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ABSTRACT

Archaeal organisms are currently recognized as very exciting and useful experimental materials. A major
challenge to molecular biologists studying the biology of Archaea is their DNA replication mechanism.
Undoubtedly, a full understanding of DNA replication in Archaea requires the identification of all the
proteins involved. In each of four completely sequenced genomes, only one DNA polymerase (Pol Bl
proposed in this review from family B enzyme) was reported. This observation suggested that either a
single DNA polymerase performs the task of replicating the genome and repairing the mutations or these
genomes contain other DNA polymerases that cannot be identified by amino acid sequence. Recently, a
heterodimeric DNA polymerase (Pol Il, or Pol D as proposed in this review) was discovered in the
hyperthermophilic archaeon, Pyrococcus furiosus. The genes coding for DP1 and DP2, the subunits of this
DNA polymerase, are highly conserved in the Euryarchaeota. Euryarchaeotic DP1, the small subunit of
Pol Il (Pol D), has sequence similarity with the small subunit of eukaryotic DNA polymerase 8. DP2 protein,
the large subunit of Pol 11 (Pol D), seems to be a catalytic subunit. Despite possessing an excellent primer
extension ability in vitro, Pol 1l (Pol D) may yet require accessory proteins to perform all of its functions
in euryarchaeotic cells. This review summarizes our present knowledge about archaeal DNA polymerases
and their relationship with those accessory proteins, which were predicted from the genome sequences.

HE discovery of the Archaea (Woese and Fox 1977)

ushered in the period after which life was classified
into three domains, namely, the Archaea, Bacteria, and
Eukarya (Woese et al. 1990). The Archaea and Bacteria
are similar in cellular ultrastructure, and the two are
often referred to as prokaryotes. However, some rooted-
phylogenetic trees of life, based on some protein se-
guences, suggest that the Archaea and Eukarya are sister
groups, and they branched out earlier from Bacteria
(Gogarten et al. 1989; Iwabe et al. 1989; Brown and
Doolittle 1995). A more comprehensive analysis in-
volving four complete archaeal genome sequences
(Bult et al. 1996; Klenk et al. 1997; Smith et al. 1997,
Kawarabayasi et al. 1998) shows that Archaea are dif-
ferent from the other two domains. Archaea, despite
having an information processing machinery that is sim-
ilar to Eukarya (translation, transcription, and replica-
tion), possesses metabolic features that exhibit closer
similarities to bacterial processes.

Elucidation of the molecular mechanism of DNA rep-
lication is one of the most exciting research topics in
Archaeal biology, because it may contribute to the un-
derstanding of the basic mechanism of eukaryotic DNA
replication. However, currently the essential compo-
nents involved in DNA replication have not been identi-
fied (Edgell and Doolittle 1997; Bernander 1998),
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which hinders research aimed at unraveling the mecha-
nism. DNA polymerases are pivotal to the molecular
machinery driving the replication of the chromosome,
and it is well known that in Bacteria and Eukarya, multi-
ple DNA polymerases are required in the process (Korn-
berg and Baker 1992). The history of the research on
archaeal DNA polymerases can be followed via the re-
view articles by Forterre et al. (1994), Perler et al.
(1996), and Ishino and Cann (1998). While almost
every report published was on a single DNA polymerase,
there were interesting findings suggesting that some
crenarchaeotes contain two or three family B DNA poly-
merase genes (Prangishvili and Klenk 1994; Uemori
et al. 1995; Edgell et al. 1997). In Pyrodictium occultum,
two genes were confirmed to encode proteins having
DNA polymerase activity (Uemori et al. 1995). Con-
trasting this finding, the analysis of the first complete
genome sequence of an archaeon (Bult et al. 1996)
suggested that Methanococcus jannaschii depended on a
single family B DNA polymerase for its DNA metabolic
functions, and this certainly was unusual (Edgell and
Doolittle 1996; Gray 1996; Morell 1996). This puz-
zling observation was further confounded by other com-
plete genome sequences from the Archaea (Klenk et
al. 1997; Smith et al. 1997; Kawarabayasi et al. 1998).

To gain more insight into the archaeal DNA replica-
tion mechanism, it is necessary to isolate all of the funda-
mental proteins involved, and of cardinal importance
are the DNA polymerases. Our finding of the novel DNA
polymerase composed of the heterodimeric proteins in
Pyrococcus furiosus (Uemori et al. 1997) and the conserva-
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tion of its components in Euryarchaeota (Ishino et al.
1998; Cann et al. 1998a) clearly show that the euryar-
chaeotic organisms also depend on at least two DNA
polymerases. In this review, we summarize the recent
findings on the archaeal DNA replication apparatus, es-
pecially on the discovery of a novel DNA polymerase in
the euryarchaeotes. The current understanding of DNA
replication in the other two domains of life is also dis-
cussed where appropriate.

DNA REPLICATION

DNA replication, a process that ensures the mainte-
nance of the integrity of the genome while allowing
mutations that confer selective advantage to the off-
spring, is a critical process in the evolution of all species.
The fundamental nature of the DNA replication process
is underscored by the conservation of the function of
individual proteins in both Bacteria and Eukarya (Still-
man 1994). To summarize the process, it involves (1)
the recognition of a replicational origin by the origin
recognition proteins, (2) melting and unwinding of the
duplex parental DNA by a replicative DNA helicase and
topoisomerase in cooperation with a single-stranded
DNA-binding protein, (3) synthesis of an RNA/DNA
primer for the leading strand and for each Okazaki
fragment on the lagging strand by a primase, (4) the
clamp loader’s recognition of the primer/template and
loading of the sliding clamp that forms a ring around
the duplex DNA behind the primer/template junction,
(5) loading of the polymerase onto the DNA, and (6)
elongation following the presence of all four ANTPs (de-
oxyribonucleoside triphosphates: dATP, dCTP, dGTP,
dTTP). The RNA primers attached to the 5’-end of each
Okazaki fragment are removed by an endonuclease and
aribonuclease, and the gaps created are filled by a DNA

polymerase. The adjacent Okazaki fragments are then
joined by a DNA ligase.

It should be noted that most of what is known about
DNA replication in Bacteria is derived from an Esche-
richia coli system. In Eukarya, the major experimental
model is the Simian Virus 40 DNA origin of replication
and cell extracts from mammalian cells. There is no
report on an experiment analyzing the molecular mech-
anism of DNA replication in Archaea. However, many
homologs of the proteins required for eukaryotic DNA
replication have been identified in the total genome
sequences of several archaeal strains. In Table 1, we
compared the archaeal homologs to the proteins in-
volved in DNA replication in the two other domains.
As noted above, the majority of the proteins involved
in replicating the archaeal chromosome are eukaryotic
type. The eukaryotic and bacterial replication mecha-
nisms have been reviewed elsewhere (Kelman and O’Don-
nell 1995; Waga and Stillman 1998).

