
Copyright  2000 by the Genetics Society of America

A New Method for Characterizing Replacement Rate Variation in Molecular
Sequences: Application of the Fourier and Wavelet Models

to Drosophila and Mammalian Proteins

Pavel Morozov,*,1 Tatyana Sitnikova,†,1 Gary Churchill,‡
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ABSTRACT
We propose models for describing replacement rate variation in genes and proteins, in which the profile

of relative replacement rates along the length of a given sequence is defined as a function of the site
number. We consider here two types of functions, one derived from the cosine Fourier series, and the
other from discrete wavelet transforms. The number of parameters used for characterizing the substitution
rates along the sequences can be flexibly changed and in their most parameter-rich versions, both Fourier
and wavelet models become equivalent to the unrestricted-rates model, in which each site of a sequence
alignment evolves at a unique rate. When applied to a few real data sets, the new models appeared to fit
data better than the discrete gamma model when compared with the Akaike information criterion and
the likelihood-ratio test, although the parametric bootstrap version of the Cox test performed for one of
the data sets indicated that the difference in likelihoods between the two models is not significant. The
new models are applicable to testing biological hypotheses such as the statistical identity of rate variation
profiles among homologous protein families. These models are also useful for determining regions in
genes and proteins that evolve significantly faster or slower than the sequence average. We illustrate the
application of the new method by analyzing human immunoglobulin and Drosophilid alcohol dehydroge-
nase sequences.

WHILE variation in the rate of amino acid replace- these formulations the number of rate variation param-
eters is fixed and relatively small, they have proven use-ment across sites within protein sequences has

been frequently observed, mathematical modeling of ful in a number of biological applications. However, we
believe that due to steady accumulation of sequencethis phenomenon remains a challenging problem. The

difficulty lies mainly in choosing the right trade-off be- data and stable improvement of computation facilities,
more parameter-rich models are likely to eventually be-tween the parameter richness of the model, quality of
come advantageous.statistical inference (more parameter-rich models tend

Here we introduce a model that describes rate varia-to provide parameter estimates with larger variance),
tion along sites as a function of each individual site.and the computational cost of applying the model to
The number of parameters is not predetermined, butreal data, the optimum balance being usually different
rather selected separately for each data set, rangingfor different data sets and available computational facili-
from one to the total number of sites in the sequenceties. Earlier models of rate variation had few parameters,
minus one. We introduce two model variations: waveletwhile the number of model parameters steadily in-
and Fourier. We illustrate their application to humancreased in the more recent models (e.g., see Fitch
immunoglobulin and Drosophilid alcohol dehydroge-and Margoliash 1967; Fitch and Markowitz 1970;
nase sequences.Golding 1983; Jin and Nei 1990; Takahata 1991;

Maximum-likelihood calculations assuming unequalFelsenstein 1993; Felsenstein and Churchill 1996;
rate of substitution across sites: The long-term evolutionWakeley 1993; Yang 1993; Yang and Wang 1995;
of an individual site within a protein sequence can beKelly and Rice 1996; Lake 1998). While in most of
conveniently modeled as a Markov chain in continuous
time (e.g., Kendall 1956). Label the 20 amino acids by
integers 1, 2, . . . , 20 and denote by X(t) the label of
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oped techniques for computing the probability of re-
placing of amino acid i with amino acid j after time t,
Pij(t), which is defined, assuming a time-homogeneous
process, as

Prob {X(t 1 s) 5 j | X(s) 5 i } 5 Pij(t)

for all s, t $ 0; i, j P {1, 2, . . . , 20}, (1)

where {Pij(t)} 5 P(t) is a matrix of transition probabili-
ties. Figure 1.—A hypothetical four-sequence tree. (d) Pending

vertices corresponding to the observed amino acids (s1i, s2i, s3i,Given a matrix of instantaneous transition probabili-
and s4i) at the ith homologous site of present-day sequencesties, Q, P(t) is computed as exp{Qt }. Assuming that our
1, 2, 3, and 4. (s) Interior nodes corresponding to aminoMarkov process has an equilibrium state, we introduce acids (j1, j2, and j3) in the ith site of unknown ancestral se-

a row vector p whose entries represent the equilibrium quences. The tji’s specify the expected length of the jth branch
at the ith site of the protein alignment. Pij(t) in Equation 3amino acid frequencies associated with Q. By definition,
denotes the ijth entry of matrix P(t).the vector p can be obtained by solving the system of

linear equations pQ 5 0 and o20
i 5 1 pi 5 1.

Q and t will always appear in a likelihood function
values ui 5 {Q, t1i, t2i, . . . , t6i} and topology T as shownas a product and thus cannot be estimated separately.
in Figure 1, is computed as (Felsenstein 1981)

We therefore normalize Q (e.g., see Yang and Wang
1995) such that Li 5 o

20

j151
o
20

j251
o
20

j351
pj1Pj1,j2(t5i)Pj1,j3(t6i)Pj2,s1i

(t1i)Pj2,s2i
(t2i)Pj3,s4i

(t4i),

2 o
20

i 5 1

pi Q ii 5 1 (by definition, Qii 5 2o
j ? i

Q ij for all i).
(3)

where pj is the frequency of the jth amino acid at the(2)
root of the tree, and the rest of the notations are as

