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ABSTRACT
The fluxes through metabolic pathways can be considered as model quantitative traits, whose QTL are

the polymorphic loci controlling the activity or quantity of the enzymes. Relying on metabolic control
theory, we investigated the relationships between the variations of enzyme activity along metabolic pathways
and the variations of the flux in a population with biallelic QTL. Two kinds of variations were taken into
account, the variation of the average enzyme activity across the loci, and the variation of the activity of each
enzyme of the pathway among the individuals of the population. We proposed analytical approximations for
the flux mean and variance in the population as well as for the additive and dominance variances of
the individual QTL. Monte Carlo simulations based on these approximations showed that an L-shaped
distribution of the contributions of individual QTL to the flux variance (R 2) is consistently expected in
an F2 progeny. This result could partly account for the classically observed L-shaped distribution of QTL
effects for quantitative traits. The high correlation we found between R 2 value and flux control coefficients
variance suggests that such a distribution is an intrinsic property of metabolic pathways due to the
summation property of control coefficients.

THE pioneering work of Kacser and Burns (1981) to an asymmetrical pattern of response to directional
selection. Finally Szathmary (1993) showed that epistasisillustrated the power of the metabolic control theory

(MCT) in accounting for fundamental genetic phenom- between deleterious mutations for enzyme activity is syner-
gistic in most kinds of selection, except for selection forena such as recessivity of deleterious alleles, epistasis,

or selection of selective neutrality. The MCT describes maximizing the flux, where epistasis is antagonistic.
In the terminology of modern quantitative genetics,how the properties of individual enzymes of a pathway

influence the flux through the pathway, and thus pro- the enzymatic loci can be regarded as putative quantita-
tive trait loci (QTL) of the flux, characterized by theirvides a biochemical link between the genetically deter-

mined enzyme activities/concentrations and the flux, contribution to the flux variance in a population. Assum-
ing that macroscopic and quantitative traits are propor-which is a global property of the pathway. This mecha-
tional to metabolic fluxes in the cell, we considered thenistic model of a quantitative phenotype has been suc-
fluxes as model traits to analyze the quantitative geneticcessfully used in quantitative and population genetics.
variation. In this work, the MCT was used to predict theThe variability of the flux was theoretically analyzed as
shape of the distribution of flux QTL effects in a segregat-a function of the effect and frequency of mutations in
ing population derived from the cross between two individ-populations (Keightley 1989), or within sibship when
uals drawn at random in a species. We considered bothparental genotypic values are known (Ward 1990). De-
the variation of the average enzyme activities across thevelopments of this model shed light on the variability of
metabolic pathway and the variation of activity of singleenzyme activities in populations under mutation-selection
enzymes between individuals of the population. Usingbalance (Clark 1991; Hastings 1992). The relation-
analytical developments and simulations, we showed thatship between metabolic flux and fitness was explored
an L-shaped distribution of flux QTL effects is consis-in Escherichia coli (Dykhuizen et al. 1987), leading to
tently observed. This distribution is related to the L-shapedthe concept of natural selection of selective neutrality
distribution of flux control coefficients, which is a conse-(Hartl et al. 1985). Beaumont (1988) pointed out
quence of the summation theorem (Kacser and Burnsthat stabilizing selection arises as a consequence of the
1973), and is also observed experimentally.structure of metabolic pathways; and Keightley (1996)

showed how dominance and directional epistasis, which
are automatically generated in metabolic pathways, lead THEORETICAL BACKGROUND

Metabolic flux as a function of enzyme activity: The
flux through a linear metabolic pathway is described as
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METHODSsider a linear metabolic pathway, with n enzymes (E 1,
E 2. . . , Ei, . . . , En), converting a substrate (S1) into a To study the flux QTL distribution, we considered the
final product (Sn11), populations resulting from a cross between two diploid

parents drawn at random. In those populations, we var-
ied both the average activities among loci and the extentS 1 →

E 1
S 2 → . . . → S i →

Ei
S i11 → . . . → Sn →

En
Sn11

of the genetic variability of activity of the enzymes that
and define Ei, which for simplicity will be called the control the metabolic pathway. The resulting variations
activity of enzyme i, as observed at the flux level were analytically studied, and

a set of relevant variables to describe QTL effects and
Ei 5

Vi

Mi

K 1,i , metabolic control was defined. Then, we used Monte
Carlo simulations to analyze the distribution of these
variables and their relationships.where Vi is the maximum velocity of enzyme Ei, Mi is