BACTERIAL AND EUKARYOTIC DNA POLYMERASES

During the past decade, significant advances in gene
cloning techniques aided scientists to clone and express
many genes that code for DNA polymerases. Eventually,
this led to a proposal to classify DNA polymerases into
family A, B, C, or X based on their amino acid sequences
(Ito and Braithwaite 1991). These families are repre-
sented by E. coli DNA polymerase | (family A), DNA
polymerase Il (family B), DNA polymerase 111 a-subunit
(family C), and others such as DNA polymerase 3 and
terminal transferase (family X). Most of the biochemical
properties of DNA polymerases in the same family are
similar. In Bacteria and Eukarya, several types of DNA
polymerases have been isolated and characterized (Ta-
ble 2). The most thoroughly studied bacterial DNA poly-

TABLE 1

Replication proteins of Eukarya, Bacteria, and Archaea

Function Archaeal

Eukaryal Bacterial

Origin recognition ORC1-like protein

Single-stranded DNA-
binding

RPA-like protein

Primer synthesis
Helicase
Clamp loader

Dna2-like, MCM:-like

RFC-like proteins
(small, large)

PCNA:-like proteins

Family B DNA Pol
Family D DNA Pol

DNA ligase (ATPde-
pendent)

FEN1, RNaseH

Clamp (elongation factor)
DNA strand synthesis

DNA strand ligation (on
lagging strand)
Removal of primers

Eukaryotic-like primase

Origin recognition complex  DnaA
(ORC) proteins 1-6
Replication protein A (RPA,

three subunits)

Single-stranded DNA-
binding protein

(SsB)

DNA Pol « DnaG
Dna2, MCM DnaB
RFC y-complex
PCNA Pol 111 B-subunit
DNA Pol «, 8, € Pol 111
DNA ligase (ATPdepen- DNA ligase

dent) (NADdependent)
FEN1, RNaseH Pol I, RNaseH

This table includes both identified and predicted proteins.
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merases are the E. coli proteins. E. coli Pol I and Pol Il
are implicated in the repair of damaged DNA. Both
polymerases are single polypeptide enzymes, while Pol
111, which is the DNA replicase of this organism, is a
multisubunit enzyme (10 different subunits). In Eu-
karya five DNA polymerases («, B, 9, € and vy) have
been characterized in detail (Nethanel et al. 1988;
Tsurimoto et al. 1990; Kornberg and Baker 1992;
Waga and Stillman 1994; Sugino 1995; Wang 1996;
Zlotkin et al. 1996). In addition, Pol { and n were
recently characterized from yeast (Nelson et al. 1996;
Johnson et al. 1999). Both are involved in DNA repair
and mutagenesis. One more different DNA polymerase,
essential for growth and probably repair, has been re-
ported as Pol V (Sugino 1995). Pol «, §, and € are the
DNA replicases and have multisubunit structures. The
catalytic subunits of these polymerases for DNA poly-
merizing activity belong to family B (Table 2). The ma-
jor function of Pol 3 is DNA repair, while Pol v is respon-
sible for replicating the mitochondrial DNA. All known
viral DNA polymerases belong to family A or B. The
extensive phylogenetic analysis of viral DNA polymer-
ases have been reported (Heringa and Argos 1994;
Knopf 1998).

In the eukaryotic DNA replication, DNA polymerase
o« forms a complex with DNA primase to synthesize
RNA/DNA primers for initiation of leading strand syn-
thesis and for each Okazaki fragment during lagging
strand replication. Biochemical studies using plasmids
containing the Simian Virus 40 origin of replication
suggest that DNA polymerase & replicates the leading
strand and also completes the lagging strand in eukary-
otic cells. Therefore, the DNA polymerase a/primase
complex switches to DNA polymerase 8 sometime after
initiation. On the contrary, in E. coli a primase (DnaG)
synthesizes the initial RNA primer, which is then elon-
gated by the DNA polymerase Ill core enzymes. There-
fore, the switch is from a primase to a DNA polymerase.
Recently, it has been shown that this switch in E. coli
requires the disruption of the primase-SSB (single-
stranded DNA-binding protein) contact, which is trig-
gered by the clamp loader complex (Yuzhakov et al.
1999). A remarkable feature of the E. coli replication

apparatus is that the same protein complex synthesizes
the leading and lagging strands simultaneously. The
coordinated synthesis is made possible through the di-
merization of the polymerase catalytic core («, €, 6),
which is promoted by the 7 subunit (Onrust et al.
1995b).

Pol 8 and ¢ in Eukarya as well as low G + C Gram-
positive bacteria (having class 11 Pol 111) contain separate
domains for DNA polymerizing and 3" — 5’ exonucleo-
Iytic activities in the same polypeptide. In contrast, E.
coli and many other bacteria have a class | Pol I11, where
the subunit for polymerase activity (a-subunit) differs
from that for exonuclease activity (e-subunit) as de-
scribed by Huang and Ito (1998). The exonuclease
activity preferentially excises a mismatched nucleotide
from the primer terminus (Baker and Bel I 1998). This
activity increases the fidelity of DNA replication by three
orders of magnitude (Kornberg and Baker 1992).

ARCHAEAL FAMILY B DNA POLYMERASES

Halophilic archaea were the first subjects in the study
of archaeal DNA polymerases. Aphidicolin, a tetracyclic
diterpenoid antibiotic, which is a specific inhibitor of
DNA polymerase a from eukaryotic cells (Huberman
1981), was found to inhibit the growth of Halobacterium
halobium (Forterre et al. 1984; Schinzel and Burger
1984). Therefore, it was hypothesized that the DNA
replicase of Archaea was similar to that of Eukarya. Sub-
sequently, a-like DNA polymerases were purified from
H. halobium (Nakayama and Kohiyama 1985), M. van-
nielii (Zabel et al. 1985), and Sulfolobus solfactaricus
(Rossi et al. 1986). Interestingly, there were other re-
ports that, in contrast, described aphidicolin-resistant
DNA polymerase activitiesin S. acidocaldarius (Klimczak
et al. 1985), Methanobacterium thermoautotrophicum (Klim-
czak et al. 1986), H. halobium (Nakayama and Kohi-
yama 1985), and Thermoplasma acidophilum (Hamal et al.
1990). A few years after these reports, DNA polymerase
genes were cloned from S. solfataricus (Pisani et al.
1992), Thermococcus litoralis (Perler et al. 1992), and P.
furiosus (Uemori et al. 1993), which were all hyperther-
mophiles. Later, DNA polymerase genes were cloned

TABLE 2

Distribution of DNA polymerases in Archaea, Bacteria, and Eukarya

Family
Domain A B C D X ?
Archaea
Euryarchaeota Pol BI Pol D
Crenarchaeota Pol BI, Pol BII
Bacteria Pol | Pol 11 Pol 111
Eukarya v a,d, &V B n?

2 This is a DNA polymerase yet to be assigned a family.
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Figure 1.—Amino acid sequence alignment of family B DNA polymerase homologs (exonuclease and polymerase regions)
found in both Crenarchaeotes and Euryarchaeotes (Group I) and only in Crenarchaeotes (Group Il). The sequences were
aligned with CLUSTAL W at a website (http:#Zwww.genome.ad.jp/SIT/CLUSTAL W.html). The conserved regions (regions 1-V)
in family B DNA polymerases originally proposed (Wong et al. 1988) and the motifs (Exo I-1ll) for 3" — 5’ exonuclease
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from the mesophilic methanogen M. voltae (Konisky et
al. 1994) and the psychrophilic crenarchaeote Cenar-
chaeum symbiosum (Schleper et al. 1997). The deduced
amino acid sequences of these genes contained the sig-
natures of family B DNA polymerases.

