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ABSTRACT
In the comparison of DNA and protein sequences between species or between paralogues or among

individuals within a species or population, there is often some indication that different regions of the
sequence are divergent or polymorphic to different degrees, indicating differential constraint or diversifying
selection operating in different regions of the sequence. The problem is to test statistically whether the
observed regional differences in the density of variant sites represent real differences and then to estimate
as accurately as possible the location of the differential regions. A method is given for testing and locating
regions of differential variation. The method consists of calculating G(xk) 5 k/n 2 xk/N, where xk is the
position of the kth variant site along the sequence, n is the total number of variant sites, and N is the
total sequence length. The estimated region is the longest stretch of adjacent sequence for which G(xk)
is monotonically increasing (a hot spot) or decreasing (a cold spot). Critical values of this length for tests
of significance are given, a sequential method is developed for locating multiple differential regions, and
the power of the method against various alternatives is explored. The method locates the endpoints of
hot spots and cold spots of variation with high accuracy.

Acommon question that arises in the comparison of describe, using empirical cumulative distribution func-
tion (ECDF) statistics, has the property that it also pro-related DNA or protein sequences is whether the

differences between them are concentrated in some vides another test of the null hypothesis that has about
the same power as the Goss and Lewontin variance andregions of the sequence and are relatively sparse in

others. This problem arises commonly in three contexts: extremal run length tests. The statistical question then,
is whether the lengths and positions of these runs arepolymorphism of a gene within a species, divergence of a

gene between two species, and divergence of paralogous what we might expect if the positions along the se-
quence have equal probabilities of substitution.sequences that arose originally through duplication. In

Because the estimation method arises in the contextall of these cases there are some clearly definable re-
of a test of the heterogeneity, we begin our expositiongions, which we expect, a priori, to be more or less
by a discussion of the test, turning later to the estimationvariable or divergent than others, as, for example, in-
problem. The performance of the test (power) is evalu-trons compared to exons. The differences between such
ated under several alternative hypotheses. The seconda priori regions can be detected by standard statistical
part of this article describes how the same algorithm istests of heterogeneity. A much more difficult statistical
used to estimate the regions of differential variability.problem arises, however, when there are no such clearly
We assess the estimate through several measures and dis-defined a priori regions, but we are looking for evidence
cuss its potential problems. The article then concludesof heterogeneity of variation within, say, an intron or
with two numeric examples using real molecular data.an exon. A solution to the problem of detecting such

regions was given in an article by Goss and Lewontin
(1996), in which two fairly powerful tests for heterogene-

A METHOD OF HYPOTHESIS TESTINGity were developed. This earlier study, however, only
provided statistical tests to detect heterogeneity, but did The structure of the data is fairly simple. Two or more
not offer any method for locating those parts of the sequences are aligned and a new resultant sequence is
sequence that differ from other parts in their variation. produced with a 0 at each position at which all the
In this article we develop an estimation procedure for sequences are identical, and a 1 at any position where
locating the position along the sequence of regions of there is at least one variant among the sequences. Where
differential probability of substitution. The method we only two sequences are compared, as, for example, be-

tween two species or between two paralogous sequences,
the 1’s mark the sites of divergence. Where multiple
sequences are compared, typically in a polymorphismCorresponding author: R. C. Lewontin, Museum of Comparative Zool-

ogy, Cambridge, MA 02138. E-mail: lewontin@oeb.harvard.edu study, the 1’s mark sites that are polymorphic without
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reference to how many distinguishably different allelic distinguishable observed class, thus spreading the devia-
tions among more degrees of freedom. Thus, the two-forms are seen at the site. The result is a single sequence

made up of runs of 0’s separated by 1’s. Beginning at state classification, variant and invariant, seems the only
practical basis for a general search for heterogeneity.one end of the sequence, we can describe the data as

a series of “events” marked by the 1’s, separated by runs The detection of heterogeneity is essentially a test of
goodness-of-fit to a uniform null distribution. Severalof “no event,” denoted by the 0’s. It is the lengths and

arrangements of these runs of 0’s between “events” that nonparametric methods have been developed, which
may be grouped into two broad categories. One groupprovide the basis for statistical tests and for locating

regions of high or low probability of an event. In most includes the runs tests, which are based on the interval
lengths between two events. For a comprehensive reviewapplications the degree of polymorphism or sequence