Variation at the enzyme level: We defined a given indi-its Michaelis constant, and K 1,i 5 Pi21
j51Kj,j11 is the prod-

vidual k of the species by the vector Ek 5 {Ek1, Ek2, . . . ,uct of equilibrium constants of reactions 1, 2, . . . , i.
Eki, . . .} of enzyme activities of the biallelic loci governingAt the steady state, and assuming that all enzymes are
the metabolic pathway. Without any knowledge of thefar from saturation, the flux through the pathway is
distribution of enzyme activities among the loci of actual
metabolic pathways, we supposed that the Eki are randomJ 5

[S1] 2 [Sn11]/K 1,n11

on
i51(1/Ei)

, (1)
variables, independently and identically distributed ac-
cording to a given law L(uk), where uk is the vector of
the parameters of L for individual k. We consideredwhere [S1] and [Sn11] are the concentrations of the sub-
the population resulting from the cross between twostrate S1 and product Sn11, respectively. [S1] and [Sn11] are
individuals k and h and supposed that the loci governingfixed parameters of the system, while the intermediate
enzyme activities are independent, and without linkagemetabolite concentrations ([Si] for i 5 2 to n) are variables.
disequilibrium in the population. In this case, the distri-Control coefficient of the flux: To quantify how the
bution of the flux is determined by the enzyme activitiesflux reacts when an infinitesimal change occurs in the
Ek and Eh for each parent, and by the matrix of allelicactivity of a given enzyme, Kacser and Burns (1973)
frequencies {pij}, where pij is the frequency of allele j fordefined the control coefficient C J

i of the flux J, with
enzyme i in the resulting population.respect to activity Ei of enzyme Ei, as the ratio of an

In particular, we considered the F1 hybrid resultinginfinitesimal relative variation of the flux to an infinites-
from the cross between two inbred lines and the F2imal relative variation of an enzyme:
population obtained by selfing the F1 hybrid. In case of
independent loci and with no dominance at the enzymeC J

i 5
]J
JY]Ei

Ei

.
level, enzyme activity at locus i is defined by the average
activity mi 5 (Eki 1 Ehi)/2 and the additive allelic effect
ai 5 (Eki 2 Ehi)/2. Note that mi and ai are not indepen-Under the assumptions mentioned above, we have
dent, because for all i, |ai| # mi. In an F2 population, it is
easily shown (appendix a) that the coefficient of variationC J

i 5
1/Ei

on
j51(1/Ej) (cvi) of the activity of enzyme i is

and hence on
i51C J

i 5 1.
cvi 5

a i

mi√2
. (2)This summation theorem (Kacser and Burns 1973)

applies more generally than to linear pathways, for ex-
Hence, the F2 population can alternatively be de-ample in branched pathways, pathways with feedback

scribed by the distribution law L(um) of the mi and theregulation (Kacser and Burns 1973), pathways where
distribution law L(ucv) of the cvi. The former describessome metabolites are involved in a moiety-conserved
the distribution of the average enzyme activity across thecycle (Hofmeyr et al. 1986), or pathways with two steps

catalyzed by the same protein molecule (Cascante et loci, while the latter describes the distribution of the
differences between the parents k and h, because for aal. 1990). The most important consequence of the theo-

rem is that the control of the metabolic system may be given mi value, the ai value can be deduced from the cvi

value.shared among all the enzymes, a view quite different
from that of “rate-limiting” or “bottleneck” concepts. In Variation at the flux level: In a segregating popula-

tion, each enzyme whose activity is genetically variablethe context of the MCT, the rate-limiting steps are steps
with control coefficients close to one, and they are explains a part of the genetic variance of the flux. In

other words, the polymorphic loci responsible for en-highly dependent on the genetic background. Experi-
mental data are rather consistent with a distribution of zyme variations are QTL of the flux and of any trait

proportional to the flux. However, there is no simplethe control across the metabolic pathway (see results).
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tween the flux of the F1 hybrid and the mean flux of
the parents. Figure 1B shows that the control coefficient
increases as the enzyme activity decreases, and is close
to zero for values of activity corresponding to the plateau
in the flux curve. Due to this hyperbolic relationship be-
tween flux and activity, a relative change in activity leads
to a smaller relative change of the flux, and the low-effect
alleles are recessive (Kacser and Burns 1981). If both
parents exhibit low control coefficients (i.e., high values
of activity), the flux values will be close to each other,
while if both parents have high control values, the het-
erozygote will exhibit additivity, a prediction consistent
with known cases of heterozygotes between sets of
“lower” alleles in a series, as for pigmentation in guinea
pig (Wright 1960) or mouse (Grünenberg 1952).