It was significant that two different genes were cloned
from S. solfataricus P2 (Prangishvili and Klenk 1994)
and from P. occultum (Uemori et al. 1995), both of which
encoded family B DNA polymerases. The genes from
P. occultum were expressed in E. coli and both products
actually exhibited DNA polymerase and exonuclease
activities (Uemori et al. 1995). In addition, in the course
of sequencing the genome of S. solfataricus P2, one more
gene that is supposed to code for a family B DNA poly-
merase was identified (Edgell et al. 1997). Despite be-
ing conserved in the Sulfolobales, the amino acid se-
guence similarity of the third one (designated B2) to
that of other family B members is weak, and there is
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still some uncertainty as to whether the gene product
has DNA polymerase activity. If S. solfataricus contains
three family B DNA polymerases, it would be a very
interesting finding, because it suggests that the Crenar-
chaeota and Eukarya, which has three family B DNA
polymerases («, 8, and €) in the nucleus for DNA repli-
cation, may share a similar molecular mechanism of
DNA replication. Pyrobaculum aerophilum has open read-
ing frames (ORFs) coding for proteins with similar
amino acid sequences to P. occultum Pol | and Pol 11
(Fitz-Gibbon et al. 1997), and very recently, we cloned
two family B DNA polymerase genes from Aeropyrum
pernix (1. Cann, S. Ishino, N. Nomura, Y. Sako and Y.
Ishino, unpublished results), an aerobic hyperther-
mophilic crenarchaeote (Sako et al. 1996). All of these
organisms described as having two or three family B
DNA polymerases belong to Crenarchaeota.

After we cloned a family B DNA polymerase gene
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(Bernad et al. 1989) are shown. The conserved motifs in the catalytic domain, i.e., motifs A, B, and C, are found in regions I,
11, and I, respectively. The proteins and their accession numbers are as follows: PocBI (P. occultum Pol I, D38574), TIiBI (T.
litoralis Pol, M47198), PfuBI (P. furiosus Pol, D12983), AfuBI (A. fulgidus Pol, AE001070), SsoBI (S. Solfataricus Pol Il, X71597),
SohBII (S. ohwakuensis Pol I, AB008894), SacBII (S. acidocaldarius Pol I, U33846), SsoBII (S. solfataricus Pol I, U92875), PocBII
(P. occultum Pol I, D38573), CsyBII (C. symbiosum Pol I, AF028831). The sequences of A. pernix Pol Bl and Pol Bll are not shown
here. Positions of identical and similar amino acid residues are indicated by black and gray, respectively. Amino acids with similar
properties are grouped into LIMV, AG, YWF, DEQN, KRH, and ST.
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from P. furiosus, we attempted to clone another gene
for a member of this family from P. furiosus, but we did
not succeed. When the total genome sequence of M.
jannaschii was published, several startling findings were
reported (Bult et al. 1996). One of the inconsistencies
concerned the DNA polymerase. Only one family B
DNA polymerase was found in the whole genome as
described above, and no more sequences likely to en-
code DNA polymerase were found. Accessibility to the
complete genome sequences of Archaeoglobus fulgidus,
M. thermoautotrophicum, and P. horikoshii enabled us to
search for their genes encoding family B DNA polymer-
ases. Each of these euryarchaeotes possesses one recog-
nizable family B DNA polymerase gene as well.

The archaeal family B DNA polymerases are, overall,
similar in amino acid sequence; however, they can be
divided into two groups. The euryarchaeotic family B
DNA polymerases are very similar to one of the crenar-
chaeotic homologs and can be placed under one group
(Group 1), whereas the other group contains only cren-
archaeotic members (Group Il in Figure 1). The amino
acid sequence identities within the groups are over 35%;
however, they are about 20% in the case of intergroup
comparisons. Regions I, 11, and 111, which are important
to the formation of the catalytic domain, are not strictly
conserved between the two groups. This may affect the
difference of sensitivity to aphidicolin as described be-
low. At this point, the nhomenclature of archaeal DNA
polymerase has to be considered. We have been using
I and 11 as the order of discovery. However, distribution
of DNA polymerases is different between Euryarchaeota
and Crenarchaeota and, therefore, it happens that the
two DNA polymerases called Pol I or Pol Il sometimes
belong to the different families as described below. To
avoid this problem, we propose here that the two family
B DNA polymerases found in Crenarchaeota be called
Pol Bl and Pol BIl, and the one that is common with
Euryarchaeota should be called Pol Bl to signify the
first enzyme found in this subdomain (Table 2). Then,
P. furiosus Pol I, P. occultum Pol Il, and A. pernix Pol Il
become Pol Bls and belong to Group 1. P. occultum Pol
I, A. pernix Pol I, and Sulfurisphaera ohwakuensis Pol | are
Pol Blls and belong to Group Il. From our knowledge,
Group | and Group Il enzymes are sensitive and resis-
tant, respectively, to aphidicolin at a concentration of
2 mm (the resistance of S. ohwakuensis Pol I is a personal
communication from N. Kurosawa). An exception is
SsoBII from S. solfataricus, which is sensitive to aphidi-
colin (Y. Taguchi and Y. Ishino, unpublished results),
even though its sequence is more similar to Group Il
(BIl) asshown earlier (Forterreetal. 1994). The differ-
ence between the two family B DNA polymerases, in
terms of their biological roles in the crenarchaeotic
cells, is a very important and interesting subject and
should be investigated.

Some DNA polymerases from hyperthermophilic
archaea are commercially available as PCR enzymes.

One of the remarkable advantages pertaining to the
use of archaeal DNA polymerases for PCR, instead of
Thermus DNA polymerases such as Tag polymerase, is
the high fidelity of DNA strand synthesis derived from
their associated strong 3" — 5’ exonuclease activity
(Lundberg et al. 1991; Mattila et al. 1991; Takagi
et al. 1997). Archaeal family B DNA polymerases can
elongate primers in vitro by themselves, even though
they generally have very low processivities, for example,
seven dNTP/binding for T. litoralis DNA polymerase
(Perler et al. 1996). The limitation of the archaeal
enzymes for PCR may be this low elongation ability.

The three-dimensional structures of several nucleo-
tide polymerases using DNA or RNA as a template have
been solved as described below. However, the structure
of family B DNA polymerases was not known until re-
cently. The three-dimensional structure of the family B
DNA polymerase from E. coli bacteriophage RB69 was
solved in 1997. The structure of its catalytic palm do-
main was found to be basically the same shape as that
of family A DNA polymerase, reverse transcriptase, and
RNA polymerase (Wang et al. 1997). However, the struc-
tures of the fingers and thumb domains are unrelated
to all other known polymerase structures. Further analy-
ses of the structure—function relationship of the DNA
polymerases of this family are still necessary. The family
B DNA polymerases from the hyperthermophilic ar-
chaea are useful for this purpose, because of the excel-
lent stability of these proteins. Crystal formation of three
DNA polymerases and preliminary diffraction analysis
from P. furiosus (Goldman et al. 1998), S. solfataricus
(Nastopoulos et al. 1998), and Thermococcus sp. 9°N-7
(Zhou et al. 1998) were published at the end of last
year. We will be able to see and compare the structures
of these DNA polymerases soon.