divergence is small as compared to the total sequence and comparison of various methods in this group, read-
ers are referred to Goss and Lewontin (1996). Thelength, so there will be many more 0’s than 1’s, and

that data will appear as runs of 0’s punctuated by single other group, which includes the method discussed in
this study, uses the ECDF statistics (Stephens 1986b).1’s. But we are not restricted to such cases. Where there

are many divergent sites between sequences, there will The ECDF statistics: The ECDF statistics use the dif-
ference between the observed cumulative distributionoften be uninterrupted stretches of multiple 1’s, but

two adjacent 1’s are simply counted as a run of 0’s of of events, the ECDF, and the theoretical cumulative
density function (CDF) under some null hypothesislength 0, with no loss of generality. When the proportion

of divergent or polymorphic sites is actually .50% we (Stephens 1986a). In our context the meaning of the
ECDF, Fn(x), is as follows. We have a total of N positionscan simply reverse the definition of events. In this article

we consider cases where the proportion of events is along the sequence labeled sequentially from one end
by x (1 # x # N). On this sequence there are n events#45% (see the last two columns of Table 1).

It is important to note that the procedures we derive (marked by 1’s). Beginning at one end of the sequence
and progressing to the end of the sequence, we recorddo not assume that there are only two alternatives at a

site for a multiple sequence comparison. The methods how many of the events have occurred up to and includ-
ing position x. In a sample of n events (1’s), Fn(x) is aare equally valid whether a site is marked as “variable”

because a single sequence differs from all the others stepwise function, calculated from the observations
or because every sequence differs uniquely from every
other at the site. What is lost by considering only two Fn(x) 5

# of events occurring up to position x
n

,
classes, variant and invariant, is the potential informa-
tion contained in the frequency distribution and enu- 1 # x # N.
meration of all the alternative forms. Ultimately, all other

The CDF function, F(x), is calculated from the nullthings being equal, this represents a loss of statistical power
hypothesis. In our case, the null distribution is uniformto detect some kinds of heterogeneity. For example, the
anddistribution of interevent distances might conform to

the null hypothesis of no clumping, but all the events F(x) 5 x/N, 1 # x # N.
that appear in one region of the sequence might be the

The quantity n · F(x) is then the number of events weresult of only a single divergent sequence at any variant
expect up to and including site x in a uniform distribu-site, while in another region every sequence might differ
tion. The ECDF statistic, Fn(x) 2 F(x), the cumulativefrom every other one at every variant site. But to make
difference between the observed and expected propor-statistical use of such information is a great deal more
tion of events up to position xk, increases over an intervalcomplex than it may appear. First, it is not clear what
that is shorter than the expected length of spacing andthe null hypothesis is. The simplest would be that for
decreases over an interval that is longer than the ex-all sites there is a common number of different equi-
pected length. Under the null hypothesis, Fn(x) 2 F(x)probable states, but this number cannot even be esti-
has mean 0 for all x. An extremely large departure frommated from the data because of ascertainment bias, a
0 is a ground for rejecting the null hypothesis. Thisbias that depends on the true number of alternatives,
is the essence of the Kolmogorov-Smirnnov (K-S) testthe number of sequences in the sample, and the level of
(Sokal and Rohlf 1995):polymorphism. Other ad hoc null hypotheses suggested a

posteriori from the observed patterns of variation parame- D 5 maximum | Fn(x) 2 F(x) |.
ters suffer from the dangers of all a posteriori tests, while
a priori tests contain various numbers of undetermined The K-S test has many desirable properties, such as being

distribution free and coordinate free, and it is consistentparameters. Second, the increase in power obtainable
from more detailed classification could only be achieved against all alternatives (Feltz and Goldin 1992). But

the test has a relatively low power for our problem (R. C.by increases in sample size, because the change from
an underlying binomial hypothesis to a multinomial Lewontin, unpublished results). The method pre-

sented below is similar to the K-S test.one reduces the number of observations falling in any
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Figure 1.—An example of G under the null (uniform) dis- Figure 2.—Distribution of T under the null hypothesis. n 5tribution. n 5 60. 60. Note the approximate symmetry with respect to 0.