Once Q is normalized, t will be measured in terms of explained in the legend of Figure 1. The total likelihood
the expected number of amino acid replacements per L is a product of the probabilities of observing data at
site. For example, for the simplest model of amino acid individual sites, and the maximum-likelihood estimates
substitution, the Poisson model (Zuckerkandl and of the parameters are obtained by finding a set of param-
Pauling 1965), all off-diagonal entries of matrix Q are eter values that maximize the value of L.
equal to 1⁄19, and all diagonal entries of Q are equal to Let us consider the topology shown in Figure 1 and
21, while all entries in vector p are equal to 1⁄20, while assume that the set of branch lengths for the ith site,
all off-diagonal elements in the matrix are different in {t1i, t2i, . . . , t6i}, can be expressed as {t1 ci, t2 ci, . . . , t6 ci},
the more advanced Jones et al. (1992) matrix. In this where {t1, t2, . . . , t6} is the set of expected branch lengths
study we used only the Poisson (Zuckerkandl and Pau- averaged over all l sites, and ci is a nonnegative constant
ling 1965) and the Jones, Taylor, and Thornton (JTT; defining the relative replacement rate of the ith site.
Jones et al. 1992) models, although the treatment of One can think of introducing l 2 1 independent relative
data under the Fourier/wavelet models would remain rate parameters c1, c2, . . . , cl21 (one parameter for each
unchanged if other schemes of amino acid (Dayhoff of l 2 1 sequence sites. Below we refer to this model as
et al. 1978; Kelly and Churchill 1996) or nucleotide the unrestricted rates model; the relative rate of the lth site
substitution (e.g., see Zharkikh 1994) were used. (We is not independent on other rates and is equal to l 2
present here the mathematical treatment defined only c1 2 . . . 2 cl21), although this is usually considered
for protein sequences, but it can be easily extended to impractical because the number of free parameters ap-
nucleotide sequences by reducing the number of al- pears large relative to the amount of data, thus making
lowed characters to four and correspondingly changing accurate estimation difficult. (There are other similarly
the definition of matrix Q.) formulated models. For example, Kelly and Rice

To illustrate the likelihood computation for a given (1996) assumed that ci’s are sampled identically and
tree, consider a hypothetical set S of four homologous independently from the same distribution.)
contemporary protein sequences of length l aligned There are several recognized ways to decrease the
without gaps. We assume that the correct phylogenetic number of rate variation parameters (e.g., see Fitch
topology T for these sequences is known (see Figure 1). and Markowitz 1970; Fitch and Margoliash 1967;
By definition, the likelihood L of observing the contem- Golding 1983; Jin and Nei 1990; Takahata 1991;
porary sequences under our model is Prob{S | T, u} Felsenstein 1993; Felsenstein and Churchill 1996;
multiplied by an arbitrary positive constant (usually set Wakeley 1993; Yang 1993; Yang and Wang 1995; Lake
to 1), where u is a set of specified values of model 1998). One of the currently most popular approaches
parameters. The probability of observing data at the ith is to assume that the ci’s are independent and identically

distributed random variables following a gamma distri-site of the sequence alignment, given a set of parameter
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bution with the mean equal to 1 and the shape parame-
ter estimated from the data (e.g., see Golding 1983;
Jin and Nei 1990; Yang 1993).

Here we suggest a different approach: we define ci

as a function of site number and a set of real-valued
parameters {a1, a2, . . . , ak}, ci 5 f {i; a1, a2, . . . , ak}, where

f(i; a1, a2, . . . , ak)

5 11 1 o
k

j51

a jc (i, j)2 / 11 1 o
k

n51
o

l

m51

anc(n,m)/l2. (4)

The denominator of the expression is required to en-
sure that the average of f(i; a1, a2, . . . , ak} over i 5 1,
2, . . . , l is always equal to 1. {c(i, j)}j51,k are distinct
basis functions, linear combination of which can pre-
cisely fit any relative substitution rate profile when k 5
l 2 1; one can also get an approximation of the substitu-
tion rate profile when some of the least contributing
basis functions are dropped. The function f(i; a1, a2, . .
. , ak} cannot be observed directly, but rather has to be
estimated using the maximum-likelihood approach.

Assuming that the potential readers of this article may
not have had a prior exposure to the ideas of decomposi-
tion of functions, we first introduce relevant concepts
in an intuitive way.

Basis vectors and functions, function decomposition:
It might be easier to start by considering decomposition
of a vector (Strung 1992). Every three-dimensional
vector (x, y, z) can be decomposed into a sum of three
“basis” vectors (1, 0, 0) (0, 1, 0), and (0, 0, 1). That is,
(1, 0, 0) multiplied by x is (x, 0, 0), (0, 1, 0) multiplied
by y is (0, y, 0), and (0, 0, 1) multiplied by z is (0, 0, z).
The sum is (x, y, z). The choice of the basis vectors is
not unique: it is possible to find an infinite number of
distinct sets of basis vectors. There are good reasons
(convenience and simplicity) to use orthogonal sets of
basis vectors, where vectors within each pair are perpen-
dicular. Two vectors, (x1, y1, z1) and (x2, y2, z2), are called
orthogonal or perpendicular if their inner product, de- Figure 2.—An example of decompositions of the same dis-
fined as x1 x2 1 y1 y2 1 z1 z2, is equal to zero. It is easy crete function (“profile”) with discrete Fourier (cosine) and
to check that vectors (1, 0, 0) (0, 1, 0), and (0, 0, 1) discrete wavelet (using the Haar mother wavelet) transforms.

Although both methods give an exact fit to the target functionare indeed pairwise orthogonal.
with a complete number of coefficients, the resulting discreteDecomposition of a vector into basis vectors is mathe-
Fourier decomposition is plotted as a continuous functionmatically indistinguishable from decomposition of a dis- mainly for aesthetic reasons. Note that the relative rate func-

crete function into basis functions. We can simply view tions that we are using in this article are different from the
our three-dimensional vector (x, y, z), as a discrete func- common discrete Fourier and wavelet transforms in that the

average value of our target function has to be equal to 1; duetion, f(1) 5 x, f(2) 5 y, and f(3) 5 z, and decompose
to this restriction, parameter a0 is substituted with a constantthis function into three basis functions, c1 5 (1, 0, 0),
set to 1 in both transforms.

c2 5 (0, 1, 0), and c3 5 (0, 0, 1): f 5 x c1 1 y c2 1 z
c3. Therefore, discrete basis functions are nothing but
compact representations of basis vectors, and there are f(i; a1,a2, . . . , ak)
an infinite number of distinct sets of basis functions.
The orthogonality of basis functions is defined by anal-