A unique finding is that the archaeal family B DNA
polymerases often contain inteins, which are the in-
tervening sequences spliced out as proteins and not as
mMRNAs (Cooper and Stevens 1993; Perler etal. 1994).
After the production of the precursor protein, the intein
is excised from the protein and the external protein
regions, which are termed exteins, are joined together.
Archaeal DNA polymerases contain hot spots for inser-
tion of inteins. The regions that contain inteins are
regions I, 11, and 111 (originally proposed by Wong et
al. 1988, these contain the most conserved motifs, i.e.,
motifs A, B, and C, proposed by Delarue et al. 1990).
These three regions are actually important for the for-
mation of the catalytic center of DNA polymerizing activ-
ity (Table 3). Inteins are also inserted into the conserved
motifs in the archaeal homologs of replication factor C
(RFC) as described below. The archaeal homologs of
the proliferating cell nuclear antigen (PCNA) found to
date do not contain inteins. An interesting observation
is that, so far, all intein-containing DNA polymerases
come from the euryarchaeotes. Two inteins each were
found in the precursor proteins from T. litoralis (Perler
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TABLE 3

Inteins found in some proteins involved in archaeal DNA replication

Protein Origin Number of intein Insertion site
Family B DNA Pol P. horikoshii 1 Motif B
Pyrococcus sp. KOD 2 Motif A, B
Pyrococcus sp. GB-D 1 Motif B
M. jannaschii 2 Motif A, B
T. litoralis 2 Motif B, C
T. fumicolans 2 Motif A, C
Family D
DNA Pol, DP2 P. horikoshii 1 Motif ND
RFC small subunit P. horikoshii 1 Box 1l
P. furiosus 1 Box Il
M. jannaschii 3 Box I, 1V, ND

ND, a conserved region without a designated name (see Figures 3 and 5).

etal. 1992), M. jannaschii (Bultetal. 1996), T. fumicolans
(Cambon and Querellou 1996), and Pyrococcus sp.
KOD1 DNA polymerase (Takagietal. 1997). One intein
was found in each of the precursors from Pyrococcus
sp. GB-D (Xu et al. 1993) and P. horikoshii (I. Matsui,
personal communication).

EURYARCHAEOTIC Pol Il (Pol D)

Identification of a novel DNA polymerase activity in
P. furiosus: P. furiosus cell extract was fractionated by
an anion exchange chromatography, and each of the
fractions was analyzed for DNA polymerase (deoxy-
nucleotide incorporation) activity. Three different DNA
polymerase activities (I, I, and Ill) were detected in
the cell extracts (Imamura et al. 1995). The activities in
fractions | and Il were sensitive to aphidicolin, which
suggested the presence of family B DNA polymerases in
these fractions. The enzyme eliciting DNA polymerizing
activity in fraction | was purified, and its N-terminal
amino acid sequence matched that of Pfu Pol I (Pol
B1), which we previously cloned (Uemorietal. 1993). To
purify the protein responsible for the DNA polymerase
activity in fraction 111, the cell extracts were passed
through several purification steps. An in situ (in SDS-
PAGE) DNA polymerase assay (Wernette and Kaguni
1986) suggested that the DNA polymerase activity origi-
nated from a protein of molecular mass 130-135 kD
(Imamura et al. 1995). We designated the enzyme as P.
furiosus DNA polymerase Il (Pfu Pol II) as the second
enzyme discovered in this organism. The activity in frac-
tion 11, which has not yet been identified, could be a
third DNA polymerase in P. furiosus, or Pfu Pol I (BI)
might have formed a complex with some other proteins
and eluted at a different place in the chromatography.
Further analyses are necessary to clarify this finding.

Gene cloning: A cosmid library, which contained P.
furiosus genomic DNA inserts ranging in size from 35

to 50 kb, was screened for the gene encoding Pfu Pol
Il. Out of 500 heat-treated cell extracts prepared from
independent transformants carrying each recombinant
cosmid, 9 produced heat-stable DNA polymerases. Five
clones contained inserts originating from the same re-
gion of P. furiosus genomic DNA; however, note that
the restriction enzyme digestion pattern was different
from that of the region that contained the gene for Pfu
Pol (BI) previously cloned (Uemori et al. 1993). Within
the cloned 10-kb Xbal fragment, which contained the
genes producing the protein or proteins responsible for
the novel heat-stable DNA polymerase activity, there
were five continuous ORFs transcribed together as a
single operon as shown in Figure 2 (Uemori et al. 1997).
Nested deletion analysis of the corresponding genes
indicated that the DNA polymerase activity originated
from the products of the second and third genes in the
operon. The proteins produced by the second and third
ORFs were named DP1 and DP2, respectively, as the
subunits of Pol Il (Figure 2). The estimated molecular
mass of DP1 was 69 kD, while that of DP2 was 143 kD.
The deduced N-terminal amino acid sequence of DP2
from the nucleotide sequence matched that of the 130-
to 135-kD protein that was purified from P. furiosus
(Imamura et al. 1995), and therefore, the name Pfu
Pol Il was given to the heterodimeric DNA polymerase
constituted by DP1 and DP2. Although the 130-kD pro-
tein band was detected in our previous activity gel assay,
purified DP2 protein from recombinant E. coli strains
possessed very little DNA polymerase activity by itself in
a conventional solution assay of [*H]TTP incorporation.
The distinct activity was detected only in the presence
of both proteins (DP1 and DP2) in a reaction mixture,
and the activity from DP2 was only 2% of the full activity
from DP1-DP2 complex. No activity was detected from
DP1 (Uemori et al. 1997). Thus, Pfu Pol Il actually
comprises two proteins, a small subunit (DP1) and a
large subunit (DP2). Pfu Pol Il possesses a very strong



1256 I. K. O. Cann and Y. Ishino

1 kb

orf1 polB polC

46K 67K 139K

DNA polymerase I1

3"’ — 5’ exonuclease activity. This proofreading property
is also detected only in the presence of its two compo-
nents. An immunological analysis showed that DP1 and
DP2 interact with each other to form a complex in P.
furiosus cells (Cann et al. 1998a).

Conservation of euryarchaeotic Pol I1: Upon publica-
tion of the genome sequence of M. jannaschii, ORFs
coding for homologs of Pfu DP1 (40% identity) and Pfu
DP2 (60% identity) were found. The genes for these
two ORFs were expressed in E. coli, and both DNA poly-
merase and 3' — 5’ exonuclease activities were con-
firmed (Ishino et al. 1998). Subsequently, homologs of
both DP1 and DP2 were found in the complete genome
sequences of M. thermoautotrophicum, A. fulgidus, and P.
horikoshii (Cann et al. 1998a). In each of these three
euryarchaeotes, DP1 and DP2 are highly conserved (Ta-
ble 4). In addition, using primers based on conserved
motifs in DP2, the presence of a homolog has been
demonstrated in Methanopyrus kandleri (I. Cann and Y.
Ishino, unpublished results), which is one of the most
ancient of known hyperthermophilic archaea, accord-
ing to the phylogenetic tree based on 16S rRNA.

