female parents by H *

M and to the QTL q. Now, denote by H *q
i,LR the complete (grand-
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TABLE 1 an extension to different recombination fractions would
be straightforward; see Haley et al. 1994). The priorThe number of possible alleles and genotypes at a
distribution of ordered genotypes of QTL is now as-QTL in outbred linecross designs (backcross and
sumed to have the product form p(x | H*, l, m, Nqtl) 5F2 intercross with and without assumed fixation

of QTL alleles in different lines) pNqtl
q51 p(xq|x1, . . . , xq21, H*, l, m) 5 pNqtl

q51 pN ind
i51 p(xqi|H*q

i,LR,
rq). Note that QTL are not automatically (conditionally)

Outbred (line) cross Backcross F2 independent from each other (see Sillanpää and
Arjas 1998).Fixed grandparental 2 alleles 2 alleles

The QTL analysis of the offspring is done in termslines have been 2 genotypes 3 genotypes
assumed of parental haplotypes. The numbers of possible QTL

General (no assumed 3 alleles 4 alleles alleles and QTL genotypes in BC and F2 designs are
fixation) 4 genotypes 4 genotypes found in Table 1. Given the QTL genotype vector a 5

(a1, . . . , aNgen), the prior probabilities for s 5 1, . . . ,Here genotype AB is considered to be the same as BA. F2

without assumed fixation corresponds to a full-sib family of Ngen are calculated from the equation
outcrossing (cross-pollinating) species.

p(xqi 5 as|H *q
i,LR, rq)

5
p(xqi 5 as|H *q

i L, rq) 3 p(H *q
i,R|xqi 5 as, rq)

p(H *q
i R|H *q

i L, rq)
(6)

parental origin-coded) haplotype of the left and the
Here H*q

i L 5 (GF
L(q),i (H*), GM

L(q),i (H*)), and H*q
i R 5 (GF

R(q),iright flanking object of the qth QTL in offspring i. We
(H *), GM

R(q),i (H *)) are the left- and right-ordered flankingdenote by rq 5 (rq1, rq 2)9 the resulting recombination
object (QTL or marker) genotypes in the grandparentalfractions between the QTL at lq and the corresponding
origin form. Haplotype coding and the evaluation offlanking object (after an application of Haldane’s map
the probability in (6) in F2 and backcross designs arefunction). Here we assume that the recombination rates

in male and female meioses are the same (even though illustrated in Figures 1 and 2.

Figure 1.—Genotypes of two marker
positions in an F2 full-sib family with three
offspring (an example). Haplotypes of all
individuals are known. Arrows indicate
how alleles are coded with respect to their
grandparental “line” origins. The paternal
(maternal) haplotype of offspring be-
comes a sequence of lines 1 and 2 (3 and
4). For an illustration, suppose that there
is a QTL (q) between the markers and that
each haplotype of the parents contains a
different QTL allele (also numbered from
1 to 4) in that locus. The four QTL geno-
types are then combinations of parental
chromosomes and they show the follow-
ing correspondence here: 13 5 (A–C, E–
F), 14 5 (A–C, A–G), 23 5 (B–D, E–F),
and 24 5 (B–D, A–G). Denote the recom-
bination fraction between the flanking
markers by rLR, and that between the QTL
and the left (right) flanking marker by rq1

(rq 2). By applying Equation 6, the prob-
ability of QTL genotype 13 occurring
in offspring 1 is given by ((1 2 rq1)rq 2 3
rq1rq 2)/(rLR(1 2 rLR)), that of 14 by ((1 2
rq1)rq 2 3 (1 2 rq1)(1 2 rq 2))/(rLR(1 2 rLR)),
that of 23 by (rq1(1 2 rq 2) 3 rq1rq 2)/(rLR (1 2
rLR)), and that of 24 by (rq1(1 2 rq 2) 3 (1 2
rq1) (1 2 rq 2))/(rLR(1 2 rLR)).
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Van Ooijen (Centre for Biometry Wageningen, CPRO-
DLO, The Netherlands). We considered two 100-cM
long chromosomes, both having 11 evenly spaced mark-
ers, at every 10 cM. The simulated trait had a genetic
(QTL) variance 4.47 and a phenotypic variance 6.35,
resulting in heritability 0.7. Two sets of parental crosses
were generated: In the first set the parental mating type
was fully informative (AB 3 CD) at all marker loci, and
in the second set the degree of informativeness, as well
as the corresponding linkage phases, varied from locus
to locus. The simulated true underlying parental cross
in the second set is shown in Figure 3; it is underlying
in the sense that after the simulation this information
was “forgotten” and not used in the Bayesian analyses
(as explained below). The genotype-specific phenotype
effects and the locations of the three simulated QTL
can be found from Table 2. All haplotypic assignments
in the offspring were assumed unknown. In the statisti-
cal analyses, three specifications regarding the amount
of parental information were considered: (1) All geno-Figure 2.—Genotypes at two marker positions in a back-