The motivation for our test is as follows. If the true
substitution rate at each site is the same, no region of the plot of G vs. the index of site under the null
should contain unusually large or unusually small num- distribution.
bers of events. We expect the length of most spacings We reject the hypothesis of uniformity if the test statis-
(length between two consecutive events) to be more or tic T is greater than some critical value, T*, a function
less close to the average, n/N, rather than being either of n, N, and a (probability of type I error). To find T*,
extremely short or extremely long. Further, the longer we did Monte Carlo simulation using programs written
spacings and the shorter ones should occur in a nonsys- in C with the drand48 random number generator to
tematic fashion; that is, we expect shorter spacings inter- produce 100,000 samples of n events by sampling sites
spersed among longer ones, and vice versa. Hence Fn(x) 2 without replacement along a sequence of 5000 sites.
F(x) moves up and down. On the other hand, if a region Figure 2 shows the results of the simulation for the null
in the sequence has a very high substitution rate, we model. The distribution of T under the null hypothesis
will observe more events occurring in that region, and is symmetric with respect to 0. Therefore, we choose T*
thus a cluster of shorter spacings. Meanwhile, because to be the percentiles of |T | among the 100,000 repli-
n is fixed, there must be too few events elsewhere. When cates, so that a two-tailed test has type I error of a. The
this happens (Fn(x) 2 F(x)) decreases sharply and con- critical values of T* are given in Table 1 for various
sistently in a region of lower rate while increasing sequence lengths, N, numbers of events, n, and rejection
sharply in a region of higher rate. levels, a.

Method: Denote the positions of the events by X1, X2, In the above model, DG is calculated over intervals
. . . Xn, where X1 , X2 , . . . , Xn, and calculate where G increases (or decreases) monotonically. Essen-

tially, this method looks for the longest stretch in theG(xk) 5 Fn(xk) 2 F(xk) for k 5 1, . . . , n.
sample in which every spacing is shorter (or longer,

For example, suppose in a 5000-bp DNA sequence with for a cold spot) than the expected length. But it is
60 polymorphic sites, the 10th event falls on the 1000th conceivable that one or more spacings may be slightly
site, then X10 5 1000, Fn(x10) 5 10/60, and F(x10) 5 longer in a true hot spot; similarly, a spacing in a real
1000/5000G (1000) 5 k/n 2 x10/N 5 10/60 2 1000/ cold spot may be slightly shorter than average. Such an
5000 5 20.0333. atypical random spacing produces noise on the G curve

In a region bounded by two events, i and j, let (Figure 1), which we treat by smoothing. A great deal
of literature on smoothing procedures is available (seeDGi,j 5 G(xj) 2 G(xj), 1 # i # j # n.
Simonoff 1996). In this study, for the ease of computa-

The test statistic, T, is calculated by tion, we adopt a very simple smoothing scheme. We say
that G is almost monotonically increasing (or monotoni-T 5 sign(G) · max(|DG|).
cally decreasing) in any interval in which any opposite
change is ,0.005. The relaxation of the definition ofThe maximum is taken over all intervals in which G
monotonicity amounts to a slight smoothing of the Gincreases or decreases monotonically. The sign of T is

the same as that of DG. Figure 1 shows an example curve. The value of 0.005 is chosen quite arbitrarily, and
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TABLE 1

Critical values, T*, for a rejection a of 5% and 1%, for different total sequence lengths, N,
and for different numbers of events, n

T*

N: 10,000 5,000 1,000 500 200

5% 1% 5% 1% 5% 1% 5% 1% 5% 1%a:n

10 0.401 0.480 0.399 0.476 0.398 0.475 0.396 0.472 0.390 0.465
20 0.289 0.349 0.289 0.349 0.286 0.346 0.282 0.340 0.275 0.330
30 0.230 0.279 0.229 0.279 0.226 0.276 0.223 0.273 0.212 0.257
40 0.191 0.234 0.193 0.234 0.189 0.230 0.185 0.226 0.170 0.210
50 0.168 0.205 0.167 0.205 0.164 0.201 0.160 0.194 0.145 0.175
60 0.149 0.182 0.149 0.182 0.145 0.178 0.141 0.171 0.128 0.157
70 0.136 0.166 0.135 0.164 0.132 0.160 0.127 0.155 0.112 0.136
80 0.124 0.151 0.124 0.150 0.121 0.147 0.116 0.141 0.100 0.123
90 0.117 0.142 0.116 0.141 0.113 0.137 0.109 0.132 0.093 0.113