5 11 1 o
k

j5 1

a j cos5iφj p

l 62 / 11 1 o
k

p 5 1
o

l

q 5 1

ap cos5qφpp

l 6l2.ogy with the orthogonality of basis vectors.
The Fourier version of our model is obtained from

(4) by defining c(i, j) as cos(i φj p/l) (see Figure 2),
(5)

where {φj}j51,k is a subset of k different integers from {1,
2, . . . , l 2 1}. The choice of cosines as basis functions is motivated by
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Figure 3.—The four types of
the mother wavelets used in this
article: (A) Haar wavelet (B) Dau-
bechies 4 wavelet (C) Daubechies
12 wavelet, and (D) Daubechies
20 wavelet.

the well-known fact that cosines with period ranges from 2 and 3A) such that for a wavelet defined on interval
[0, 1], the value is 21 on interval [0, 1/2], and 11 on1 to l form a valid basis of functions for exactly repre-

senting any discrete function (not necessarily periodic) interval [1/2, 1]. The basis functions for the Haar wave-
let decomposition are generated by scaling and shiftingon the interval between 1 and l (e.g., see Bronstein

and Semendiaev 1986). Further, by dropping the terms the same step wavelet function such that exactly one
function covers the complete interval [1, l], two basiswith the smallest absolute values of ai’s one can obtain

an appropriate approximation of the original function. functions cover exactly half of the complete interval
(intervals [1, l/2], and [l/2 1 1, l], respectively), fourThe wavelet version of our model is obtained by de-

fining c(i, j) as one of the wavelet functions commonly basis functions cover one-fourth of the complete interval
(intervals [1, l/4], [l/4 1 1, l/2], [l/2 11, 3l/4], andused in discrete wavelet transforms (see Figure 2). Un-

like basis functions in the Fourier series, wavelets are [3l/4 1 1, l], respectively), and so on. The early wavelets
can contribute to a large range (e.g., left half-right halflocal functions, which is a convenient property for sum-

marizing rate variation at different scales. The choice of of the sequence) of variations, while successively more
focused wavelets pick out smaller regions and eventuallywavelets as basis functions also allows for a considerable

reduction in computation time required for maximizing the individual sites. The basis functions with the smallest
domain are most abundant (there are l/2 of them) andthe likelihood function compared to the corresponding

computations under the Fourier model. In this work we cover just two data points; such functions together cover
the complete interval [1, l]. In addition to step func-use c(i, j) based on Haar, Daubechies 4, Daubechies 12,

and Daubechies 20 wavelets (see Figure 3; Daubechies tions, the complete set of Haar basis functions contains
one scale function that has value 1 on interval [1, l].1988; Press et al. 1992).

A wavelet is a univariate real-valued function selected The details of fast computation of a discrete wavelet
decomposition can be found in Press et al. (1992). Insuch that it vanishes outside a limited interval and has

equal-sized areas below and above zero. The ultimate real applications l is rarely an exact multiple of 2n and
thus the relative rates array must be padded with zeroesgoal of a discrete wavelet transform is to represent and/

or approximate a function given as a set of l values, up to the nearest multiple of 2n.
One may define the optimality of a set of basis func-where l is usually a power of 2. In our case l is the

number of sites and the function that we are trying to tions c(i, j) as the minimal number of functions from
this set required to fit the data with a predefined mini-approximate is the relative substitution rate at each site.

The wavelets are used for constructing an orthogonal mum of the maximum-likelihood value. We suspect that
there is no best set of basis functions that would enablebasis of functions as described below for Haar wavelets.

The basis function in the case of the simplest Haar one to obtain the most parsimonious description for
any arbitrary data set. It is more likely that the Fouriertransform has the shape of a step function (see Figures
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version of the model would be more suitable for data can be used for the purpose. To decide the order in
which cosine functions or wavelets should be addedsets with a pronounced periodicity of rates, while the

wavelet version will work better for aperiodic and/or in stepwise computation of Fourier or wavelet pro-
files, we started by estimating all l 2 1 parameterssparse rate variation profiles. In this article we illustrate

the application of both. by the least-squares fitting of the cosine Fourier func-
tion to the observed profile calculated under theChoosing the optimum rate variation model: When

choosing among several alternative models for describ- uniform rate model. Given the set of normalized
numbers of substitutions per site, xi’s, estimated un-ing the same data, one intuitively searches for optimum

trade-off between the goodness-of-fit of a model and der the equal-rate model, one can compute the set of
wavelet or Fourier parameter values that minimizeseconomy of representation—the number of free param-

eters defined by the model. The general approach to
o

l

i51

( f(i; a1, a2, . . . , ak) 2 xi)2,such a problem is to search through the space of all
possible models and make certain comparisons between
competing models. We discuss these two steps, search- where the number of rate variation parameters, k, is
ing and comparison of models, separately. set to l 2 1 at the beginning. One then proceeds

Searching through the space of all possible models: Both by iteratively eliminating the parameters with the
the Fourier and wavelet models allow for the generation smallest absolutes, which give the smallest contribu-
of a large number of rate variation profiles, ranging tion to the resulting rate profile.
from a zero rate parameter profile to the most parame-

Comparison of alternative models: This can also be ad-ter rich (l 2 1 relative rate variation parameters for a
dressed in several different ways. For example, rivalset of sequences of length l). Therefore, for each data
models, nested or nonnested, may be compared by us-set it would ideally be of interest to (i) order all possible
ing one of the approaches built on the likelihood analy-rate variation profiles by their maximum-likelihood val-
sis but penalizing parameter-rich models, such as theues, and (ii) use an objective scheme to decide what
Akaike information criterion (AIC; Akaike 1974), com-subset of rate variation parameters is needed for an
puted asoptimum description of the data set.