In the general case, all enzyme activities may differ
between the parents. Hence, the flux of each individual
depends on its genotype at the different enzymatic loci.
The average flux mJ in a population can be approxi-
mated by developing the function (1) expressing the
flux into a second-order Taylor series. We chose the
second order as a good compromise between precision
and heaviness of the calculations. Provided there is no
linkage disequilibrium, and taking the derivatives of
mJ with respect to allelic frequencies, the additive and
dominance effects (ai and bi) of QTL i, and the epistatic
(additive 3 additive) effect (aaij) of a pair (i, j) of QTL,
could be calculated (appendix b; Kojima 1959), as well
as the contributions of the QTL to the components of

Figure 1.—Relationship between the parameters that de- the flux variance: additive (s 2
Ai
) and dominance (s 2

Di
)scribe the variability at the flux level, and the corresponding

variances at QTL i, and epistatic variance (s 2
AAij) for theparameters at the enzyme level, in a simple situation where

pair of QTL (i, j). The QTL i contributes for a fractionall enzymes of the pathway, except one (enzyme i), have the
same activity for the cross between two inbred lines k and h. R 2

i of the total variance of the flux,
(A) Eki, Ehi, and EF1, are the enzyme activities of parent k, parent
h and F1 hybrid, respectively. mi is the average activity and ai

is the additive allelic effect of the locus i. Jki, Jhi, and JF1 are the R 2
i <

s 2
Ai

1 s 2
Di

s 2
A 1 s 2

D 1 s 2
AA

, (3)
flux values of parent k, parent h, and F1 hybrid, respectively.
mJ is the average flux in an F2 population resulting from the
selfing of the F1 hybrid. ai and bi are, respectively, the additive where s 2

A, s 2
D, and s 2

AA, are the additive, dominance, and
and dominance effect of the locus i: 2ai 5 Jhi 2 Jki and 2bi 5 epistatic (additive 3 additive) variances of the flux in
JF1 2 ( Jhi 2 Jki)/2. (B) Cki

J, Chi
J, and C J

F1
, are the flux control the population, respectively. The total genetic variancecoefficients of the enzyme i, in parent k, parent h, and the F1

of the flux also comprises other components, like thehybrid, respectively. Parent k has a control coefficient higher
(additive 3 dominance) and (dominance 3 dominance)than parent h, which is nearly on the plateau (Cki

J is five times
higher than Chi

J ). This situation leads to a high additive effect epistatic variances, as well as higher-order variance com-
with an intermediary degree of positive dominance. ponents, which were neglected here. In this article, the

“additive allelic effect” of enzyme locus i refers to ai,
while the “flux QTL effect” of QTL i refers to R 2

i .relationship between the variation of enzyme activity at
The sharing out of the control between the enzymesa locus i and its additive and dominance effect (ai and

of the metabolic pathway is different for each individualbi, respectively) upon the flux.
of the population. To characterize each F2 population,The simplest case of an F2 population where all en-
we computed, for each enzyme i , the average flux con-zymes but one have the same activity in both parents
trol coefficient, and its variance, Var[CJ

i], and we de-is represented in Figure 1. The hyperbolic relationship
between flux and enzyme activity leads to a saturation in fined the concept of “populational control coefficient”
the flux when the activity increases (Figure 1A; Equation for enzyme i as
1). The additive effect ai of QTL i upon the flux is equal
to half of the difference between the parents, and the C J

i 5
1/Ei

on
j51(1/Ej)

, (4)
degree of dominance bi is one-half the difference be-
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where Ei (respectively Ej) is the average activity of en- tions of those parameters were obtained by pooling the
5000 resulting values. The populational control coeffi-zyme i (respectively j) in the population.

The populational control coefficient of enzyme Ei is cient and R2
i distributions were characterized by the fol-

lowing parameters: mean, skewness (Sokal and Rohlfnot equal to its average control coefficient, but corre-
sponds to the control coefficient of an “average” individ- 1995), on

i51R2
i averaged over populations, and percentage

ual, i.e., an individual displaying the average activities of values ,0.02, which is the value expected for 50 equiva-
for all enzymes. It does not depend on the additive lent QTL (1/50).
allelic effect ai of the QTL, unlike the R 2

i . In F2 popula-
tions without dominance at the enzyme level, Ei 5 mi

RESULTSso that the populational flux control coefficient is also
the control coefficient of the F1 hybrid for enzyme i. Relationships between enzymatic allelic effects and