So far, every archaeon that has been shown to contain
DP1 and DP2 belongs to Euryarchaeota. There is no
evidence suggesting the presence or absence of DP1
and DP2 homologs in crenarchaeotic cells. In most of
the euryarchaeotes investigated, the genes coding for
DP1 and DP2 occur at different regions of the genome
as described earlier (Ishino et al. 1998). However, they
are arranged in tandem in the genus Pyrococcus (P.
furiosus, Uemori et al. 1997; P. woesei, I. Cann and Y.
Ishino, unpublished results; P. horikoshii, Kawaraba-
yasi et al. 1998; P. abyssi, J. Querellou, personal com-
munication). The significance of the different gene
arrangements is not known. However, we expect the
arrangement to regulate the production level of Pol 11
in the cells.

Comparison of euryarchaeotic DP1 with known DNA
polymerases: Euryarchaeotic DP1s exhibited weak but
significant similarities on the amino acid level to the
small subunit of eukaryotic DNA polymerase 3 (Cann

orfd  orfs Figure 2.—An operon con-
taining the genes for Pol 11 (Pol D)
found in P. furiosus. Five structural
genes are indicated by the large
arrows with the encoded products.
The Rad51-/Dmc1-like protein in
this operon was named RadB to
distinguish it from RadA, another
homolog found in this organism
(DiRuggiero and Robb 1998).

23

¥

K 25K

et al. 1998a). It has been shown that the subunits from
mammalian cells are required for efficient stimulation
of the polymerase processivity of Pol 8 by PCNA (Sun
etal. 1997; Zhou et al. 1997). A homolog of this protein
is not found in published bacterial genomes (Kaneko
etal. 1996; Blattneretal. 1997; Tombetal. 1997). Thus,
this finding further strengthens the archaeal-eukaryotic
relationship. The amino acid sequence alignment of
the archaeal and eukaryotic proteins showed a high
similarity from the central to the C-terminal region.
Within this region, several conserved motifs that are
likely to play important roles in the function of this
protein were noted. In the central region, there were
conserved motifs that were found only in the euryar-
chaeotic homologs. These motifs may be involved in
the interaction of DP1 with DP2 and perhaps with other
accessory proteins. A recent report shows that the DP1s
also contain in their central and C-terminal regions the
four conserved motifs that define the superfamily of
calcineurin-like phosphatases (Aravind and Koonin
1998). The motifs contain conserved histidine and aspar-
tate residues that are known to be involved in metal co-
ordination and catalysis (Goldberg et al. 1995). Two
hypotheses have been proposed for the high conserva-
tion of these motifs in DP1 as follows: (i) pyrophosphate
hydrolysis, which will increase DNA polymerization rate
and (ii) PCNA binding. It is of interest to note that in
the second subunit of eukaryotic Pol & these motifs are
missing. The diverged N-terminal regions among the
archaeal and eukaryotic subunits are expected to be
involved in species-specific interactions. In vitro deletion
analyses showed that the C-terminal two-thirds of DP1
is important for its interaction with DP2 to elicit DNA
polymerase activity (I. Hayashi, I. Cann, S. Ishino, K.
Morikawa and Y. Ishino, unpublished results). DP1
proteins from the Pyrococci and M. jannaschii are sig-
nificantly larger than the second subunit of the eukar-
yotic Pol & and also the euryarchaeotic DP1s from A.
fulgidus and M. thermoautotrophicum. Comparison of ho-
mologous proteins shows that hyperthermophilic pro-
teins tend to be shorter than their mesophilic counter-
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TABLE 4

A comparison of euryarchaeotic DP1 and DP2 homologs

% identity
P. furiosus A. fulgidus M. thermoautotrophicum

DP1

A. fulgidus 38.4

M. thermoautotrophicum 36.9 42.6

M. jannashii 32.6 41.4 35.8
DP2

A. fulgidus 52.6

M. thermoautotrophicum 53.4 50.2

M. jannaschii 54.3 52.7 53.1

parts (Russell et al. 1997; Cann et al. 1998b). The
opposite seemed to be true for DP1 proteins. In our
opinion, the longer hyperthermophilic DP1s may har-
bor additional functions.

It has been published very recently that the second
subunits of eukaryotic Pol «, 3, €, and euryarchaeotic
DP1 constitute a family (DNA polymerase-associated B
subunits) by the sequence similarity (Makiniemi et al.
1999). The second subunit of Pol « has been implicated
in cell-cycle control and regulation (Nasheuer et al.
1991; Foiani et al. 1994), and a stable Pol € complex
essential for chromosomal replication requires the sec-
ond subunit (Araki et al. 1991). Therefore, it becomes
more interesting to understand the roles of DP1 in the
euryarchaeotic cells. The large subunits of eukaryotic
Pol «, 8, and ¢ all belong to family B. By analogy, DP1
might be expected to interact with Pfu Pol | (BI), a
family B DNA polymerase. However, Pol | (Bl) activity
was not affected by the addition of DP1 in vitro and an
interaction was not detected in vivo by immunological
analysis (Cann et al. 1998a). Hence, it is possible that
DP1 and DP2 are specific partners in the formation of
Pol Il in euryarchaeotic cells. It is not known if any
other protein that has sequence similar to that of the
proteins in the family of DNA polymerase-associated B
subunits, which interacts with Pol I (BI), exists in the
euryarchaeotes.

Comparison of euryarchaeotic DP2 with known DNA
polymerases: A database search, using the computer-
assisted homology search facility on the World Wide
Web (http:#Zwww.ncbi.nlm.nih.gov/) and the BLAST
algorithm (Altschul et al. 1990) to scan GenBank and
other nonredundant databases, did not yield any pro-
teins of significant similarity to euryarchaeotic DP2.
However, the protein is highly conserved in euryar-
chaeotes (Table 4). The homologs that are known share
more than 50% amino acid conservation.

The three-dimensional structure of the polymerase
domain of nucleotide polymerases is suggestive of a
right hand, in which the palm, fingers, and thumb form
the DNA-binding crevice (Ollis et al. 1985; Kohl-

staedt et al. 1992; Sousa et al. 1993; Kim et al. 1995;
Hansen et al. 1997; Kiefer et al. 1997; Li et al. 1998).
Within the palm subdomain are two motifs (motifs A
and C) containing two invariant carboxylates, which are
thought to constitute part of the polymerase active site.
Amino acid sequences resembling motifs A and C were
found in DP2s (Figure 3), but not in DP1s, by visual
inspection of four euryarchaeotic DP2s (Cann et al.
1998a). In addition to the detection of weak activity
from Pfu DP2 protein by itself as described above, the
DP2s have been proposed as the catalytic subunit of the
euryarchaeotic heterodimeric DNA polymerase by these
motifs. The genes coding for inteins tend to invade the
regions encoding indispensable motifs in proteins as
discussed in archaeal family B DNA polymerases. An
intein is found in the DP2 of P. horikoshii within a highly
conserved motif (GYAHYFHAAKRRNCDGDED) in all
known DP2 proteins (Table 3). The function of the
motif in which the intein occurs (Figure 3) in P. horiko-
shii DP2 is not known, but it is very close to the putative
catalytic residues of Pol Il (Cann et al. 1998a). It
may, therefore, be crucial for maintaining the integrity
of active site conformation. Site-directed mutagenesis
within this motif is required to examine this hypothesis.