The searching through the space of different profile AICi 5 2 log Li 2 2 Ni, (6)
models can be done in the following ways.

where Ni is the number of parameters used in the ith
1. Backward elimination search. First, beginning with model and Li is the maximum-likelihood value obtained

the “general” wavelet or Fourier profile using all l 2 under that model. The idea behind this formula is to
1 rate parameters, successive parameters may be re- penalize an increase in the number of parameters if the
moved one by one by iteratively deleting the parame- addition of each new parameter increases the likelihood
ter with the smallest absolute value and repeating value by less than one unit of log-likelihood. The better
the maximum-likelihood optimization under each the fit of the model to the data, the larger the AIC value
reduced model. The process is repeated until the will be. The AIC tends to favor parameter-rich models

as the data sample size increases. A second popularchange in likelihood is “small,” for example, when
criterion, the Bayesian information criterion (BIC;compared to a 5% chi-square critical value corre-
Schwarz 1978), has the definitionsponding to the doubled difference between likeli-

hoods of the “more complex” and “less complex”
BICi 5 2 log Li 2 Ni log n, (7)models (the likelihood-ratio test).

2. Forward selection search. One starts with the equal- where n is the sample size. BIC usually tends to choose
rate model and increases the number of parameters less parameter-rich models than AIC because in real
by one, trying all possible combinations, until the data analyses log n is usually .2. In our case BIC does
increase in the likelihood is large, say, according to not seem to be very useful because under our model
the likelihood-ratio test. different sites within the same sequence are not identi-

3. Markov chain Monte Carlo search. It is possible to cally distributed and the sample size is not well defined.
substitute/supplement the maximum-likelihood analy- If we would believe that in this case the sample size is
sis with a Bayesian analysis with a flat initial distribu- 1 (as suggested by Z. Yang, personal communication),
tion using the Markov chain Monte Carlo (MCMC) BIC becomes equivalent to the maximum-likelihood
technique for simultaneously searching for the best value itself and automatically chooses the most parame-
phylogenetic tree and the best rate variation model ter-rich model.
[e.g., see “reversible jump” method by Green (1995) Next, one can use chi-square approximation for distri-
and Mau et al. (1996); the MCMC method is de- bution of doubled difference between likelihoods of
scribed in more detail in the next section]. We did “complex” and “simple” models (the Cox test). This
not implement this strategy in the current study. approach gives results very similar to those of AIC and

can be misleading for small data sets because chi square4. Heuristic search. There are numerous heuristics that
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distribution may not be an appropriate approximation the Wald test). Unfortunately, because of the restric-
tions on the values of rate variation parameters underfor distribution of the test statistic. To correct this poten-

tial problem with distribution of the test statistic, one the wavelet and Fourier models (the sum of all relative
rate values across sites should always be equal to l for acan use a parametric bootstrap to estimate distribution

of the likelihood-ratio statistic in the Cox test (Goldman data set with l sites, and negative values of relative rates
are not allowed), depending on the expected values of1993); this distribution can then be used for deciding

whether the likelihood under the more complex model the relative rates in the data set under analysis, the
actual distribution of the maximum-likelihood estimatesis significantly greater than that under the simpler

model. Finally, the optimum number of parameters may may significantly deviate from normal and the utility of
the described test is limited.be decided with the MCMC approach within the Bayes-

ian framework (Green 1995), although we did not im- Alternatively, one can use the likelihood-ratio test for
plement this approach in our study. the same purpose. The random variable

In this study we illustrated application of the majority
of the above approaches of model comparison while l 5 22 log

sup L(a 5 0; x)
sup L(a; x)

(9)
leaving out only Green’s (1995) test.

Tests of biological hypotheses with the Fourier/wave- asymptotically follows a x2-distribution with k d.f. under
let model: For many biological investigations it is of the null model, provided that the more general model
interest to identify regions within a protein alignment has exactly k extra rate variation parameters (a likeli-
that have evolved significantly slower or faster than the hood-ratio test). The numerator and denominator in
average of the protein. Our model allows for such a test (9) represent the maximum-likelihood values under the
by generating confidence intervals around the relative equal-rate and the wavelet/Fourier rate variation mod-
replacement rates in each site of a protein alignment. els, respectively. As with the Wald test, the actual distri-
It also allows for testing the homogeneity of replacement bution of the likelihood-ratio test statistic may not be
rates among sites within a protein and testing the iden-

close to the asymptotic x2-distribution for small data
tity of replacement rate profiles between two or more

sets.
sets of homologous proteins. The described methods

We next describe the comparison of replacement rate
represent a straightforward application of classical test-

profiles from two sets of homologous protein sequences,ing theory (e.g., Kendall 1956).
S1 and S2. The independent wavelet or Fourier parame-First, we outline the test for homogeneity of replace-
ter estimates under the same rate variation model (i.e.,ment rates. Denote a set of the maximum-likelihood
under models with the identical number and type ofestimates of k rate variation parameters by a row vector,
rate variation parameters), â1 and â2, respectively, forâ. To test the null hypothesis that the replacement rate
these two data sets are evaluated asis the same across sites of a given protein (that is, a 5

0 where 0 is a zero vector), we need to compute the x1 5 (â1 2 â2)(Va1 1 Va2)21 (â1 2 â2)t, (10)
Hessian matrix H at the point Q 5 {x̂, â}. (Vector x̂

which approximately follows a x2-distribution with k d.f.contains the maximum-likelihood estimates of the tree
under the null hypothesis E(â1) 5 E(â2), where Va1 andbranch lengths and the rest of the model parameters not
Va2 are the variance-covariance matrices for the vectorsincluded in â.) Element Hij of the matrix H is defined as
â1 and â2, computed from data sets S1 and S2, respectively,the second partial derivative of the logarithm of the
in the same manner as described for Va above. Oncelikelihood function taken with respect to ui and uj evalu-
again, the actual distribution of rate parameter esti-ated for a specified set of parameter values. The negated
mates appears to deviate significantly from normal forHessian matrix evaluated at the maximum of the likeli-
data sets with significantly nonuniform rate profiles, sohood surface is known to asymptotically tend toward
one should exercise caution in applying this test to realthe inverse of the variance-covariance matrix for the
data. This test statistic has a likelihood-ratio test statisticvector of the maximum-likelihood estimates of model
counterpart, which can be constructed by analogy withparameters (e.g., see Edwards 1972). Because the maxi-
Equation 9.mum-likelihood estimates are asymptotically normally