Simulation of flux QTL effects and control coeffi- flux QTL effects: As the relationship between flux and
cient distributions: To simulate the distributions of flux enzyme activities is nonlinear, the average flux mJ in a
QTL effects or control coefficients we considered 50 population depends not only on the average enzyme
independent enzymatic loci in F2 populations. A four- activities, Ei, but also on the variances, s 2

Ei
, of enzyme

step procedure was used: activities, with a negative relationship between average
flux and activity variances. As shown in appendix b,1. Draw of the mi values. We considered several distribu-

tion laws for mi, corresponding to different degrees
mJ < f(E1, . . . , En) 2 o

n

i51
3s 2

Ei
2

2K
E 3

i

oj?i(1/E j)
(on

j51(1/E j))34. (5)of dispersion of the average enzyme activity across
the metabolic pathway. Those distributions were con-
stant (mi 5 10, ∀i 2 reference case), uniform (in the For the same reason, the flux variance is related not

only to the variances of enzyme activity at each QTLrange [0, 30]), normal (m 5 10, s 5 2.5), or exponen-
tial (u 5 16.2, s 5 1.2). The value of u was chosen so but also to their average activities. These features clearly

differ from the classical additive models used in quanti-that all the distributions have roughly the same range
of variation, and the probability density function of the tative genetics. Moreover, the formulas show that it is

not the average activity of the enzymatic locus that di-exponential law is f(x) 5 (1/s)exp(2(u 2 x)/s).
2. Draw of the cvi values. We have chosen to consider rectly influences the flux variance, but the relative

weight of the enzyme in the pathway, expressed as thethe distribution of cvi rather than the distribution of
ai for two reasons. First, it made it easier to take “populational control coefficient” (C J

i ), or control coef-
ficient of the “average” individual (Equations B13–B15).the constraint |ai| # mi, ∀i into account. Second, we

observed that our approximations for the average flux The additive contribution of QTL i to the flux variance
(s 2

Ai
) is also affected by the other QTL through theirand its variance were better for cvi values #0.3. Three

contrasted distributions were considered: (i) cvi 5 variability (contribution of a QTL is reduced by an in-
0.2, ∀i, i.e., there is a strict positive relationship between crease of the variability of the other enzymes) and
mean and additive effect of enzyme activity; (ii) nor- through their populational control coefficients, which
mal, with an average of 0.35 (middle of the range are related by the summation property,
for the possible values of cvi, given mi; see appendix

s 2
Ai

< s 2
Ei
(C J

i )4 K 2[1 1 3cvi
2(C J

i 2 1)2
a) and standard deviation fitted to get all values
within the range of possible cv values; (iii) gamma, 1 o

j?i
[cv2

j C J
j (3C J

j 2 2)]]2, (6)
fitted to get 95% of the values between 0 and 0.3.

3. Computation of the flux QTL effects. For each pair
where cvi 5 ai/mi√2, with mi the average activity of en-

of {mi} and {cvi} vectors, we used our approximations
zyme i and ai its additive allelic effect.

to compute the flux of the F1 hybrid and the parame-
It is worth noting that the relationship between those

ters of the F2 population: populational flux control
factors is not tight: an enzymatic locus with a large addi-

coefficient C J
i, average flux mJ, total genetic variance,

tive allelic effect may have a small effect upon the flux
and the flux QTL effects R 2

i (see appendix b).
variance if its control on the pathway is weak in both

4. Distribution of the flux control coefficients. For an
parents (Figure 1).

F2 population, 10,000 individuals were randomly gen-
The flux QTL effects are L-shaped distributed: Figure

erated, according to the parental genotypes at each
2 compares the distributions of the average enzyme

locus. For each individual and each locus, we com-
activity, mi, across the loci, to the corresponding distribu-

puted the flux control coefficient and inferred the
tions of flux QTL effects, Ri

2, for a gamma distribution
corresponding variance Var[C J

i] for each enzyme.
of cvi. When all enzymes have identical mi and ai, the
QTL have the same Ri

2 (Figure 2A). Our simulationsThose steps were iterated 100 times to simulate 100
different F2 populations. Hence, we computed 100 mJ show that, as soon as there is any difference in their

average activity or variability, the distribution of Ri
2 ex-values and a total of 100 3 50 5 5000 different values

for mi, cvi, C J
i, R 2

i , and Var[C J
i]. The expected distribu- hibits an L shape: few steps have high Ri