In the middle and C-terminal regions of DP2s, zinc-
finger motifs that are likely to be involved in interactions
with other proteins, in addition to DNA binding, are
conserved. At the C-terminal region of all known DP2s
are two conserved motifs with amino acid sequences
similar to the so-called PIP (PCNA interacting protein)-
box (Warbick 1998). Euryarchaeotic DP2s were, there-
fore, expected to interact with PCNA homologs found
in Euryarchaeota, and this is discussed later.

The amino acid sequence of the catalytic subunit of
Pol 11 does not belong to any family proposed so far as
described, and therefore we propose here family D for
euryarchaeotic Pol Ils, and Pol Ils are renamed Pol D
by following our proposal that gives Pol Bl and BII for
family B DNA polymerases as described above (Table 2).

Biochemical characterization of euryarchaeotic Pol
Il (Pol D): Mja Pol D, produced in E. coli cells, was
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Pfu DP2 Ko TR F DaAriTTHFR[E T 856
Mth DP2 KDATIRH DUPLTHF T T 747
Mja DP2 KIDGTTRF DVPVTHFK[ D 791
Afu DP2 KDGTARF DLPITHFKE r 797
HIV RT KksMTvE DAYFSVP 277
Eau TEL KILFFATM KCYDISIVN 612
Sce TYI Ny YT QL savyl@yap 1355
Eco DPOLI DY VWS A QUeELRIM 714
Sen RPOL LSCFIRTT KYCLNWR 672
Taq DPOLI cwLDvAlL Qe LR VL 619
Hsa DPOLa DKFIILLL sty p8h 869
Ape BIl FFRMLVL sty risiL 543
Ape BI HEDIL AVL SSMYPNI a7
Moti f A
Pfu DP2 L < SKEAGKEEMCRVARF v F AEK 910
Mth DP2 L v seEDCYOR@MMV R VANF V F vi@r 801
Mja DP2 L [} PESCEYERMF VKV ANF I F 1« [3 845
Afu DP2 L P PKSGEYERMML R VANF | F Afds 851
HIV RT LVIYQYM 3 349
Eau TEL NLLMRLT ) 787
Sce TYI MTHICLFV 3 1433
Eco DPOLI RMIMQVH v 888
Sen RPOL Vs AMVQG v 779
Tag DPOLI RMEL Qv H A 791
Hsa DPOLa EMBlYGD T T 1010
Ape Bl HILVYGDT D 679
Ape BI EMLIYGDT N 557
Mo ti f C
Pfu DP2 vE vo[L v v 964
Mth DPZ L [8 TGEYs A v 855
Mja DP2 v T KNV F 899
Afu DP2 L SDVLA F 905
Pfu DP2 3 LE s BREEEER]Y VR v A 1018
Mth DP2 3 (M D pEsEER Bl Mo m R 909
Mja DP2 D Lp [de v H N M D T K 953
Afu DP2 D v KISEGERIRY VERK A 959

Figure 3.—Amino acid sequence alignment of the region containing the putative DNA polymerase motif A and motif C of
euryarchaeotic DP2. The DP2s shown and their accession numbers are P. furiosus (Pfu, D84670), M. jannaschii (Mja, D64503),
M. thermoautotrophicum (Mth, AE000913), and A. fulgidus (Afu, AE000984). The motifs A and C are aligned with those of other
polymerases and the asterisks indicate invariant carboxylates probably essential for catalysis. The intein-insertion site within the
DP2 from P. horikoshii is indicated by an arrow. To avoid two homologs from the same genus, the P. horikoshii DP2 is not included
in the alignment. Positions of identical and similar amino acid residues are indicated by black and gray, respectively.

biochemically characterized, and its properties were
compared with those of Pfu Pol D (Ishino et al. 1998).
A polyclonal antibody raised against Pfu Pol D reacted
with both Mja DP1 and DP2. Similar to Pfu Pol D, Mja
Pol D possesses an extremely active 3" — 5’ exonuclease
activity. The DNA polymerase activity of each Pol D
is sensitive to N-ethylmaleimide (NEM). On the other
hand, they are resistant to aphidicolin. Both Pol Ds are
more sensitive to ddTTP and salt (KCI) than Pfu Pol
Bl. These reactions of the euryarchaeotic Pol D to the
above reagents are different from that of DNA polymer-
ases referred to in the book by Kornberg and Baker
(1992).

The subunits of Pfu Pol D can complement those of
Mja Pol D to yield DNA polymerase activity and vice
versa (Ishino and Cann 1998). However, there seems
to be a perceptible incompatibility between Pfu DP1
and Mja DP2. Pfu Pol D is more heat stable than Mja

Pol D. Incubations at 94° for 20 min did not affect
DNA polymerase activity of Pfu Pol D. In fact, DNA
polymerase activity improved with longer periods of pre-
incubation at temperatures close to the optimum for
growth. In contrast, preincubating Mja Pol D at temper-
atures above 65° resulted in significant loss of DNA
polymerase activity. When Mja DP1 was complemented
with Pfu DP2, temperature stability was significantly im-
proved (Y. Ishino, K. Komori, S. Ishino and Y. Koga,
unpublished results). The optimum temperatures for
growth of P. furiosus and M. jannaschii are 100° and 88°,
respectively. While the high thermostability of Pfu Pol
D was expected, the significant instability of Mja Pol
D at a temperature well below its optimum was very
surprising. These observations were, however, made in
vitro. Thus, we hypothesize that under in vivo condi-
tions there are factors that aid in the stabilization of
Mja Pol D.
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Purified Pfu Pol Bl and Pol D investigated under the
same conditions suggested several distinct differences
in their characteristics (Uemori et al. 1997). Pol D pre-
ferred the single-primed template DNA to gapped dou-
ble-stranded DNA, such as DNase l-activated DNA. This
is in contrast to Pfu Pol BI. Moreover, Pol D can utilize
RNA primers, whereas Pol Bl cannot. Because of its
strong primer elongation ability, we are tempted to hy-
pothesize that Pol D is the replicase of the euryar-
chaeotes. To confirm or refute this proposal, further
work is warranted.

ACCESSORY FACTORS

The sliding clamp: The basic function of a replicase
is to accurately duplicate the chromosome at a very high
speed. Studies on E. coli and eukaryotic replicases have
shown that the replicases comprise three functional
components: (i) a DNA polymerase, (ii) a processivity
factor, which is also called the clamp, and (iii) a multi-
subunit clamp loader (Turner et al. 1999). Despite the
inherent ability of the polymerase to synthesize DNA,
it is able to attain the high processivity required to dupli-
cate the genome only in the presence of the processivity
factor. A doughnut-shaped structure, referred to as the
sliding clamp, is formed by a homodimer of the B-sub-
unit of the E. coli holoenzyme, while in eukaryotes it is
formed by a homotrimer of the PCNA. The clamps are
topologically linked to the DNA duplex without physical
contact and through their interaction with the DNA
polymerase, they ensure proximity and tracking along
the DNA template (Stukenberg et al. 1994). The hu-
man PCNA migrates on polyacrylamide gels to a position
corresponding to a mass of 36 kD, which is larger than
the molecular mass estimated from its amino acid se-
guence (Zhang et al. 1995). Despite the fact that they
are not very similar on the amino acid level, the human
and yeast PCNAs portray an almost identical three-
dimensional shape (Krishna et al. 1994; Gulbis et al.
1996; Kelman 1997). The structure is similar to that of
the B-subunit of the holoenzyme and the gp45 protein,
which are the functional homologs in E. coli and T4
phage, respectively. In addition to its stimulation of pol
d processivity (Bauer and Burgers 1988), PCNA has
also been reported to stimulate pol € processivity (Lee
et al. 1991) under certain conditions. PCNA has also
been reported to interact with several proteins involved
in DNA repair and cell-cycle control such as the nucleo-
tide excision repair protein XPG (Gary et al. 1997),
FEN1 (Warbick et al. 1997), the cyclin-dependent ki-
nase (CDK) inhibitor protein p21 (Gulbis et al. 1996),
the p53-regulated protein Gadd45 (Smith et al. 1994),
and the mismatch repair proteins MLH1 and MSH2
(Umar et al. 1996).