Computing “confidence intervals” of relative substi-distributed (e.g., see Kendall 1956), under the null
tution rates with the MCMC technique: In this study wehypothesis of homogeneity of replacement rates across
applied MCMC technology to compute an analog ofprotein sites, the quadratic form
confidence intervals for relative rate profiles for a prede-

x0 5 â V21
a ât (8) fined tree topology. We used in this computation a fully

parameterized rate variation model, but the procedureasymptotically follows a x2-distribution with k d.f., where
is obviously applicable to models with a more moderateVa is a submatrix of the complete variance-covariance
number of rate variation parameters. The idea in thismatrix corresponding to the vector of Fourier parame-
case is to use the property of MCMC analysis that theters and V21

a is its inverse; the superscript t indicates
the transpose of a vector (this test is a special case of frequencies of model parameter values encountered in
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a well-designed random walk through parameter space, of the maximum of likelihood. Each iteration of the
simulation included an update cycle through all param-given a fixed tree topology, give an estimate of the

posterior probabilities of these parameter values. In this eters, updating one parameter at a time and each time
deciding whether to accept or reject the updated value;way, observing the variation of the intermediate profiles

in the MCMC random walk, one can compute intervals the tree topology was not changed. For each parameter,
ui, we defined the maximum absolute change of thisfor rate parameters including the middle 95% of a poste-

rior probability distribution with a flat prior, which we parameter, di, and allowed for its single stochastic up-
date (usually di was set to be equal to half of the absoluteloosely refer to below as “95% confidence intervals.”

In MCMC technique the likelihood function is com- value of the maximum-likelihood estimate of ui). More
precisely, first, an equiprobable random decision to de-puted exactly in the same way as it is done in the maxi-

mum-likelihood analysis, but instead of numerical max- crease or increase the parameter value was made. Sec-
ond, the absolute amount of change was determined byimization of the likelihood function, one simulates a

random walk through the space of parameter values drawing a random number from a uniform distribution
defined at the interval between 0 and di. If the resultingand, optionally, tree topologies (in our case we limit

our analysis to a predefined tree topology, so the tree value of di was inadmissible (for example, the value of
the relative rate became negative), di retained the oldtopology was not changed). The core iteration step of

the MCMC calculation samples a new point in the pa- value, and next the parameter was updated. [The latter
step was essential to ensure the condition a(Q* | Q) 5rameter space, Q*, given the current value of Q and

likelihood values at both points. Depending on the ratio a(Q | Q*)—otherwise the probability of moving in the
direction of the boundary of the region of allowed val-of likelihood values at points Q* and Q, the system

accepts the new point or rejects it, staying in the old ues is not generally equal to the probability of moving
in the opposite direction.] For the sake of computa-one. The random walk can be designed in an infinite

number of ways: the only restriction to the simulation tional efficiency, under the unrestricted-rates model,
the change in the value of one of the relative rate param-design provided by MCMC theory (see Hastings 1970;

Mau et al. 1996) is that the Markov chain describing the eters was compensated by an equivalent change in the
opposite direction in one of the other randomly chosentransition between states Q* and Q be time reversible.

Time-reversibility is defined as the requirement that the relative rate parameters. In this way we avoided the
problem of renormalizing all relative rates after eachfollowing equation hold true: P* P(Q* | Q) 5 P P(Q |

Q*), where P(Q* | Q) and P(Q | Q*) are the probabili- change and had to recompute the likelihood values for
only the two sites affected. If the new value of di wasties of transitions between states Q* and Q in the Markov

chain corresponding to the random walk, and P* and P admissible, the new point, Q*, was accepted with proba-
bility min(1, L(Q*, T)/L(Q, T)). Once all parametersare the probabilities of states Q* and Q in the posterior

distribution that we are trying to estimate. were updated in this way, the resulting state of the sys-
tem, Q, was saved. The confidence intervals for relativeFollowing suggestions formulated by Hastings

(1970), we used the following probability of accepting substitution rates at each site were computed from
10,000 saved intermediate states of the random walk;state Q* being at state Q:
the results of the first few iterations that preceded reach-

P(Q* | Q) 5 a (Q* | Q) min(1, L(Q*, T)/L(Q, T)), ing the stationary state of the random walk were dis-
carded.(11)

Example 1. Variable regions of human immunoglobu-
where a (Q* | Q) is the conditional probability of sam- lins: To illustrate the application of the model, we ana-
pling Q* given Q. We designed the simulation such that lyzed two sets of human immunoglobulin light chain
the probabilities a(Q* | Q) and a(Q | Q*) were equal. variable region protein sequences. The first set con-
The second multiplier in expression (11), min(1, L(Q*, tained seven light k chain variable region (Vk) genes,
T)/L(Q, T)), is the conditional probability of accepting representing three predominant Vk subgroups (indi-
point Q* given that it is already sampled. cated in parentheses): O18 (I), L23 (I), L11 (I), A23

By definition, the value of the posterior distribution, (II), O11 (II), L2 (III), and A27 (III) (Schäble and
P, at point Q is a product of the likelihood L(Q, T), Zachau 1993). The second set contained seven light l
and the prior probability of observing the current Q chain variable region (Vl) genes, representing three
and T, divided by the prior probability of observing the frequently expressed Vl families (indicated by the first
current data set. Assuming lack of a prior knowledge digit): 1c, 1e, 2b2, 2d, 3a, 3e, and 3j (Williams et al.
about the parameter/tree distribution (a uniform prior), 1996). The nucleotide sequences of these genes were
we have P*/P 5 L(Q*, T)/L(Q, T), and therefore the obtained from VBASE (Tomlinson et al. 1996) and
time-reversibility condition, P* P(Q* | Q) 5 P P(Q | translated to amino acid sequences using the MEGA
Q*), is indeed satisfied. computer program (Kumar et al. 1993).