2 values, more
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Figure 2.—Distributions
of flux QTL R 2 (percent-
ages) for a 50-enzyme path-
way in 100 F2 populations,
computed for four distribu-
tions of average activity (mi):
(A) Reference (same mi for
all the QTL); (B) normal;
(C) exponential; and (D)
uniform. The coefficients of
genetic variation of the
QTL (cvi) are randomly
drawn in a gamma distribu-
tion.

have moderate values, and a large number have small of the mi values, it is about the same whatever the distri-
bution of the cvi.or very small values. This shape is more pronounced

with the uniform distribution of mi, which leads to more Another feature of flux QTL is that they behave as if
they are nearly additive. Without epistasis, the Ri

2 shouldcontrasted mi values, but remains with the exponential,
which still displays a J-shaped distribution of mi, or with sum up to 100% in a given population (Equation 3).

With the parameters chosen in our simulations, thethe normal distribution (Figure 2). Numerical charac-
teristics of the Ri

2 distributions confirm these observa- average Ri
2 value is just below 1/50, and their average

sum over the flux QTL ranges from 95.1 to 99.9%. Oftions: all skewness values are significantly positive (P 5
0.001). As shown Table 1, 61.4–91.5% of the QTL have course we did not consider all the epistatic terms in the

denominator of Equation 3. However, we checked, byan Ri
2 value below 1/50, depending on the mi and cvi

distributions, and do not really contribute to the vari- calculating the difference between the total genetic vari-
ance and the denominator, that the epistatic terms ofance of the flux in the population. However, this skew-

ness is more affected by unequal mi values across loci higher order are negligible so this approximation does
not significantly modify the results. The more pronouncedrather than by unequal cvi values: for a given distribution
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TABLE 1

Distributions of flux QTL R 2 for a 50-enzyme pathway in an F2 population

QTL R 2 distribution

Average Sum Percentage
cvi and mi distributions (%) (%) Skewness under 2%

∀i, cvi 5 0.2
∀i, mi 5 m (reference) 1.99 99.5 — 100.0
mi: normal 1.99 99.3 4.86 67.4
mi: exponential 1.99 99.3 21.02 76.2
mi: uniform 1.97 98.4 7.12 89.0

cvi: normal distribution
∀i, mi 5 m (reference) 1.96 98.2 3.46 68.4
mi: normal 1.96 98.1 9.25 71.8
mi: exponential 1.96 98.2 13.66 74.1
mi: uniform 1.90 95.1 6.90 90.6

cvi: gamma distribution
∀i, mi 5 m (reference) 1.99 99.7 6.95 76.2
mi: normal 1.99 99.7 8.30 78.0
mi: exponential 1.99 99.7 9.21 77.4
mi: uniform 1.99 99.4 7.07 90.9

The R 2 distributions were computed for a 50-enzyme pathway in 100 F2 populations, with four distributions
of average activity (mi), reference (same mi for all the QTL), normal, exponential, and uniform; and three
distributions of coefficients of genetic variation (cvi), same cvi for all the QTL, normal, and gamma. Mean R 2

value of the distribution and average sum of the 50 R 2 are in percentage of total flux variance.

the L-shaped distribution across loci, the higher the vari- control coefficients and a few steps with a large control;
i.e., the distribution of control coefficients across loci isance that results from additive 3 additive interactions: it

is equal to 0.6% with constant mi and cvi, and rises up expected to exhibit an L shape.
Experimental data: We analyzed three experimental orto 4.9% with uniform mi and normal cvi. Moreover, when

the number of QTL decreases, the additive 3 additive modeling studies by pooling for each one all the control
coefficients estimated under various conditions (Groenepistasis increases—for example, from 0.6 to 2.8% for 50

and 10 QTL, respectively (constant mi and cvi, not shown). et al. 1986; Albe and Wright 1992; Hill et al. 1993).
Groen et al. (1986) have estimated the control coeffi-As seen in Figure 1 and methods, the additive and

dominance effects of an enzymatic locus upon the flux cients of eight steps of gluconeogenesis in isolated rat
liver cells under various experimental conditions (eachare related to the difference in the control coefficients

between the parental genotypes. On the other hand the “step” actually included several reactions, the whole
pathway being considered). About 70% of the controlcontrol coefficients are linked through the summation

property. Thus, looking for a possible intrinsic relation- coefficients were under the average value (0.125), with
50% under 0.05. The shape of the distribution of theship between flux QTL R 2 and summation property, we

analyzed the sharing out of the control in the parents, coefficients was skewed to the right, with a skewness
value of 20.42 (significant with P 5 0.001; Figure 3A).and we studied the relationship between the R 2