cross family with one offspring (an example). Haplotypes of types and haplotypic assignments in parents were as-
all individuals are known. Arrows indicate how alleles are sumed known; (2) all genotypes were assumed known
coded with respect to their grandparental origins. Paternal but their phases unknown in parents; and (3) all paren-parent of backcross progenies is also one of the grandparents,

tal and grandparental marker information was assumedi.e., code 3 means {1 or 2}. In case fixed (grandparental) lines
unknown (missing). The performance of our methodare assumed, codes 2 and 3 can be replaced by 1, and thus

paternal meioses are not considered in the QTL genotype was compared to that of “all-markers” interval mapping
probability calculations at all, i.e., if an offspring chromosome (IM; Maliepaard and Van Ooijen 1994) and to multi-
inherited from the nonfounder parent, here the maternal ple QTL mapping with two background controlsparent, is of type 1–2, then for a QTL between the markers

[MQM/02; both implemented in the MAPQTL pro-the genotype probabilities of types 1X and 2X are given by
gram of Van Ooijen and Maliepaard 1996; MAPQTL(1 2 rq1)rq 2/rLR and rq1(1 2 rq 2)/rLR, respectively; here X indi-

cates the other (not considered) allele. (tm) version 3.0; CPRO-DLO, Wageningen, The Neth-
erlands]. Note that in the IM and MQM methods the
genotypes and the linkage phases in parents must be

SIMULATION ANALYSIS known.
In addition, the simulated data in which each QTLTo test the performance of this method, an outcross-

had four alleles were analyzed (in cases 1 and 3), havinging F2 population consisting of Nind 5 200 offspring was
generated by a simulation program provided by J. W. incorrectly assumed fixed grandparental lines (where

Figure 3.—Parental cross (maternal
parent 3 paternal parent) in two simu-
lated chromosomes.
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TABLE 2

The locations and the individual phenotypic effects (eff{·}) of different
heterozygous genotypes of the three simulated QTL

Chromosome Left marker Location(cM) Eff{AC} Eff{AD} Eff{BC} Eff{BD}

1 3 32.7 22.3 20.7 10.7 12.3
1 5 58.0 10.3 11.1 20.3 21.1
2 4 41.2 11.5 11.5 21.5 21.5

The left column refers to the chromosome in which the considered QTL is located. The next column refers
to the nearest left flanking marker of the QTL in the chromosome. Location is the distance (in centimorgans)
between the QTL position and the leftmost marker in the linkage group. Parental mating type (maternal
parent 3 paternal parent) in all three QTL positions is AB 3 CD.

TABLE 3

The ranges R(·) of the proposal distributions for different parameters, the corresponding proposal
probabilities, the numbers of iterations, and the indices of the background control markers

from other chromosomes, which were used in the simulation analyses

R(lq) R(a) R(s) R(bqj) R(ckj) pa 5 pd No. of iterations BGCs

Chromosome 1 2.0 1.0 0.2 1.5 2.0 1/3 5,000,000 3
Chromosome 2 2.0 1.0 0.2 1.5 2.0 1/3 5,000,000 4

BGCs, background control markers.

grandfathers were assumed to originate from the same around 9 hr. The initial value for the number of QTL
was three, and the corresponding locations were 20.0line). This was done to see how this erroneous assump-

tion influences the results. cM, 50.0 cM, and 80.0 cM. The Poisson mean (hyperpa-
rameter) was set to l 5 2 and the maximum numberIn all Bayesian analyses described here, our C-pro-

gram implementing a Metropolis-Hastings chain was of QTL (in the analyzed chromosome) to three. The
residual standard deviation was chosen to be uniformrun 5,000,000 cycles in a Pentium II/266MHz computer.