We organized our MCMC computation in the follow- For each data set the wavelet and Fourier parameters
were estimated as follows: First, a neighbor-joining treeing way. The random walk always started at the point
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Figure 4.—(A) Relative substi-
tution rates in variable domains of
immunoglobulin light chains cal-
culated with the maximum-likeli-
hood analysis. (B) “Confidence in-
tervals” based upon the middle 95%
of a posterior probability distribu-
tion with a flat prior distribution
(calculated by MCMC simulation)
for the IgVk and IgVl data sets un-
der the unrestricted-rates model.
Also shown are the positions of
CDRs, which are responsible for
specific recognition of an antigen
by antibody and are known to be
especially variable.

(Saitou and Nei 1987) was computed from the aligned resulting parameter values for each function by decreas-
ing absolute value. Once the parameters were ordered,protein sequences using a Poisson model (Zucker-

kandl and Pauling 1965) of amino acid replacement we performed a series of maximum-likelihood analyses
starting with the equal-rate model and serially addingfor estimating pairwise distances between sequences;

the resulting unrooted phylogenetic tree was then used wavelet or Fourier parameters as ordered in the previous
step, beginning with the parameters of largest absolutefor maximizing the likelihood value under each model.

(Note that in this application we computed substitution value. Because addition of a new parameter to a Fourier
function changes the values of the Fourier function inof the rate profiles for a neighbor-joining tree that is

not necessarily the same as the maximum-likelihood each site of the profile, while the analogous addition
to a wavelet function changes values only in a subsettree; in work to be presented elsewhere we shall com-

bine the search for the maximum-likelihood tree with of sites, the computation under the wavelet model is
generally much faster. We encountered no difficulty inestimation of the parameters under the Fourier/wavelet

models.) performing estimation while adding wavelet or Fourier
parameters up until their maximum number: 91 forWe used the heuristic method for ordering parame-

ters in both models: starting with the equal-rate model, immunoglobulin sequence alignments of length 92.
The resulting relative substitution rate profiles for thewe computed the substitution rate profile and fit this

profile with wavelet and Fourier functions, ordering the most parameter-rich variants were identical under the
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Figure 5.—Comparison of rel-
ative rate profiles for the IgVk data
set obtained with the 91-para-
meter Fourier model, the 91-pa-
rameter Haar wavelet model, and
the discrete gamma model with
eight categories. The first two pro-
files are identical. The profiles re-
covered with the different models
are generally very similar, although
the discrete gamma model indi-
cates less extreme rate heteroge-
neity.

Fourier model and wavelet models with the four differ- obtained under the discrete gamma model with eight
discrete categories for Vk sequences is compared to theent mother wavelet basis functions (see Figure 3) and

corresponded to the profile obtained under the un- wavelet and Fourier model profiles for the same data
set in Figure 5.restricted-rates model. The 95% confidence intervals for

the relative rates were computed under the unrestricted- We performed a series of comparisons of different
models of rate variation in terms of the optimum (maxi-rates model for both data sets.

The replacement-rates profiles are shown in Figure mum) AIC value. The data showed similar patterns
among the different basis functions, so here we present4A and the corresponding confidence intervals are

shown in Figure 4B. The regions of high replacement only data for the Haar basis functions in the wavelet
decomposition of the Vk and Vl data sets. For the Vkrate coincide with complementarity-determining re-

gions (CDRs), which are the sites of antigen-antibody data set the optimum value of AIC was 21705.51 and
corresponded to 37-parameter Haar wavelet functioninteraction. The regions of low replacement rate corre-

spond to framework regions (FRs). For each data set (see Figure 6), while the AIC value for the Vk data set
under the discrete gamma model was 21771.47. Forthe null hypothesis of rate constancy is rejected (P ,

0.05) because the confidence intervals exclude rate 1 the Vl data set the optimum value of AIC was 21724.85
and corresponded to 37-parameter Haar wavelet func-for at least one of the alignment sites. In contrast, we

were unable to reject the null hypothesis that the pat- tion, while the AIC value under the discrete gamma
model was 21794.26. Therefore, in both of these analy-terns of rate variation are identical for these two IgV

data sets, despite some differences between them. For ses, AIC favored the wavelet/Fourier model over the
discrete gamma model. We obtained essentially theexample, the region between CDR2 and CDR3 (FR3)

is slightly more variable in Vl sequences than in the Vk same results as with AIC with the Cox test, assuming
that the asymptotic distribution of the test statistic issequences.

The starting (equal-rate model) log-likelihood values valid (data not shown). This similarity of results between
AIC and the Cox test is not completely unexpected,were 2885.06 and 2896.67 for Vk and Vl data sets,

respectively, while the final log-likelihood values of the because both tests use virtually the same test statistic
and the same assumption of the asymptotic distributionmost parameter-rich profiles were 2794.14 and 2804.33,

respectively. Therefore, for both data sets the maximum- of the test statistic.
To verify the assumptions concerning the distributionlikelihood values under the unrestricted-rates model are

.90 units of log-likelihood larger than under the equal- of the Cox statistic (logarithm of the maximum-likeli-
hood value under the discrete gamma model subtractedrate model. Using the PAML package (Yang 1998), we

analyzed the same data sets under the discrete gamma from the logarithm of the maximum-likelihood value
under the wavelet model), we implemented the para-model with eight rate categories. The estimated shape

parameters of the gamma distribution were 0.99863 and metric bootstrap version of the Cox test as described by
Goldman (1993). In this test we simulated data using0.96650 for the Vk and Vl data sets, respectively, which

corresponded to log-likelihood values of 2873.73 and the parameter estimates obtained under the discrete
gamma model with eight discrete categories of rates;2885.13, respectively. Therefore, the maximum-likeli-

hood values under the discrete gamma model are z80 the generated sequences were assumed to exactly follow
the discrete gamma model. For each of 100 data setsunits of log-likelihood smaller than the corresponding

values under the unrestricted-rates model. The profile generated in this fashion we computed the maximum-
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Figure 6.—Comparison of rela-
tive substitution rate profiles com-
puted under 9-parameter, 37-pa-
rameter, and 91-parameter Haar
wavelet models for the IgVk data
set. The profile computed under
the 37-parameter model appears
to have most of the essential fea-
tures of the profile reflected by
the “full” 91-parameter model; the
9-parameter profile correctly re-
flects positions of three hypervari-
able regions CDRs but lacks details
in the relatively slowly evolving
“framework regions.”