i and the
variance of the control coefficients in the population. Similar results were obtained for five steps of succinate

oxidation in cucumber cotyledon mitochondria underThe parental flux control coefficients are L-shaped
distributed: In linear pathways of unsaturated Michae- various experimental conditions (Hill et al. 1993; skew-

ness 27.00, P 5 0.001, Figure 3B). Finally, a steady-lian enzymes, the flux control coefficients are all posi-
tive. With an n-enzymes pathway, the summation theo- state model for the tricarboxylic acid cycle has been

established from experimental data in Dictyostelium dis-rem implies that, for a given individual, when one or a
few steps have control coefficients greater than 1/n, the coideum (Albe and Wright 1992). The control coeffi-

cients for the CO2 flux produced by the cycle and theother steps will necessarily have coefficients below 1/n.
Hence, the average value of the control coefficients is total CO2 production were estimated for each of the 26

steps, with six different ranges of variation of enzymeexpected to be 1/n. If a mutation decreases one enzyme
activity close to 0, its control coefficient will rise up to activities. The distribution of the coefficients was skewed

toward weak control (skewness 12.29, P 5 0.001, Figurea value close to 1, and the other coefficients will become
negligible. Thus, as soon as there is some variation for 3C), and 66% of the values were below the expected

average of 1/26. These data are consistent with numer-enzyme activity across loci in large metabolic systems,
there would be many steps exhibiting small or very small ous partial characterizations of other metabolic path-
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Figure 3.—(A) Distribution of flux control coefficients for
8 steps of the gluconeogenesis pathway, from lactate to glu-
cose, in isolated rat liver cells in various experimental condi-
tions. Data from Groen et al. (1986). (B) Distribution of flux
control coefficients for 5 steps of the succinate oxidation path-
way in isolated cucumber cotyledon mitochondria. The flux

Figure 4.—Relationship between flux QTL R 2 and popula-is the O2 consumption. Data from Hill et al. (1993). (C)
tional control coefficients (A and B) or variance of the controlDistribution of CO2 flux control coefficients for 26 steps of a
coefficient (C) for a 50-enzyme pathway in 100 F2 populations.computer model of the tricarboxylic acid cycle in Dictyostelium
Average activity (mi) is normally distributed (see Figure 2B).discoideum. Data from Albe and Wright (1992).
(A) The coefficient of genetic variation of each QTL (cvi) is
randomly drawn in a gamma distribution. (B) As for A, but
only 1 of the 100 populations is represented. For the three

ways, which show that the control is not equally shared marked QTL, see results. (C) Relationship between R 2 and
control coefficient variances in the same population as for B.between the different steps of metabolic chains.

Simulations: The same kind of L-shaped distribution
was found in our simulations, considering the 2 3 100
parents of the F2 populations and a 50-step metabolic the enzyme i. However, the relationship between the
pathway (results not shown). Whatever the distribution of Ri

2 and the populational control coefficient in a given
enzyme activity, skewness values are positive and highly population is complex and appears to be very loose
significant (P 5 0.001) and there are much more control (Figure 4A). QTL with similar populational control co-

efficients may have quite different Ri
2, depending on aivalues below 1/50 (51–81% of the values) than over.

Relationship between control coefficients and flux values, while QTL may exhibit low Ri
2 even though the

control coefficient is high, if ai is low (compare QTL 1,QTL effects: From Equations 5 and B20, it appears that
the contributions of QTL i to the flux additive and 2, and 3 in Figure 4B).

On one hand, a given allelic additive effect (ai) isdominance variances are related to the populational
control coefficient and to the variance of the activity of expected to affect the flux all the more if the difference
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between parental flux control coefficients of enzyme i ods (see Fell 1992 for a review), allows us to identify
which enzymes could provide good candidate loci—is high (Figure 1). On the other hand, a large difference

between parental flux control coefficients of enzyme i regulatory or structural loci of these enzymes—to ex-
plain the quantitative trait variation in the segregatingwould result in a high variance (Var[CJ

i]) of the flux
control coefficient in the resulting population. We population studied.

In the framework of the metabolic control theory,therefore expect a positive relationship between Ri
2 and

Var[CJ
i]. Such a high positive correlation was actually the low-activity alleles appear to be recessive at the flux

level. Unrelated parents with different evolutionary his-found in our simulations for each F2 population as illus-
trated in Figure 4C. This striking result implies that the tories are not expected to exhibit the same deficient

enzymes. As a consequence, their hybrid will exhibitmajor flux QTL are those for which the parents are the
most contrasted for the flux control coefficients. We heterosis for the flux due to positive dominance at dif-

ferent loci (B. Bost, C. Dillmann and D. de Vienne,can relate this result to the L-shaped distribution of flux
control coefficients in the parents. As shown previously, unpublished results). This result generalizes the classi-

cal result from Kacser and Burns (1981) on the bio-the summation theorem implies that any variation of
enzyme activity across loci would result in a few enzymes chemical basis of dominance to a multilocus situation.