100 0.109 0.133 0.108 0.132 0.104 0.126 0.100 0.122 2 2
125 0.096 0.117 0.096 0.116 0.090 0.110 0.086 0.106 2 2
150 0.088 0.107 0.088 0.107 0.085 0.103 0.081 0.099 2 2
175 0.085 0.103 0.085 0.103 0.082 0.100 0.074 0.091 2 2
200 0.083 0.102 0.082 0.101 0.076 0.093 0.066 0.081 2 2

Each value is from 100,000 replicates.

it is discussed in more detail in a later section. But as butions, recording the proportion of replicates in which
the test statistic T, simulated under this alternative hy-long as we use a consistent method when simulating

under the null distribution, the probability of type I pothesis, is more extreme than the critical value T*. In
most cases, we perform a two-tailed test and reject theerror will not be increased.

Alternative hypotheses: Under the null hypothesis, null hypothesis when |T | . T*. Of course, if we have
prior knowledge of the direction of the deviation, thethe probability of substitution at each site is the same.

The alternative distribution can be very complex, as its test can be one-tailed, with the critical values derived
in a similar fashion.parameter space is multidimensional (Goss and Lewon-

tin 1996). Because the primary goal is to detect regions Power of the test: Figure 3, a and b, shows the power
of the test when the underlying distribution containsof heterogeneous substitution rate, we only consider

alternative hypotheses in which each true distribution one hot spot or one cold spot of varying width. The
ratio, r, of probability of a substitution between theis composed of a few regions. We begin with two simple

alternative distributions in which the true probability differential and the constant regions is 5:1 in the case
of a hot spot and 1:5 for a cold spot. The x-axis representsdensity function partitions the entire sequence into

three regions. The central region is considered as the the width, w, of the differential region, and the y-axis
represents the power (among 10,000 trials) when thedifferential region. Three parameters that completely

characterize an alternative hypothesis are the width rejection level a 5 0.05. The critical values of T* are
given in Table 1 for various numbers of events, n. For(measured as a fraction of the length of the entire se-

quence), depth, and location of this differential region. a hot spot and with n 5 30, the test has reasonably
good power (.0.5) when the differential region spansThe differential region in alternative hypothesis A is

a hot spot, and that in alternative hypothesis B is a cold between 10–50% of the entire sequence. In the case of
a cold spot, the differential region needs to span 30–spot. It should be emphasized, however, that these terms

are only relative, not absolute. A cold spot only has lower 80% of the entire sequence to have good power.
The power will, in general, be a function of the num-probability of substitution relative to regions flanking it.

Thus, distribution B can be equivalently considered as ber of distinct sites of variation (n), the ratio of substitu-
tion rate between the differential and constant regioncomposed of two hot spots.

We first examine the performance of the test when (r), the width of the differential region (w), and the
position of the differential region.the width, depth, and the position of the differential

region vary. We then briefly discuss the change in the Figure 3, a and b, shows that for a given alternative
hypothesis the power of the test increases as n, thepower when the alternative distribution contains more

regions. To evaluate the power of the test we simulate number of distinct sites of variation, increases. This is
expected because an increased sample size provides ad-samples with n events under different alternative distri-
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Figure 4.—Comparison of the power of the Goss and
Lewontin variance test and the ECDF test. The x-axis shows
the width, w, of the hot or cold spot located at the center of

Figure 3.—In a and b, the x-axis shows the width, w, of a the sequence. (a) Hot spot, r 5 5:1; (b) cold spot, r 5 1:5.
spot (hot or cold) located in the center of the sequence. (a)
Power to detect a hot spot, r 5 5:1; (b) power to detect a cold
spot, r 5 1:5.

when the differential region is narrow, a hot spot is
easier to detect than a cold spot. But when the differen-

ditional information. Holding r at the 5:1 level and w tial region becomes wide, a cold spot is easier to detect.
at 10% of the entire sequence, the power is only 0.27 This is not surprising. If several events take place in a
for n 5 10, but increases to 0.67 for n 5 30, and reaches relatively narrow hot spot, the spacings will be signifi-
0.99 when n 5 100. cantly shorter. This will produce a highly positive DG

By the depth of the differential region we mean the in that region, and hence high power. But if the narrow
ratio, r, of substitution rate between the differential and differential region is a cold spot, the best that can hap-
background regions. An increase in the deviation in pen is that no event takes place in this region. Thus,
substitution rate in the differential region raises the the cold region is completely covered by one spacing,
power. For 60 events and holding w at 10% of the total and all the events occur in the constant region with
length, the power is 0.17 when the probability in the equal probability. If this one spacing covering the cold
differential region is twice as high as that of the constant spot is not long enough to produce a significant DG,
region, but it increases to 0.94 when r is 5:1, ceteris pa- the test is most likely to be insignificant.
ribus. In comparison with Goss and Lewontin’s variance test,