likelihood value under the wavelet model with 80 param- values for the wavelet/Fourier model and for the dis-
crete gamma model is not significant for the Vk dataeters and under the “true” discrete gamma model. The

estimated distribution of the test statistic is shown in set. We conjecture that the situation is likely to change
when a larger number of sequences is considered.Figure 7; clearly, the probability of generating the ob-

served or higher value of the test statistic observed for To see if the estimates of relative rates are sensitive
to the assumed model of amino acid substitutions, wethe data set Vk is high under the null model and there-

fore the difference between the maximum-likelihood also compared estimates of relative rates obtained under

Figure 7.—Estimated distribution of the difference of log-likelihoods under the 80-parameter Haar wavelet model and the
discrete gamma model with eight discrete categories of rates; the 100 data sets used for this computation were Monte Carlo
generated using as the expected parameter values those estimated from the IgVk data set under the discrete gamma model. The
arrow shows the value of the same statistic for the actual IgVk data set; according to this test, the value of the statistic for the
IgVk data set is not significant.
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Figure 8.—Comparison of rela-
tive substitution rate profiles com-
puted for the IgVk data set under
the 91-parameter Haar wavelet
model with Poisson (Zucker-
kandl and Pauling 1965) and
JTT ( Jones et al. 1992) models of
amino acid substitution. Despite
the fact that the Poisson and JTT
instantaneous substitution rate
matrices are very different, the rel-
ative substitution rate profiles ap-
pear to be rather similar to each
other.

the Poisson model with those computed under the “more narrow and specific environments, niche-specific adap-
tations may have resulted in altered profiles of replace-realistic” JTT model for the Vk data set (see Figure 8).

The resulting profiles appeared to be very similar, at ments within the clade. Also, the repleta group is known
to contain several ADH duplications, with different cop-least for the data sets that we analyzed (see Figure 8).

Example 2. Drosophila alcohol dehydrogenase genes: ies having evolved developmental stage-specific func-
tions (Fischer and Maniatis 1985; Russo et al.1995).Drosophila alcohol dehydrogenase (ADH) has been the

focus of much interest among evolutionary biologists While ADH in species groups containing only a single
copy are of necessity constrained to embody selective(Sullivan et al. 1990), and the observations and infer-

ences made from one species group have often been requirements of the entire life history, repleta group
ADH-encoding genes may have accumulated develop-compared to those made at others. Here we compare

the patterns of rate variation observed at three mono- mental stage specific replacements in regions left unvar-
ied in the other groups.phyletic species clusters: the melanogaster group, the

repleta group, and the Hawaiian group. Each clade is It is therefore of interest to compare the patterns
of ADH replacement rate variation among the variousbetween 6 and 15 million years old; the repleta group

and the Hawaiian group diverged from each other ap- Drosophilid species groups. Dorit and Ayala (1995)
characterized rate variation by fitting cubic splinesproximately 32 million years ago, and each diverged

from the melanogaster group approximately 38 million (analogous to multinomial regression) to the profiles
of amino acid replacements across the length of theyears ago (Takezaki et al. 1995). The extent to which

different evolutionary forces may be operative within ADH sequences. Here we present the wavelet/Fourier
approach to the same problem. In Figure 9 the resultsthe three clades may be addressed by an analysis of rate

variation using the wavelet/Fourier model. of fitting the unrestricted-rates model to the ADH se-
quences of the three species groups are presented. EachWhile ADH presumably performs the same biochemi-

cal functions in each of the species groups, the genetic model is normalized to provide an average replacement
rate of one, even though the number of replacementsand population genetic contexts are known to differ

among them. For example, the Hawaiian species exist in among the different groups is very different. While the
profiles of the Fourier models differ markedly amonglimited geographic ranges and have effective population

sizes (Ne) much smaller than the Ne’s of the globally the three groups, the relative girth of the confidence
bands greatly diminishes any statistical significance thatdistributed species of the melanogaster group (DeSalle

and Templeton 1986; Ayala et al. 1996). Differences may be ascribed to the differences. In the melanogaster
group (Figure 9A) the confidence interval contains thein Ne can affect the patterns of replacement inasmuch

as mutation in certain regions of the ADH sequence entire horizontal line passing through the relative rate
of 1 representing no rate variation. Thus the null hypoth-may be only slightly deleterious yet efficiently removed

by selection in populations with large Ne, while becom- esis of rate homogeneity across all sites of this sequence
cannot be rejected. By contrast, in the repleta and Ha-ing effectively neutral and thus allowed to accumulate

in populations with relatively small Ne (Ohta 1993). waiian groups the confidence intervals lie outside this
line at some sites, indicating statistically significant dif-Furthermore, as the Hawaiian species have adapted to
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Figure 9.—Relative replacement rates and corresponding intervals based upon the middle 95% of a posterior probability
distribution with a flat prior computed from alcohol dehydrogenase protein data sets representing three Drosophilid species
groups under the unrestricted-rates model. The data sets contained ADH protein sequences from the melanogaster group [(A)
D. melanogaster, D. simulans, D. mauritiana, D. orena, D. erecta, and D. yakuba], the repleta group [(B) D. buzzatii, D. hydei, D.
mayaguana, D. mettleri, D. mojavensis, and D. wheeleri], and Hawaiian group [(C) D. adiastola, D. affinidisjuncta, D. differens, D. mimica,
D. nigra, D. picticornis, and D. silvestris]. The data sets used in this computation are the same as in Dorit and Ayala (1995).

ferences in replacement rate at those sites. However, among the three sequence sets. Thus the null hypothesis
of equal patterns of replacements among all three spe-comparison of the three confidence intervals in Figure