No values were deleted because of burn-in, but the chain over the range [0.0, 2.55], the right endpoint being
equal to the phenotypic standard deviation estimatewas thinned so that only every fifth iteration was saved,

resulting in 1,000,000 sampled values for each parame- from the data. The prior of the intercept was taken to
be uniform on [213, 13], those of the QTL genotypicter. After a preprocessing stage (see appendix a), back-

ground controls were chosen. When analyzing a real regression coefficients were independent normal distri-
butions with mean zero and variance 100, and the priordata set, they can be determined by a single marker

regression or by performing several analyses. Here, how- of the background control genotypic regression coeffi-
cients was uniform on [213, 13]. Finally, the prior of theever, we simply chose marker 3 in chromosome 1 and

marker 4 in chromosome 2 as background controls. QTL locations was uniform over [0, 100]. The control
parameter values used in the final analyses are given inVery likely, a few reanalyses would have led to the same

conclusion. As no covariates (age, sex, etc.) were used, Table 3. The proposal distribution for the genotypic
effects (coefficients) was chosen to be N(0, 0.5) in casesthere was a common intercept (r 5 a and Bi 5 1 for

all i). The running times, in circumstances where there where the addition of a new QTL to the model was
proposed.was practically no other load in the computer, varied

c
Figure 4.—Results from the estimation when all markers are fully informative. (Top) Graphs of the posterior QTL intensity

in chromosome 1 when all parental genotypic information is known (left), and when only parental genotypes (but not linkage
phases) are known (right). Here the histogram corresponds to the (approximate) posterior QTL intensity over the chromosome,
with binlength 1 cM. On the top left, the results from interval mapping (IM, solid line) and multiple QTL mapping with two
background controls (MQM/02, broken line) are shown. The left (right) y-axis corresponds to the posterior QTL intensity (LOD
score). Note the logarithmic scale of the LOD score. From the remaining eight panels, four (on the left) describe phenotypic
effect estimates of different genotypes in chromosome 1 with all parental genotypic information known, and four (on the right)
those in chromosome 1 when only parental genotypes are available. The solid line is the pointwise posterior median, and the
gray lines the 2.5 and 97.5% quantiles of the posterior distribution, of the phenotypic effect of a putative QTL. (*) The simulated
true QTL. (o) The labeling corresponding to best fit of the phenotypic effects of the QTL to their estimates. Shaded regions
are suggested credible intervals for QTL localization. The estimated phenotypic effects are reliable only in these regions.
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TABLE 4

The posterior distribution of the number of QTL and its expectation
in four analyses of chromosome 1

P(Nqtl 5 x | y, I, H, Xo, m)

x 5 0 x 5 1 x 5 2 x 5 3 E(Nqtl | y, I, H, Xo, m)

Nonconstant information
Complete parental info. 0.0000 0.0479 0.9312 0.0209 1.9730
Partial parental info. 0.0000 0.0460 0.9379 0.0161 1.9701

Fully informative data
Complete parental info. 0.0000 0.0775 0.9212 0.0013 1.9237
Partial parental info. 0.0000 0.1097 0.8881 0.0021 1.8924

“Complete parental info.” refers to the analysis where all parental genotypes and linkage phases were known
and “partial parental info.” refers to the case where only parental genotypes were available.

In the IM and MQM/02 analyses, walking speed was that are not unique. These problems are described and
set to 0.5 cM, which is the smallest admissible value in considered more in the discussion.
the MAPQTL software. We used the same background Table 5 gives a brief summary of our findings concern-
controls in MQM/02 as in the Bayesian analyses. ing the localization of QTL as suggested by the QTL

intensities in Figures 4 and 5. The table makes direct
reference to (approximate) posterior probabilities that

RESULTS a particular chromosomal region I of high QTL-inten-
sity concentration contains a given number of QTL.The Bayesian posterior QTL intensities (see appendix
Also the corresponding posterior expectations are cal-b) in chromosome 1, when all parental information was
culated. The analyses support quite strongly the hypoth-present (case 1) or when parental linkage phases were
esis of two QTL in chromosome 1.absent (case 2), are shown in Figure 4 (top) when all