Figure 3, a and b, shows that for both alternative Figure 4 indicates that the two methods have compara-
hypotheses A and B, the power of the test peaks when ble power, and neither dominates the other over the

range of the width of the differential region.the differential region is of moderate width. Note that
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In the above simulations, we always centered the dif-
ferential region to make the two flanking regions equal
in length. The power is not affected significantly if this
differential region is slightly off center. But when it
moves to the extremities of the sequence, the power is
affected due to an edge effect, which arises because the
first and the last spacings in an observed sequence are
necessarily shorter than the expected length, n/N. Con-
sider a situation in which one of the flanking regions
in alternative hypothesis B is degenerate. The cold spot
is located at one end of the sequence, but the first
spacing at this end is still likely to be shorter than ex-
pected due to the edge effect. The cold spot is then less
likely to be detected, and the power of the test decreases.
The same reasoning argues that the power should in-
crease if the head/tail region is in fact a hot spot. A
remedy for the edge effect is to circularize the two ends

Figure 5.—Change in power when a hot spot, r 5 5:1, isof the sequence and then cut it at the first event. In divided into two or more smaller regions. The x-axis shows
other words, we can cut off the first spacing and append the number of smaller regions. The summed width of the
it at the end. The new sites of the events are X9k 5 Xk11 2 regions is 0.3 in all cases.
X1, for k 5 1, . . . , n 2 1. Note that we have one less
spacing because the first and the last spacings in the
original sequence have merged into one. The power of

in power when there is more than one differential re-the test against all alternative hypotheses then becomes
gion of the same size. We begin with alternative hypothe-independent of the location of the alternative region
sis A, with a hot spot of width 0.1. We then add the(data not shown). Finally, even without circularizing the
second, third, fourth, and fifth hot spots, all with lengthsequence, the performance of the test is not affected
0.1. Again, each pair of neighboring hot spots is sepa-much as soon as the flanking regions on both sides
rated by a constant region of width 0.1, and each ofreach 5% of the total length of the sequence.
these alternative hypotheses is arranged symmetricallyChanging the number of differential regions: Intu-
with respect to the center of the sequence. The resultsitively, we expect that one hot spot is easier to detect
are almost identical to the picture given in Figure 5. Asthan two hot spots, each half in size. It is also generally
expected, a decrease in power is observed for all sampletrue that one hot spot is easier to detect than two isolated
sizes.hot spots of the same size, unless the two hot spots are

Although we have only presented results when theextremely close to each other. In that case they behave
alternative distribution contains multiple hot spots, thelike one hot spot and, as seen in Figure 4, the power is
same argument applies to the case of multiple coldnot proportional to the width of the differential region.
spots. Denote the power of rejecting an alternative hy-We show these two properties by two experiments.
pothesis with m similar differential regions each ofFirst, we examine the change in power when one
length j as P(m,j). Using the results in Figure 5, wedifferential region is split into two or more smaller re-
conclude that in most cases,gions. We start with alternative hypothesis A, with one

hot spot of width 0.3. We then divide this region into P(m, j) # min(P (1, j), P(1, mj)).
two or more smaller regions, keeping the total width

This gives an upper bound of the power when the alter-of all these regions at 0.3. Between each pair of two
native distribution contains more than one region. Theconsecutive smaller hot spots is a segment of constant
presence of a mixture of hot spots and cold spots inregion of width 0.1. Each of these alternative distribu-
effect increases the ratio of substitution rate (r) andtions is arranged symmetrically with respect to the cen-
results in an increase in power compared to the casester of the sequence. Figure 5 shows the change in the
with only hot spots or only cold spots (data not shown).power to reject the null hypothesis when the original

region is split into 2–6 regions. Note that the power
decreases less sharply for larger sample size. Nonethe-

ESTIMATION OF THE DIFFERENTIAL REGION
less, it decreases in each case. For this reason, our
method of hypothesis testing should not be used to We now turn to the problem of estimating the differ-

ential region. We restrict ourselves to the simple casesdetect very fine-grained rate variation. It will not, for
example, detect a higher substitution rate of the third where the underlying distributions are in the shapes of

alternative hypotheses A or B. Our goal is to estimateposition in each codon.
In the second experiment, we compare the change the location of the central region. As the distribution
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becomes more complex, it is not at all clear what we size is being reduced progressively. Thus, the probability
of a type I error will be greater than the nominal valueidentify as the “differential” region.