9 reveals no significant difference between rate profiles cies cannot be rejected by the Fourier/wavelet model



393Fourier and Wavelet Models

analysis. Thus, despite the differing genetic and popula- sum of the relative rates is restricted to l for a set of
sequences of length l, and negative values of the relativetion genetic contexts in which their respective ADHs

operate, no statistical difference in the relative rates rate parameters are not allowed. The space of admissible
values of sets of relative rate parameters has the shapeacross the length of the sequences within the melanogas-

ter, repleta, or Hawaiian species groups has been de- of a multidimensional pyramid, with the base corre-
sponding to low values of relative rate parameters andtected.
the tip corresponding to large values. Further, the pro-
portion of admissible random sets of the relative rate

DISCUSSION
parameter values in the complete manifold of admissi-
ble relative rate sets rapidly decreases as we increase theStatistical consistency of parameter estimates under

the unconstrained-rates and wavelet/Fourier models. relative rate of one of the parameters in the set. As a
result, when the maximum-likelihood value of one ofThe “big bang” model: Imagine a hypothetical data set

with an infinite number of homologous DNA sequences the relative rate parameters is high, the set of relative
rate parameters corresponds to a point close to the tipdiverged from a common ancestor according to a star-

like tree under the Jukes-Cantor model (Jukes and Can- of the pyramid space of the admissible parameter values,
so that most of the admissible values are situated belowtor 1969). The expected distance (number of substitu-

tions per site) from the common ancestor is exactly this point.
Detecting signal and noise in substitution rates: Lakethe same for sites with the same number in different

sequences (that is, sites with the same mean substitution (1998) introduced a method for describing substitution
rate variation along genes and proteins that bears arate). Next, consider a set of m genes of length l sampled

from the infinite pool of genes. Because under the big resemblance to our Fourier model. Lake’s method is
based on the theory developed by Weiner (1948) forbang model we are able to increase the number of

sequences to infinity, all l 2 1 relative rate parameters signal processing in the presence of noise. The original
problem solved by Weiner followed from the necessitycan be consistently estimated.

We conjecture that under the unconstrained-rates of transmitting a meaningful signal (human speech,
for example) through communication channels thatmodel combined with an arbitrary bifurcating tree, the

relative rate parameter estimation has essentially the introduce stochastic noise. Weiner showed that given a
prior knowledge of the statistical properties of signalsame properties as under the big bang model, except

that the addition of new sequences leads to an increase and noise, it is possible to clean the transmitted signal
from the noise. Lake suggested treating the substitutionin the number of the branch length parameters and is

followed by a change in tree shape. Namely, an increase rates estimated along genes or proteins as an analog of
the frequency of the transmitted signal plotted as ain the number of sequences to infinity should be associ-

ated with a reduction of the variance of relative rate function of time in Weiner’s original problem. Although
stochastic processes certainly play an important role inparameters to an arbitrarily small value, while an in-

crease in the total number of sites in the alignment the origin and fixation of mutations, we are hesitant to
accept Lake’s definitions of signal and noise for theshould be followed by a reduction of the variance of

the branch length estimates. According to this con- substitution rate variation along genes and proteins
based only on remote analogy. Consequently, we did notjecture, one can decrease arbitrarily the variances of

estimates of all model parameters by simultaneously attempt filtering the relative substitution rate profiles in
this study.increasing the number of sites and the number of se-

quences in the data set. Computational resources: The wavelet/Fourier model
is significantly more parameter-rich than earlier models,Strange shape of the relative rate confidence intervals

under the unrestricted-rates model and the geometry which leads to an increased computational cost. With
most currently available computational resources it isof the space of the admissible parameter values: The

confidence intervals for relative substitution rates com- probably not feasible to do a full-scale maximum-likeli-
hood analysis under parameter-rich models for largeputed with the MCMC analysis are far from being sym-

metrical with respect to the maximum-likelihood value. sets of sequences. However, it is likely that as the compu-
tational resources improve, the more complicated mod-For invariant sites, the asymmetry arises because nega-

tive values of relative rates are not allowed and there els will become more practical and hence more popular.
The maximization of the likelihood function underalways remains the possibility that the mean substitution

rate at the site is in reality positive and yet the site by the wavelet model took between 1.5 and 3 days for each
of the two immunoglobulin data sets, and z4 days forchance appears constant. For sites with high relative

substitution rates, the maximum-likelihood estimates each of the alcohol dehydrogenase data sets on a Sun
Enterprise 3000 with 4 3 250 MHz processors, runningare often at the upper boundary of the confidence re-

gion. This is a consequence of the unusual geometry on the Solaris 6.2 operation system. Each computation
was done using a single processor. MCMC computationsof the space of admissible parameter values under the

unrestricted-rates model. Indeed, under this model the were completed at the rate of 2500 iterations per day
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for each of the immunoglobulin data sets, and at an program for Fourier is also partially in MatLab (Math
Works Inc.) from Tatyana Sitnikova and Pavel Morozov.z1.5 times slower rate for the ADH data sets (we used

10,000 iterations for each data set for computing the This article has benefited from numerous suggestions and com-
confidence intervals). Computations under the Fourier ments provided by Drs. Andrew Clark, Yasuo Ina, Bret Larget, Masa-

toshi Nei, James J. Russo, Ziheng Yang, and Andrey Zharkikh, whomodel were significantly slower for both analyses (usu-
read an earlier version of it. We are grateful to Dr. Ziheng Yangally 5–15 times as slow as the analogous computation
for providing the numerical optimization subroutines used in the C

under the wavelet model) and were therefore not per- version of the project programs, and to Dr. Joseph Felsenstein for a
formed for all data sets. fruitful discussion of the model. This study was partially supported

by grants from the National Institutes of Health and the NationalThe wavelet model using different mother wavelets:
Science Foundation to Masatoshi Nei and Robert K. Selander.The speed of numerical optimization under the wavelet

model turned out to depend significantly on the mother
wavelet: the difference in computation speed was five-
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