In the analyses where all markers were fully informa-markers are fully informative, and Figure 5 (top) when
tive (Figure 4, top), the two posterior QTL-intensitymarker information varies from marker to marker. The
graphs (from cases 1 and 2) became nearly identical,curves consisting of the pointwise medians and the 2.5
regardless of whether parental linkage phase informa-and 97.5% quantiles of the posterior distribution of the
tion was available or not. Both posterior QTL-intensityphenotypic effects of the four genotypes, as functions
graphs were nicely concentrated around the left QTLof the putative QTL location, are shown in the same
at 32.7 cM. The graphs surrounding the right (weaker)figures when all parental information is present (left),
QTL at 58 cM were much wider, and there was alsoor when parental linkage phases are unknown (right).
some bias to the left. However, the true simulated QTLApproximate posterior distributions of the number of
is still inside the regions [41 cM, 60 cM] and [41 cM,QTL in chromosome 1, obtained from these four differ-
63 cM] of elevated posterior QTL intensities. In thisent analyses, are shown in Table 4. The analyses where
case (Figure 5, top left), the MQM analysis performedall parental information was absent (case 3) are not
well in both QTL localizations in chromosome 1, butsummarized in figures or in tables. This is because in
the IM analysis managed to localize only the left QTL.theory case 3 is not fully identifiable, resulting in proba-
(Note that the posterior QTL-intensity graphs coveringbilistic summary measures (the posterior QTL intensity

and the posterior distribution of the number of QTL) the regions [41 cM, 60 cM] and [41 cM, 63 cM] are

Figure 5.—Results from the estimation when marker information varies from marker to marker. (Top) Graphs of the posterior
QTL intensity in chromosome 1 when all parental genotypic information is known (left), and when only parental genotypes
(but not linkage phases) are known (right). In these panels, the histogram corresponds to the (approximate) posterior QTL
intensity over the chromosome, with binlength 1 cM. (top left) The results from interval mapping (IM, solid line) and multiple
QTL mapping with two background controls (MQM/02, broken line) are shown. The left (right) y-axis corresponds to the
posterior QTL intensity (LOD score). Note the logarithmic scale of the LOD score. From the remaining eight panels, four (on
the left) describe phenotypic effect estimates of different genotypes in chromosome 1 with all parental genotypic information
known, and four (on the right) those in chromosome 1 when only parental genotypes are available. The solid line is the pointwise
posterior median, and the gray lines the 2.5 and 97.5% quantiles of the posterior distribution, of the phenotypic effect of a
putative QTL. (*) The simulated true QTL. (o) The labeling corresponding to best fit of the phenotypic effects of the QTL to
their estimates. Shaded regions are suggested credible intervals for QTL localization. The estimated phenotypic effects are
reliable only in these regions.
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TABLE 5

Approximate (posterior) probability (1 2 exp{2 eI l̂(s)ds}) that a given chromosomal area
I contains at least one QTL, calculated for different areas I in four analyses

Chromosome 1 I Length (I) P(N I
qtl $ 1 | data) E(N I

qtl | data)

Nonconstant information
Complete parental info. [22 cM, 35 cM] 13 cM 0.63 0.9955
Complete parental info. [52 cM, 60 cM] 8 cM 0.59 0.8975
Partial parental info. [23 cM, 38 cM] 15 cM 0.65 1.0411
Partial parental info. [40–49] and [57–61] 13 cM 0.57 0.8502

Fully informative data
Complete parental info. [28 cM, 37 cM] 9 cM 0.63 0.9881
Complete parental info. [41 cM, 60 cM] 19 cM 0.59 0.8933
Partial parental info. [28 cM, 37 cM] 9 cM 0.63 0.9858
Partial parental info. [41 cM, 63 cM] 22 cM 0.58 0.8681

The (posterior) expected number of QTL in I, calculated as the integral of the QTL intensity over I, is also
determined. “Complete parental info.” refers to the analysis where all parental genotypes and linkage phases
were known and “partial parental info.” refers to the case where only parental genotypes were available.