The amino acid sequences similar to the eukaryotic
PCNAswere found in all completely sequenced archaeal

genomes (Figure 4). The amino acid sequence identities
between the eukaryotic PCNA and euryarchaeotic ho-
mologs are about 23%, with the highest value of 28%
occurring between the human and M. thermoautotro-
phicum homologs. Using the sequence of the PCNA ho-
molog from the P. horikoshii genome, we cloned the
homolog from P. furiosus and expressed and character-
ized the protein (I. Cann, S. Ishino, I. Hayashi, H.
Toh, K. Morikawaand Y. Ishino, unpublished results).
Our preliminary results show that in solution, the PCNA
homolog from P. furiosus (Pfu PCNA) exists in an oligo-
meric state, as observed with other PCNA homologs
(Zhang et al. 1995). We also detected interactions of
Pfu-PCNA with both Pfu Pol Bl and Pfu Pol D, even
though the exact roles of these DNA polymerases in
euryarchaeotic cells are not yet known. The B-subunit
of Pol 11l enhances the processivity of the E. coli replicase
and has also been reported to increase the processivity
of E. coli Pol Il, an enzyme implicated in DNA repair
(Bonner et al. 1992). Therefore, it was not surprising
to find an interaction of PCNA with both DNA polymer-
ases. The conserved motifs, resembling the PIP-box, are
found in the extreme C-terminal regions of euryar-
chaeotic DP2, thus suggesting the universality of this
motif in proteins interacting with PCNA (Table 5). The
significance of the presence of two PIP-boxes in DP2s
remains to be clarified. A convincing PIP-box-like se-
quence was not found in Pfu Pol BI.

Recently, three proteins with homologies on the
amino acid level to PCNA were found in the genome of
the crenarchaeote A. pernix (Y. Kawarabayasi, personal
communication). From this organism we have already
cloned and expressed two family B DNA polymerase
(Bl and BII) genes, as incidated above. Others (Edgell
et al. 1997) have suggested the presence of three family
B DNA polymerases in S. solfataricus P2. While a single
PCNA homolog is found in the euryarchaeotes, the fore-
going findings seem to suggest the presence of multiple
PCNA homologs in the Crenarchaeota. An interesting
question then arises. Do these three proteins exist in
cells as individual PCNA homologs or do they come
together to form a heterotrimer? As more research is
carried out in this area, this cryptic observation will be
clarified.

The clamp loader: Because the sliding clamps or pro-
cessivity factors are ring shaped, an initial opening of
the ring prior to loading onto the DNA is required, and
this task is accomplished by the clamp loader. Amino
acid sequence comparisons indicate that a family of
related proteins capable of performing this function is
present in both Eukarya and Bacteria (Cullmann et
al. 1995). In humans and other eukaryotes, the clamp
loader is referred to as the replication factor C (RFC),
while in E. coli the functional homolog is the y-complex
of Pol Ill. The RFC and the y-complex are each com-
posed of five subunits, and each possesses an ATPase
activity that is stimulated when bound to DNA and also
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Figure 4.—Amino acid sequence alignment of euryarchaeotic and eukaryotic PCNA homologs. Four homologs from each
group were used. The euryarchaeotic proteins and their accession numbers are P. furiosus (Pfu, AB017486), M. jannaschii (Mja,
Q57797), M. thermoautotrophicum (Mth, sp027367), and A. fulgidus (Afu, AE001081), while those of the eukaryotic proteins are
Homo sapiens (Hum, P12004), Drosophila melanogaster (Dro, P17917), Caenorhabditis elegans (Cel, sp002115), and Saccharomyces
cerevisiae (Sce, P15873). Amino acid residues that are identical (black) or similar (gray) in >50% of the positions are indicated.
Uppercase letters indicate consensus at residues with identities at >50% positions, including at least one from each domain.

by the clamp (PCNA or the B-subunit). To assemble the
v-complex (v, 8, &', x, ¥), the &'- and Y-subunits bind
directly to the y-subunit, followed by the binding of &
and x to the &’- and y-subunits, respectively (Onrust
et al. 1995a). In a previous study, it was shown that a
complex of y38" was sufficient to load the clamp onto
DNA (Onrust et al. 1991). Recently, however, the y-com-
plex has been shown to facilitate the disruption of the
primase-SSB contact, which results in a switch from the
primase to the holoenzyme during clamp loading on
the lagging strand (Yuzhakov et al. 1999). This occurs
through the binding of the x-subunit to SSB (Turner
et al. 1999). The RFC subunits are named according to
their apparent sizes on SDS-PAGE (Cullmann et al.
1995); hence the human subunits are hRFC140, hRF-
C36, hRFC37, hRFC38, and hRFC40. The similarity be-

tween the y-complex and the eukaryotic RFC suggests
similarity in the mechanism by which they load the
clamp onto DNA. However, note that while the RFC
subunits appear to be present in equimolar amounts in
the complex, two copies of the y-subunit are found in
the E. coli clamp-loader (Mossi and Hubscher 1998),
which may suggest some differences in their mecha-
nisms.

As shown in Figure 5, all of the RFC subunits share
some conserved amino acid sequences, and two subunits
of RFC are found in each of the completely sequenced
archaeal genomes. We have cloned both subunits
(small, Pfu RFCS, 37.4 kD; and large, Pfu RFCL, 55.3
kD) from P. furiosus and expressed them in E. coli (I.
Cann, S. Ishino and Y. Ishino, unpublished results).
Four archaeal RFCS share 60% identity and are most
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TABLE 5

Conserved sequences in Archaea resembling PCNA-binding motifs in Eukarya

Domain Protein PIP sequence Position Size (amino acids)
Archaea Pfu DP2 EtiLNshl (1096-1103) 1263
Pfu DP2 visLDdFF (1253-1261)

Mja DP2 EkvIQshE (1031-1038) 1139
Mija DP2 QukLsdFF (1129-1136)
Mth DP2 EgvLmshF (987-994) 1092
Mth DP2 QssLDVFI (1085-1092)
Afu DP2 ErvINVhE (1037-1044) 1143
Afu DP2 QuslISdFv (1136-1143)
Pfu RFCL QatLfdFI (470-476) 479
Mja RFCL QItLDaFF (508-515) 516
Afu RFCL NItLDsFE (471-478) 479
Mth RFCL QtsLfgFs (472-478) 479
Eukarya Human XPG QIrIDSFF (990-997) 1186
Human Fenl QgrLDdFF (337-344) 380
Human p21 QtsMTdFy (144-151) 164
Human MCMT QttITshE (164-171) 1616
Consensus QXXhXXaa