For simplicity, we took into account a 50-enzyme path-with a high control on the metabolic pathway. If the
parents of the cross are nonrelated, those enzymes with way with only one structural or regulatory polymorphic

locus per enzyme. It is now well documented that thea high control on the flux are not expected to be the
same in both parents. They will therefore appear as amounts/activities of enzymes are themselves polygenic

traits (Laurie-Ahlberg et al. 1982; Clark and Keithmajor QTL for the flux. Hence, the L-shaped distribu-
1988; Damerval et al. 1994; Causse et al. 1995; Mitch-tion of flux QTL effects is simply a consequence of
ell-Olds and Pedersen 1998). However, this does notintrinsic properties of metabolic pathways, through the
modify our conclusions. In fact, considering polygenicsummation property of flux control coefficients.
enzyme activities will probably only result in partitioning
the control of a given enzyme between its different loci.
In the simulations, we also considered that the enzy-DISCUSSION
matic loci have additive effects. Even though there are

Understanding the relationship between gene poly- some exceptions (Clark and Wang 1997), this is consis-
morphism and quantitative trait variability is one of the tent with most experimental studies on enzyme activity
main goals of quantitative genetics. The MCT provides (Kacser and Burns 1981). In maize, most of the pro-
a theoretical framework to analyze the consequences of teins revealed by 2D-PAGE displayed additive inheri-
the polymorphism of the genes controlling the enzymes tance for their quantity (Leonardi et al. 1988). The
concentration/activity in a linear pathway on the steady- majority were found to be enzymes (Touzet et al. 1996).
state flux through this pathway, or on any trait propor- In maize, tomato, rice, or Drosophila, where numer-
tional to this flux. We developed approximations for ous QTL have been mapped for various complex traits,
the flux variance components in any population without compilations consistently revealed extremely skewed
linkage disequilibrium and for any number of biallelic distributions of QTL effects, with few QTL having large
enzymatic QTL. These approximations lose precision effects, more QTL having moderate effects, and likely
for high coefficients of variation of enzymatic activities a lot having small effects (depending on the power
(roughly .0.3). Other methods (e.g., Keightley 1989) of detection methods), resulting in a typical L-shaped
allow us to take into account deleterious variants but distribution. For example in Drosophila, many loci have
are analytically restricted to models with one or two QTL. small effects on abdominal and sternopleural bristle

Simulations based on these formulas have shown that number, but few loci cause most of the genetic variation
the L-shaped distribution of flux QTL R 2 in a segregat- (Mackay 1996). Edwards et al. (1987) searched for
ing population is inevitable for a flux through a linear associations between z20 marker loci and 82 traits in
pathway at the steady state: L-shaped distributions are two F2 populations of maize, each of z1900 individuals.
generated as soon as there is any difference between With a type I error of 0.05 they found 2460 significant
the activities of the enzymes across the pathway. We associations, with a typically L-shaped distribution of the

R 2, and 94.5% of the associations exhibiting R 2 valueshave shown that such distributions arise as an indirect
consequence of the summation theorem for the flux smaller than 5%. Other examples can be found in the

literature (e.g., Sing and Boerwinkle 1987; Shrimptoncontrol coefficients, through the sharing out of the con-
trol in the parents. Flux QTL with major effect should and Robertson 1988; Paterson et al. 1991; Zehr et al.

1992; Schön et al. 1994; Grandillo and Tanksleycorrespond to enzymes that exhibit a great difference
between parental flux control coefficients, namely en- 1996; Lee et al. 1996).