Sequential estimation method: Using the hypothesis of a in tests after the first one, while n and N are being
successively reduced. Such a recursive procedure willtesting method with smoothing presented in the last

section, the estimation procedure and the testing proce- then be both conservative and of lower power for each
successive test.dure go hand in hand.

Unlike point estimates, there is no established mea-
1. Test for heterogeneity in the sequence. If the test is sure of accuracy for an interval estimate. Intuitively, we

not significant we conclude that substitution rate is want our estimate to coincide with the true central re-
uniform and there is no region to be estimated. gion as closely as possible. To this end we look at the

2. If |T | . T*(a, n) we estimate the differential region distributions of two proportions: the proportion (P) of
as the interval where G changes almost monotonically and the estimated region that falls in the true differential
over which the absolute magnitude of DG is maximized. region, and the proportion (Q) of the true differential

3. Remove the estimated region from the sequence, region that is covered by the estimated region. Of these
and repeat steps 1 and 2. Continue this iterated pro- two proportions, the former is more important than the
cess until no significant heterogeneity is found. latter. If we simply estimated the region by including

the entire sequence, we would be bound to cover theIn such a recursive procedure the most deviant obser-
true differential region completely every time (if one isvations are being successively removed while the sample
present). But such an estimate is meaningless. At the
same time, we hope that our estimated region includes
as much of the true differential region as possible. An
estimated region of 1 bp long is not very informative.
Alternatively, we can treat the endpoints of the esti-
mated interval as two point estimates and examine their
marginal and joint distributions.

Once the boundary of the central region is identified,
we can further estimate the relative rate of substitution
by comparing the ratio of the number of substitutions
in each region to the width of that region.

Results: Figure 6, a and b, shows single simulated
examples of plots of G when the sequence contains a
hot spot or a cold spot, respectively. As seen in Figure
3b from the previous section, the power of detecting a
cold spot is low when the true region is very narrow.
Therefore, we use examples of cold spots of width 0.2
in this section.

Figure 7 shows the joint distribution of P and Q under

Figure 6.—Plots of G under alternative hypotheses, n 5
60. (a) Alternative hypothesis A, shown in dotted lines. The
estimated differential region is [2220–2669] and DG 5 0.2694.
(b) Alternative hypothesis B, shown in dotted lines. The esti- Figure 7.—Joint distribution of P and Q under alternative

hypothesis A, with n 5 60, r 5 5:1, and w 5 0.1.mated differential region is [1946–3073] and DG 5 0.1688.
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TABLE 2

Accuracy of the estimated region under the alternative
hypothesis A (w 5 0.1), a hot spot, and B (w 5 0.2),

a cold spot

Hypothesis A Hypothesis B

n Mean (P) Mean (Q) Mean (P) Mean (Q)

30 0.79 0.89 0.54 0.99
60 0.85 0.91 0.78 0.98

100 0.87 0.93 0.84 0.94

alternative hypothesis A and n 5 60. The mean length
of the estimated region is 554 sites long, while the true
central region spans 500 sites. The distribution shows
that in most cases the proportion, P, of the estimated
region that overlaps the true differential region is
.60%. Figure 7 also shows the distribution of Q, the
proportion of the truly differential region that is in-
cluded within the estimated region under the alterna-
tive hypothesis. In almost all cases, 70% of the differen-
tial region is covered. Of course, the estimates do not
coincide exactly with the true differential region. The
plot of joint distribution of P and Q in Figure 7 shows
that the mode occurs where 99% of the estimated region
overlaps with the true region and 94–96% of the true
region is identified. The mean proportions of P and Q
under alternative hypotheses A and B with different
numbers of events are tabulated in Table 2. Counterin-
tuitively, the mean of Q for a cold spot decreases as n
increases. Such an apparent trend, however, should not
be interpreted to mean that a larger sample size some-
how lowers the accuracy of the estimation. The length

Figure 8.—(a) Distribution of left endpoint of the esti-
of the true differential region is constant for all three mated region. Estimated mean 5 2219; true value 5 2250.
cases (w 5 0.2). When n is small, the estimated regions (b) Distribution of right endpoint of the estimated region.