multimodal. This is apparently the same phenomenon of the fact that there is a highly informative marker very
close to the right QTL, whereas this is not the case withthat is typical to the LOD-score curve at marker points:

often there is more evidence, because of marker geno- the left QTL (see Table 6). As could be expected, the
localization was somewhat less accurate when the paren-typing, against placing a putative QTL exactly at a

marker locus than against placing it somewhere tal genotypes or their linkage phases were not available.
Consider next the estimation of the phenotypic ef-nearby.) The graph leaves somewhat uncertain why, of

the two modes, the one that is farther away from the fects, indicated by asterisks in Figures 4 and 5. As could
be expected, the estimation was most successful in thetrue simulated QTL at 58 cM ended up being higher

in the first case. case (displayed in Figure 4, left) where marker informa-
tion was complete and where complete parental infor-It can be seen from Figure 5 that the nonconstant

marker information analysis (case 1) results in high mation was available. In the case of nonconstant marker
information, but still assuming complete knowledge ofposterior QTL intensities surrounding both simulated

QTL in chromosome 1. The IM and MQM analyses the parental genotypes and linkage phases, the estimates
were somewhat less accurate, with some of the truelocalized quite well the “left” QTL at 32.7 cM, but local-

ization of the “right” QTL at 58 cM was poor with both values being just outside the 95% credible boundaries
(Figure 5, left). When analyzing real data, the true label-methods. Somewhat surprisingly, in the Bayesian

method, the left, more influential, QTL was not local- ing [i.e., assigning of the QTL genotypes (13, 14, 23,
24) to the true grandparental alleles] of the phenotypicized as accurately as the right QTL when linkage phases

were available in parents. This may be a consequence effects is almost always unknown (except for the QTL

TABLE 6

Estimated informativeness of different marker loci of the simulated data set,
with two degrees of parental genotype information

Markers

0 1 2 3 4 5 6 7 8 9 10

Chromosome 1
Parents known 0.5 1.0 0.485 0.5 0.5 0.5 1.0 0.5 0.575 0.5 0.495
Parents unknown 0.667 1.0 0.485 0.667 0.667 0.667 1.0 0.5 0.575 0.667 0.495

Chromosome 2
Parents known 0.5 0.5 1.0 0.505 0.5 0.465 1.0 1.0 1.0 0.5 0.48
Parents unknown 0.667 0.5 1.0 0.505 0.667 0.465 1.0 1.0 1.0 0.667 0.48

In the first case, parental mating type (with or without knowing their haplotypic arrangements) is known in each marker
locus (parents known) and in the second, all parental information is unknown (parents unknown). In the latter case, marker
informativeness, i.e., the proportion of offspring alleles whose grandparental origin can be uniquely determined at a locus, is
calculated as an expectation (weighted sum) over consistent parental mating types.
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TABLE 7

Point estimates and their support regions from different analyses

QTL IM MQM I1 I2

Nonconstant information
32.7 30.0 [26.5, 35.5] 29.5 [26.5, 36.0] 28.25 [22, 35] 32.85 [23, 38]
58.0 60.0 [0.0, 63.5] 60.0 [20.0, 66.0] 56.45 [56, 60] 44.45 [40, 49] and [57, 61]

Fully informative data
32.7 31.5 [26.0, 36.5] 31.5 [27.0, 34.5] 32.95 [28, 37] 32.85 [28, 37]
58.0 60 [0.0, 63.5] 55.5–56.0 [45.0, 64.0] 45.55 [41, 60] 54.55 [41, 63]

True QTL locations, their estimated locations and one-lod-support intervals from the IM and MQM analyses,
and Bayesian point estimates (modes of the QTL intensity) together with suggested support intervals (I1) when
parental genotypes and haplotypes are available, and (I2) when no parental haplotypes are available (from
Table 5). LOD score was evaluated every 0.5 cM in the IM and MQM estimation. The posterior modes (intervals)
were obtained with binlength 0.1 cM (1.0 cM), using all 5,000,000 sampled values in I1 and 1,000,000 values
in I2. Note that in the IM and MQM analyses, there is no counterpart to estimates in column I2.

genes that have been positionally cloned). If parental tion was absent, only the latter QTL resulted in a high
(but broad) QTL-intensity concentration.genotype and/or linkage phase information are miss-

ing, the labeling of the genotypic effects according to
the grandparental origin of the alleles also becomes