Statistical artifacts can contribute to that distributionzymes that have a high control, i.e., a low activity, in one
parent only. Thus the measurement of parental control (Carbonell et al. 1992, 1993; Beavis 1994). Moreover,

factors such as linkage between QTL, phase (coupling/coefficients, through metabolic control analysis meth-
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repulsion), or heritability, may produce L-shaped distri- 1995) in humans. Actually, the proportion of polymor-
phic genes encoding or controlling enzymes is notbutions for traits following the classical additive model

of quantitative genetics, even though the skewness is known, and the extent to which our analysis applies to
gene products involved in the timing or tissue specificityconsistently higher with the metabolic model (B. Bost,

C. Dillmann and D. de Vienne, unpublished results). of gene expression, or to hormone/receptor systems,
is difficult to appreciate.However, it is highly likely that the L-shaped distribution

also has biological bases. First, there is no genetic reason In conclusion, the hyperbolic relation between en-
zyme activity and metabolic flux accounts for thefor a discontinuity between all-or-null (wild-type/mutant)

variation and quantitative variation. Thus in pea, a major L-shaped distribution of control coefficients and hence
could be one of the factors explaining the L-shapedgene for Ascochyta blight resistance was mapped on

chromosome 4 using both a QTL detection approach distribution of gene effects in quantitative genetics.
and a Mendelian analysis after partitioning the distribu- Thanks go to F. Hospital for useful discussions and reading the
tion of the resistance in the progeny into two classes manuscript, and also to C. Damerval and A. Leonardi for reading the

manuscript. We thank G. de Jong, who brought to our attention the(Dirlewanger et al. 1994). Second, a survey of the
Kojima approach on gene effect decomposition. B. Bost was supportedliterature shows that for various traits, the same major
by a Ph.D. grant from the French Ministry of National Education,QTL may be found in different populations or environ-
Research and Technology (MENRT).
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Combining (B2), (B3), and these simplifications, an
0 # cvi #
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√2
. (A3) approximation of the population average flux is
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3s 2
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]E 2

i

(E1, . . . , En)4. (B4)
APPENDIX B

The second partial derivative of the function f with re-QTL contributions to the flux variance components:
spect to Ei isShown are calculation of approximations of the additive

and dominance effects (ai and bi) and additive and ]2f
]E 2

i
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2K
E 3
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. (B5)dominance variance (s 2
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Di
) at QTL i, and approxi-

mations of epistasis (additive 3 additive) effect and
Thus, introducing (B5) into (B4), we have an approxi-variance (aaij and s 2

AAij
) for a pair of QTL, i and j.

mation of the population average flux,
The QTL are controlling the flux through a linear

pathway of n enzymes, in a segregating population, as-
mJ < K
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31 2 o
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2
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E 2
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The flux in the pathway for an individual j in the
population is

where s 2
Ei

and cvi are, respectively, the variance and the
genetic coefficient of variation of activity of enzyme i

J( j) 5 KYo
n

i51

1
Ei( j) in the population, and C J

i is the “populational” flux
control coefficient of enzyme i:
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.
where K 5 [S1] 2 [Sn11]/K1,n11 (see Equation 1).

Kojima (1959) showed that the additive and domi-Expanding B1 into a second-order Taylor series, we
nance effects of a gene i upon a trait are related, respec-have
tively, to first and second partial derivatives of the popu-
lation mean of the trait with respect to allelic frequencyf(E1( j), . . . , Ei( j), . . . , En( j))
(pi). The (additive 3 additive) epistasis effect of a pair
of QTL (i and j) is related to the mixed partial derivative< f(E1, . . . , En) 1 o
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3(Ei 2 Ei)

]f
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of the mean with respect to both allelic frequencies (pi

and pj). Applying these formulas to the flux, we get
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where Ei is the population average activity of the en-
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The population average flux is
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5 4pipj(1 2 pi)(1 2 pj)(aaij)2. (B12)
mJ 5 E[f(E1( j), . . . , Ei( j), . . . , En( j))]. (B3)

So following Equation B7, we have, for the flux addi-
Some simplification occurs: tive effect of the locus i,

E[f(E1, . . . , En)] 5 f(E1, . . . , En)
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And as there is no linkage disequilibrium in the popula-
tion,

(B13)
E[(Ei 2 Ei)(Ej 2 Ej)] 5 0

From Equation B9 we get the flux dominance effect
E[(Ei 2 Ei)2] 5 s 2

Ei
. of the locus i,
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And from Equation B11 we get the epistatic effect of

and the contribution of the QTL i to the flux dominancethe pair of loci i, j,
variance is
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The epistatic effect of the pair of loci i, j (i ? j) isIn an F2 population with additive enzymatic loci, there
are some simplifications in Equations B13 to B15:
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(B21)
Hence an approximation of the average flux in an F2 and the contribution of the QTL i and j (i ? j) to thepopulation is

flux epistatic variance is
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An approximation of the additive effect of the QTL i
upon the flux is

(B22)
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The R 2 of the QTL i is calculated as described in1 o
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Equation 3 (methods), with

and the contribution of the QTL i to the flux additive
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variance is