Estimated mean 5 2788; true value 5 2750.are much larger (low average of P) than the true one,
so they cover most of the true region; as n increases,
the estimated regions are narrower, and therefore are

in these distributions is another indication of the accu-less likely to cover the entire true differential region.
racy of the estimates.Although Q decreases slightly as we accumulate more

Table 3 lists the means of the estimated endpoints.events, data with larger n still give a more informative
In each case, the true left and right endpoints are 2250estimate.
and 2750, respectively. It seems that the estimated leftAs an extension, we may look at the quantity R 5 PQ:

EhRj 5 Cov(P, Q) 1 EhPj * EhQj.
TABLE 3

The advantage of R is that it exacts a penalty if the
The means of the estimated endpoints withestimated region is either too small or too large. When

different sample sizes
the estimated region coincides exactly with the true
differential region, R is 1.0. R becomes small if either n Mean (left) Mean (right)
P or Q is small. Figure 7 shows that most of the time R

30 2169.341 2835.692is quite high.
60 2219.216 2788.282Alternatively, we can look at the distribution of each

100 2232.847 2779.878endpoint. The distributions of both endpoints are True endpoints 2250 2750
shown in Figure 8, a and b. The sharpness of the peaks
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TABLE 4

Power of the test and the accuracy of the estimates with varying smoothing parameters

Left estimate Right estimate

D Critical value Power Median SD Median SD

0 0.22213 0.6697 2256 351.9 2742 337.6
0.001 0.22440 0.6739 2255 343.4 2743 340.7
0.005 0.22767 0.6773 2254 320.4 2748 331.8
0.01 0.23987 0.6602 2246 327.5 2770 326.7
∞ 0.27213 0.6078 2145 465.0 2853 468.7

The true distribution contains a hot spot between positions 2250 and 2750. n 5 30, w 5 0.1, r 5 5:1, N 5
5000.

endpoint tends to be too small, and that of the right sured by the standard deviations, are smallest. Nonethe-
endpoint too large. But the bias decreases as the sample less, Table 4 indicates that the power and the estimates
size increases. One potential source for the bias is that are reasonably stable for a wide range of D; hence the
each estimate is always a site where a substitution actually method we present here is quite robust even if the
occurs. For an estimate to fall exactly on the true end- “optimal” smoothing parameter is not used.
point, a necessary condition is that an event occurs
there. The probability of such an occurrence is low,
especially when n is small. If there is no event taking HOT SPOTS vs. COLD SPOTS
place at the true change point, the spacing that covers

One shortcoming in many previously suggested teststhe true change point is likely to be shorter (if the
is that one cannot distinguish a hot spot from a colddifferential region is a hot spot) than the expected
spot. For example, the shortest and longest interval testslength of spacing. So the left estimate is often the site
require prior knowledge of the probability of the differ-of substitution right before the differential region starts.
ential region (Goss and Lewontin 1996). After all,By the same token, the right estimates are often the site
there is a shortest interval and a longest interval in everyof substitution immediately after the differential region
sequence, and testing with both methods runs into theends. If this is true we may correct the bias by taking
problem of multiple comparison and an increased prob-some inner portion of the current estimate.
ability of type I error. The variance test provides a uni-The smoothing parameter: As noted earlier, we have
fied test for both cold and hot spots, but the test statisticsomewhat arbitrarily neglected an excursion of D,0.005
is always positive, and it does not provide insight on theas “noise.” For a sequence of 5000 bp long, this allows
nature of the differential region (Goss and Lewontina spacing in a hot spot to be as much as 25 bp longer
1996). The method presented here requires no priorthan average even if it should be shorter than the aver-
assumption of either cold or hot spot. The test is two-age length under the null hypothesis. Is this relaxation
tailed when we have no knowledge about the alternativeenough, or is it too much? This depends on the resolu-
distribution. An extremely low (negative) value of Ttion of the study. It should be clear that as long as the
suggests the existence of a cold spot, while a highlysame smoothing scheme is used to simulate the critical
positive T value indicates the presence of a hot spot.values under the null hypothesis, the type I error will