DISCUSSION
nonunique in the simulated case. For this reason, when
comparing the phenotypic effect estimates with the true We have presented here a Bayesian procedure for

mapping multiple QTL from incomplete outbred off-values used in the simulation, we have to make sure that
each estimate is matched correctly with a combination spring data, thus extending our earlier method (Sillan-

pää and Arjas 1998) to a more general experimentalof two grandparental QTL alleles. Such reassignment
of the QTL genotypes is indicated on the right-hand design. A test version of the software (written in C lan-

guage) is available at http://www.rni.helsinki.fi/zmjs/.side of Figures 4 and 5 by circles. In chromosome 1,
note that the genotype labels are not consistent with The method is capable of handling situations where

marker information from parents and/or grandparentseach other in case 2.
The performance of the IM and MQM methods in the is missing in varying degrees, as well as cases where

some of the marker information from the offspring isestimation of the phenotypic coefficients of the putative
QTL was not particularly good. Moreover, they do not unavailable. In contrast to Sillanpää and Arjas (1998),

the present model was not overparameterized, becauseprovide confidence intervals for such point estimates.
Confidence intervals would have to be determined sepa- this did not seem to improve the mixing properties of

the sampler.rately, for example, by employing bootstrap techniques.
The point estimates of QTL locations and their sup- Following Sillanpää and Arjas (1998), we use the

posterior QTL intensity as a probabilistic summary mea-port regions are summarized in Table 7 for four differ-
ent analyses of chromosome 1. sure for the localization of QTL. During the MCMC

sampling, we do not restrict the order of the QTL in anyWhen considering chromosome 2 (which was ana-
lyzed only in cases 1 and 3), the posterior QTL-intensity way to label them. If order-based labeling is preferred, it

can be established afterward from the MCMC realiza-graphs (see Figure 6) were all nicely concentrated
around the simulated true QTL at 41.2 cM, regardless tions. This is an alternative to imposing constraints on

the MCMC simulation as was done, e.g., in Satagopanof whether the markers were fully informative or not.
Also, the IM and MQM methods were able to localize et al. (1996), Satagopan and Yandell (1996), Rich-

ardson and Green (1997), and in Uimari and Hoes-the QTL at 41.2 cM quite well.
The performance of the analyses (cases 1 and 3), chele (1997).

We tested the performance of our method by usingwhen it was incorrectly assumed that the grandparental
lines are fixed (pictures not shown), was quite poor in simulated F2 data sets (two informativeness levels), with

varying degrees of parental marker information (threechromosome 1. The only exception was the case where
all parental information was available and all markers levels). It seems intuitively plausible, and it also became

clear from our simulations, that the availability of paren-were fully informative. Then the simulated QTL at 32.7
cM was localized rather well, and there was also some tal linkage phase information is more important in the

case where the markers are not fully informative. Theindication of QTL activity around the QTL at 58 cM.
Assuming fixation in the situation where all markers situation where also a part of the offspring marker geno-

types is missing was not considered in the test analyses.were fully informative but where all parental informa-
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Figure 6.—The posterior QTL
intensity in chromosome 2 when
all parental haplotype informa-
tion is known and the marker in-
formation varies from marker to
marker. The results from inter-
val mapping (IM, solid line) and
multiple QTL mapping with two
background controls (MQM/02,
broken line) are shown. The his-
togram corresponds to the (ap-
proximate) posterior QTL inten-
sity over the chromosome, with
binlength 1 cM. The left (right)
y-axis corresponds to the posterior
QTL intensity (LOD score). (*)
The simulated true QTL.

Standardization of the phenotypic data is recom- uninformative areas, intensity graphs are much more
spread out, or even biased in some direction.mended before applying Bayesian QTL mapping in

practice. Then the same proposal windows and other The phenotypic effects can be estimated reliably only
in chromosomal regions in which the posterior QTLcontrol parameters can be applied to different data sets,

instead of performing separate test trials for each. An- intensity is sufficiently high. As an alternative to the
locationwise posterior densities for phenotypic effectsother advantage is that the numerical accuracy may be

improved because computers’ ability to store floating shown in Figures 4 and 5, the posterior density can be
constructed as an expectation over several pointwisepoint numbers is maximal when dealing with numbers

between zero and one. values (of phenotypic effects), each being associated
with a putative QTL location within a particular regionThe marker covariates can be chosen by an applica-

tion of simple linear regression at each marker (putative of high posterior QTL intensity. One such posterior
density is shown in Figure 7.QTL) position, omitting individuals whose genotype at