1261

The PIP-box or consensus minimal motif (Warbick 1998) is defined as: h, residues with moderately hydropho-
bic side chains; a, any residue with a highly hydrophobic, aromatic side chain; X, any residue. p21, cyclin-
dependent kinase inhibitor 1, accession no. P38936; Fen 1, flap endonuclease 1, accession no. P39748; XPG,
Xeroderma pigmentosum group G-complementing protein, accession no. P28715; MCMT, DNA (cytosine-5)

methyltransferase, accession no. X63692.

similar to hRFC40 and hRFC37 (about 40% identity).
They are the least identical (about 23%) to hRFC38.
Four archaeal RFCL share 34% identity and are about
20% identical to hRFC140. RFC subunits contain eight
highly conserved motifs numbered as box | to box VIII
(Cullmann et al. 1995). Box I, with homology to ligase,
comprises about 90 amino acids in the N terminus and
is found only in the large subunit of the eukaryotic
homologs. The box I region is, therefore, eliminated
from the sequence comparisons (Figure 5). The dele-
tion of hRFC140 box 1 is reported to have enhanced
replication activity and PCNA loading (UhImann et al.
1997). Since the archaeal RFC large subunits do not
contain this region, one may expect them to possess
similar properties. As shown in the alignment, the ho-
mology between the archaeal and eukaryotic homologs
is striking, and obviously the most conserved regions
are the previously described RFC boxes. Among the
motifs, the phosphate-binding loop (box I11) is the most
conserved followed by the DEAD-box motif, which is
also found in the so-called DEAD-box proteins, a family
of putative RNA helicases possessing also P-loops and
ATPases (Pause and Sonenberg 1992; Mossi and Hub-
scher 1998). RFC homologs, however, do not possess
helicase activity (Cullmann et al. 1995). Diversification,
which may signify differences in function, was found at
the C-terminal region of the alignment. Indeed, results
from our laboratory indicate that P. furiosus RFC large
subunit (PfuRFCL) binds to PCNA (I. Cann, S. Ishino
and Y. Ishino, unpublished results), and at the extreme

C-terminal region of each archaeal homolog is a highly
conserved PIP-box (Table 5). According to the complex
forming of the eukaryotic RFC (Mossi and Hubscher
1998), archaeal RFC may form a complex of one RFCL
and four RFCS. As expected, Pfu RFCS existed in oligo-
meric form in solution (I. Cann, S. Ishino and Y. Ishino,
unpublished results), which suggests that, as in the T4
clamp loader (the T4 gene 44/62 complex), the Pfu
RFC small subunit exists as multi-protomers interacting
with the large subunit. The structure—function analyses,
in addition to biochemical analyses of these accessory
proteins, are now under way.

CONCLUDING REMARKS

In comparison with research on Bacteria and Eukarya,
the molecular biology of Archaea is still far behind;
however, the number of reports in this field has greatly
increased. The discovery of the novel DNA polymerase
family, which is probably involved in the DNA replica-
tion machinery of the Euryarchaeota, will greatly con-
tribute to the understanding of the mechanism. In addi-
tion, the finding serves as a further confirmation of the
archaeal organisms being truly different from those in
Bacteria and Eukarya.

Currently, archaeal homologs involved in the eukary-
otic DNA replication, other than those described above,
such as minichromosome maintenance (MCM) pro-
teins (Kearsey and Labib 1998), replication protein A
(RPA; Chedin et al. 1998; Kelly et al. 1998), and 5" —
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Figure 5.—Amino acid sequence alignment showing seven conserved regions of RFC subunits, including the putative homologs
from Euryarchaeota. The alignment begins at RFC box Il and ends immediately after box VIII. The sequences beyond this region
are highly diverged and hence were not shown. RFCS indicates the euryarchaeotic small subunit, while RFCL indicates large
subunits in both domains. The eukaryotic small subunits are named according to their respective molecular mass (kD). The
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sequences and their locations are PfuRFCS (unpublished), MjaRFCS (U67583), AfuRFCS (AE000961), MthRFCS (AE000811),
Dro40 (D. melanogaster, P53034), Hum40 (H. sapiens, P35250), Cel40 (C. elegans, AF036699), Sce37 (S. cerevisiae, P40339), Hum36
(P40937), Cel36 (P34429), Sce40 (P38629), Sce4l (P40348), Hum37 (P35249), Cel37 (P53016), Hum38 (P40938), AfuRFCL
(AE001022), PfuRFCL (unpublished), MjaL (U67532), MthRFCL (AE000811), DroL (U97685), SceL (U26027), and CelL
(275532).
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3" exo/endonuclease (FEN1; Hosfield et al. 1998a,b;
Rao et al. 1998), are being studied at several laboratories
in the world. We found the genes encoding archaeal
homologs of Orcl/Cdc6 (Orpl/Cdcl8) and Rad51/
Dmcl of yeast, respectively, in the operon containing
Pfu Pol Il (Pol D) as shown in Figure 2 (Uemori et
al. 1997). These yeast homologs play key roles in the
initiation of DNA replication and homologous DNA
recombination, respectively. Thus, the proximity of
these genes to Pfu Pol D may signify their indispensabil-
ity to similar processes in P. furiosus cells. It is very inter-
esting that Lopez et al. (1999) have recently predicted
the replicational origins at the 5’-end of the orc1/cdc6-
like genes in the genomes of M. thermoautotrophicum, P.
horikoshii, and P. furiosus by three kinds of cumulative
skew diagrams. These regions are most likely to be the
origins because of the existence of the direct repeats of
the AT-rich elements. We are currently biochemically
investigating the roles of the Orcl1/Cdc6-like protein.
This interesting protein in P. furiosus will help to identify
the replicational origin in the genome soon. The exis-
tence in archaeal cells of proteins similar to the essential
factors for eukaryotic DNA replication heightens our
expectation that unraveling the archaeal mechanism
will contribute to the understanding of the mechanism,
which became very complicated in the Eukarya as a
result of evolution. We expect many exciting findings
in Archaea related to DNA replication and also to repair
and recombination in the very near future.

Some of our studies on DNA polymerases from P. furiosus cited in
this article were carried out in Biotechnology Research Laboratories,
Takara Shuzo, in collaboration with T. Uemori, |. Kato and other
members. We thank Dr. K. Morikawa, K. Komori, and I. Hayashi for
discussions and for providing some unpublished data. We also thank
S. Ishino for providing some results. We thank Dr. S. Tsutakawa for
critical reading of the manuscript. We acknowledge Drs. C. R. Woese,

Y. Shimura, H. Shinagawa, A. Sugino, P. Forterre, F. Perler, F. Robb, D.
Sgll, and W. Whitman for discussions and continuous encouragement.

Note added in proof: The 2.5 A resolution crystal structure of a family
B DNA polymerase from Thermococcus gorgonarius has been published
(K. P. Hopfner, A. Eichinger, R. A. Engh, F. Laue, W. Ankenbauer,
R. Huber and B. Angerer, 1998, Proc. Natl. Acad. Sci. USA 96:
3600-3605).
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