A careful look at Figure 7 reveals that there are casesnot be affected. Table 4 compares the 0.05-level critical
in which the estimated region completely misses thevalue, the power of the test, the median, and the stan-
true differential region (P, Q, and R are all 0). In mostdard deviation of the left and right estimates of the
of these cases the T statistic is highly negative. Whatdifferential region to varying D. The alternative region
happens in these cases is that, instead of identifying theis a centered hot spot with ratio 5:1. It shows that the
central region as a hot spot, we have estimated thepower fluctuates as D varies, while the estimated regions
location of one of the flanking regions as a cold spot.grow wider as D increases. In the limiting cases, when
This reveals a weakness of our definition of differentialD 5 0 there is no smoothing, and when D → ∞ the
region. In this study we have arbitrarily defined thestatistic is the same as the V statistic, suggested by Kuiper
central region as the differential region. As discussed(1960), which uses the difference between the maxi-
above, because of the lack of a baseline probability ofmum and minimum of G over the entire sequence.
substitution, alternative hypothesis A can be consideredFor this particular alternative hypothesis, a smoothing
as a hot spot or, equivalently, as two cold spots. Whenparameter between 0.005 and 0.01 optimizes the esti-
the central region becomes very wide, the test is moremates in the sense that the medians are closest to the

true endpoints and the spread of the estimates, mea- likely to indicate one of the cold spots rather than the
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Figure 10.—Plot of G for the Adh protein in D. melanogaster.
Figure 9.—Plot of G for Hin region of the dpp gene in N 5 254 amino acids; n 5 17. T* 5 0.30477. Divergent sites

Drosophila melanogaster. N 5 5208 bp, n 5 99. Positions of at 2, 9, 26, 49, 72, 81, 83, 85, 98, 211, 213, 216, 219, 229, 239,
variant sites: 44, 60, 149, 219, 221, 334, 574, 718, 789, 940, 245, 247. The null hypothesis is rejected at the 0.05 level.
975, 1002, 1069, 1159, 1207, 1222, 1509, 1524, 1557, 1566, Estimated differential region is a cold spot between amino
1570, 1576, 1581, 1584, 1633, 1638, 1678, 1697, 1704, 1746, acids 98 and 211.
1761, 1774, 1782, 1795, 1834, 1838, 1841, 1844, 1856, 1860,
1870, 1934, 1960, 2089, 2107, 2117, 2265, 2352, 2357, 2401,
2561, 2567, 2658, 2665, 2685, 2954, 3027, 3088, 3093, 3098,

hot spot is identified between base pairs 3027 to 3253.3104, 3116, 3125, 3128, 3141, 3150, 3155, 3171, 3182, 3212,
This corresponds to the cluster at the 39 end of intron3253, 3400, 3430, 3455, 3607, 3610, 3742, 3751, 3782, 3889,

3892, 3934, 3955, 3976, 4165, 4314, 4541, 4566, 4640, 4673, 2. If we delete this hot spot, anneal the remaining two
4753, 4829, 4913, 4914, 4946, 4995, 5099, 5187, 5188. T* 5 pieces, and test for heterogeneity in substitution again,
0.10966. Null hypothesis rejected at the 0.05 level. Estimated the test is not significant. Finally, if we anneal all of thedifferential region is a hot spot between base pairs 1509 and

exons into one sequence and examine the distribution1960.
of substitutions, there is no evidence of heterogeneity.
This result is consistent with the Goss and Lewontin
variance test (Richter et al. 1997).hot spot. If we have prior knowledge that the differential

The second example concerns the Drosophila Adhregion is a hot spot, we can perform a one-tailed test
protein, which consists of 245 amino acids (sequencesand only look for intervals where DG is positive. If we
in GenBank; URL: http://www.ncbi.nlm.nih.gov/). Thecould detect both cold spots and leave only the central
data are analyzed as a numerical example by Goss andregion, the estimate would be just as useful.
Lewontin (1996). Figure 10 lists the 17 sites of fixed
divergence among eight species of the melanogaster sub-
group. The test statistic T is 20.386, giving a P value ofNUMERICAL EXAMPLES
0.0058. This result enables us to reject the null hypothe-

As a first example, consider the Hin region of the sis, and is consistent with that in Goss and Lewontin
dpp gene on chromosome 2 of the D. melanogaster ge- (1996). Figure 10 indicates a cold spot between the
nome. Each sequence consists of 5208 bp. Within 18 amino acids 98 and 211.
genomes sequenced, 99 loci are found to be polymor-
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