that locus was unknown (because data augmentation There appear to be two possible philosophies about
how the indexing of QTL genotypes should be interpre-would need linkage phase information). In doing so,

one should pay attention to how much information a ted. Considering QTL genotype 13, for example, the
first interpretation says that lines 1 and 3 are namespotential covariate marker carries and how many miss-

ing values there are. If an interesting region does not for the parental haplotypes. In this case the remaining
uncertainty concerning linkage phase is in how thecontain any fully informative markers, one can often

find two closely linked markers such that each marker grandparental alleles are assigned to these haplotypes.
According to the second interpretation, lines 1 and 3alone is informative only with respect to one (and a

different) parent. are names for the grandparental lines (alleles), and
uncertainty is in the assignment of the parental haplo-Parental mating type is usually not constant in out-

crossing experiments. Thus a systematic application of types to these lines. Obviously, these two ways of thinking
lead to different results only when there is some uncer-some index describing the proportion of informative

meioses locally present in the data will help the analyst tainty in the parental linkage phases. We have adopted
here the first interpretation, even though the secondto quantify the possibility of localizing a QTL in different

areas of the considered chromosome. One such mea- one is in some sense more fundamental in the context
of QTL mapping.sure is displayed in Table 6. The influence of marker

informativeness (cf. marker polymorphism in Krug- We stress that in situations where all parental informa-
tion is missing (case 3) it will be problematic to assignlyak 1997) can be seen clearly from our simulation

analysis (Table 6 and Figures 4 and 5) where, in the unique grandparental origins to the estimated pheno-
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Figure 7.—Approximate posterior
distribution of the phenotypic effect
of genotype 13 of the left QTL (chro-
mosome 1), determined from the in-
terval from 27 cM to 39 cM. All paren-
tal information was available and all
markers were fully informative.

type effects. In this situation, both parents have symmet- haplotype assignment can be made in a way that is with
high probability consistent with that chosen at the refer-ric pairs of haplotype configurations that are a posteriori

equally likely to be the correct underlying mating struc- ence marker locus. If this informative marker is near a
contemplated QTL, this technique will also facilitateture. As a consequence, under these circumstances the

correspondence between QTL genotypes (13, 14, 23, the estimation of the corresponding phenotypic effects,
by keeping the four haplotypic assignments (and thusand 24; cf. Figure 1) and their grandparental alleles is

not unique. In our program, the assignment can actually the corresponding QTL allele combinations) apart. A
more negative aspect of this technique is that it workschange from one iteration cycle to another within one

MCMC run, let alone in different runs. (In practice only locally, as simultaneous haplotype assignments at
two or more marker positions might not agree with thesuch changes are rare because of the strong local depen-

dence between offspring and their parents and between true haplotype configuration. As a consequence, the
estimation would need a new MCMC run for each suchadjacent loci.) In case 3, the parental phase reconstruc-

tion can actually change suddenly in some region of local assignment.
the chromosome to a symmetrical mating type. (This M.S. thanks Matti Taskinen for his advice in the programming work,
can only be checked from the simulated data.) Also the and Päivi Hurme and Outi Savolainen for many useful discussions

about the designs. We are grateful to Johan Van Ooijen for providingresulting posterior QTL-intensity curves can differ in
his simulation program, which was used to generate test data sets, andsuch regions in different MCMC runs.
to Pekka Uimari and three anonymous referees for their constructiveIn cases 1 and 2, the very strong local dependency
comments on the manuscript. This work was supported by a research

structure between parents and offspring and between grant (no. 38352) from the Academy of Finland, and by the ComBi
adjacent loci will in practice prevent such phase transi- Graduate School.
tions during the same MCMC run. Therefore, to avoid
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reducible in some designs; see Janss et al. (1995). Single H *(t)
( j ) 5 H *new

( j ) , and otherwise H *(t)
( j ) 5 H *(t21)

( j ) . Here the
notation H *(t)

(j) refers to the family-block haplotype inoutbred family (F2 design) with many offspring is an
extreme example of this kind of strong dependence the jth marker in the tth round, while vector H *(t,new( j )) 5

(H *(t)
(1) , . . . , H *(t)

(j21) H *new
( j ) , H *(t21)

(j11) , . . . , H *(t21)
(N) ), vectorstructure. Therefore, haplotypes for the entire family

are updated as one block (Step 2 below) at each marker. H *(t,j ) 5 (H *(t)
(1) , . . . , H *(t)

(j) H *(t21)
(j11) , . . . , H *(t21)

(N) ), and func-
tion fj,i(H *

1 , H *
2) 5 {p(GF

j11,i (H *
1)|GF

j,i (H *
2)) 3 p(GF

j,i(In some cases, due to the dependency between adja-
(H *

2)|GF
j21,i (H *

1)) 3 p(GM
j11,i (H *

1)|GM
j,i (H *

2)) 3 p(GM
j,icent loci, good mixing properties of the sampler may be

(H *
2)|GM

j21,i(H*
1))}.difficult to achieve, even when block-updating is applied

Step 3. Random walk proposals for regression parame-within one locus.)
ters are generated in three different blocks: (1) mean,In the following, we describe only those parts of the
environmental covariates, and residual standard devi-estimation algorithm that are different from those in
ation; (2) all QTL genotypic coefficients; and (3) allSillanpää and Arjas (1998; see also the graphical rep-
background control coefficients. Denote by L1 (L 2)resentation of the model therein):
the likelihood and by p1 (p 2) the normal density prior

Step 2. The following is repeated for each marker, j 5 for the QTL genotypic coefficients evaluated at the
1, . . . , N: A new ordered genotype proposal (family- new (old) values. The proposals are accepted sepa-
block) at the jth position is constructed as follows: rately for each block with probability min{1, L1 3 p1/

(L 2 3 p 2)}. If accepted, then d(t) 5 dnew, and otherwise1. If one or both genotypes in parents are unknown, a
d(t) 5 d(t 2 1). (In block 3, the acceptance ratio is evalu-consistent pair of genotypes is proposed. Each consis-
ated separately for each background control.)tent genotype-pair is considered as equally likely.

Step 4. Imputation for the missing background control2. If unknown, their allelic origins are also proposed
markers is done as in Sillanpää and Arjas (1998)considering each configuration as equally likely.
except for the following: A consistent genotype pair3. Incomplete offspring genotypes are completed by
is first proposed for the parents. Then all offspringtaking one allele (with equal transmission probabili-
with a missing genotype in the corresponding back-ties) from each parent. These transmissions simulta-
ground control position are completed by samplingneously specify the allelic origins and the grandpa-
alleles according to Mendelian transmission probabil-rental origins, which are then updated accordingly.
ities.4. Unknown allelic origins of known offspring geno-

types are determined by using deduction. Origins
of a homozygote can be assigned randomly, and APPENDIX B
an offspring allele not found in one parent must

As in Sillanpää and Arjas (1998), we divide theoriginate from the other parent. If some origins are
chromosome into bins D1, D2, . . . , DNbins, where l̂j is theleft uncertain, they are proposed with equal prob-
approximate posterior QTL intensity on interval Dj, ob-abilities.
tained from the Monte Carlo simulation of Ncycs iteration5. Grandparental origins are determined for offspring
cycles. In a backcross or an F2 intercross, letalleles having a heterozygous parent, but are ran-

domly assigned for alleles inherited from homozy- l

Dx
j (d) 5

oNcycs
k51 oN

(k)
qtl

q51 1{l
(k)
q PDj, b

(k)
qx 2m

(k)
q #d }

oNcycs
k51 oN

(k)
qtl

q51 1{l
(k)
q PDj}

(7)gotes.
The family-block proposal H *new

( j ) is accepted, separately
for each marker j, with probability

be the empirical estimator of c.d.f. Dx
j (d) associated with

min{1, p(x 5 x(t)|H *(t,new(j )), l (t), m, N(t)
qtl) the phenotypic effect of heterozygous QTL genotype x

at a putative QTL in bin Dj and m(k)
q 5 oNgen

x51 b(k)
qx /Ngen. If3 pNind

i51 fj,i(H *(t, j21), H *(t,new( j )))/[p(x 5 x(t)|H *(t,j21), l (t), m, N (t)
qtl)

fixation of QTL alleles in different grandparental lines
3 pNind

i51 fj,i(H *(t,j21), H *(t,j21))]}.
is assumed, we can use distribution functions similar to
those presented for F2 in Sillanpää and Arjas (1998).If the proposals for marker j are accepted, then




