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ABSTRACT
The ciliate Tetrahymena thermophila is a useful model organism that combines diverse experimental

advantages with powerful capabilities for genetic manipulation. The genetics of Tetrahymena are especially
rich among eukaryotic cells, because it possesses two distinct but related nuclear genomes within one
cytoplasm, contained separately in the micronucleus (MIC) and the macronucleus (MAC). In an effort
to advance fulfillment of Tetrahymena’s potential as a genetic system, we are mapping both genomes and
investigating the correspondence between them. With the latter goal especially in mind, we report here
a high-resolution meiotic linkage map of the left arm of chromosome 1, one of Tetrahymena’s five
chromosomes. The map consists of 40 markers, with an average spacing of 2.3 cM in the Haldane function
and a total length of 88.6 cM. This study represents the first mapping of any large region of the Tetrahymena
genome that has been done at this level of detail. Results of a parallel mapping effort in the macronucleus,
and the correspondence between the two genomes, can be found in this issue as a companion to this
article.

MODEL organisms have been extremely effective nuclear chromosomes. The bulk of these pieces are
amplified to the average level of 45 copies per cell.research tools in the biological sciences, and the

pace of discovery continues to accelerate due to ad- Cells with a heterozygous MAC assort, after many fis-
sions, into clonal descendant lines that have becomevances in the technology and scale of genome mapping

and sequencing. One eukaryotic organism with a proven pure for a single allele at each genetic locus. This pro-
cess is called phenotypic assortment and represents atrack record of important contributions and with partic-
non-Mendelian genetic segregation model that is com-ular promise is the ciliate Tetrahymena thermophila. Tetra-
pletely distinct from that of the MIC (and of most otherhymena represents a very powerful genetic system, cou-
eukaryotic cells). For a more thorough discussion ofpled with a host of other experimental advantages
macronuclear genetics and mapping, see the compan-(reviewed in Orias 1998).
ion to this article (Wickert et al. 2000, this issue).Tetrahymena possesses two distinct but related ge-

We are mapping both genomes in anticipation of anomes, called the micronuclear (MIC) and ma-
genomic sequencing initiative for this organism. Thiscronuclear (MAC) genomes. The MIC genome is tran-
three-article series describes recent progress toward thatscriptionally inactive and functions as the germline
goal, as follows:during sexual reproduction, following a classical Men-

delian genetic model. The MAC genome is derived from
1. The first (this article) focuses on MIC mapping and

the MIC genome during the process of sexual reproduc-
presents a high-resolution genetic linkage map of

tion and functions as the somatic genome. It is highly chromosome 1L (of Tetrahymena’s five micronuclear
expressed, in contrast to the MIC (reviewed in Bruns chromosomes). Although we have previously re-
1986; Karrer 1999). ported some preliminary micronuclear genetic maps

During differentiation of the MAC, the five (pairs of) (Lynch et al. 1995; Brickner et al. 1996; Longcor
chromosomes derived from the germline are frag- et al. 1996), this map represents the first high-resolu-
mented in a site-specific way, generating an estimated tion mapping that has been done in this organism
200–300 acentromeric fragments that are randomly dis- on this scale and therefore sets standards and meth-
tributed at MAC division. These fragments are called ods for the analysis of the rest of the Tetrahymena
autonomously replicating pieces (ARPs) or macro- MIC genome.

2. The second article (Wickert et al. 2000, this issue)
describes MAC genetics and mapping of the same
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Maps were constructed by first defining a “framework” ofwhich are roughly the equivalent of MIC linkage
markers having a well-defined order (LOD . 3). The selectiongroups, but have a completely different mechanism
of these framework markers was somewhat arbitrary, but an

and kinetics of assortment. The second article pre- effort was made to choose the “best” set of markers that
sents the first systematic mapping of CAGs over a spanned the linkage group for maximum coverage at roughly

uniform spacing, while including the largest possible numberregion of this size.
of markers that had a well defined order, as defined above.3. A manuscript submitted for publication (L. Wong,
Because the choice of best framework markers was not unique,L. Klionsky, S. Wickert, V. Merriam, E. Orias and
many alternative sets were examined to verify that the choice

E. Hamilton, unpublished results) provides addi- did not significantly affect mapping results, and the final selec-
tional molecular genetic evidence that MAC pieces tion was partly based on heuristic criteria (primarily the per-

ceived quality of the RAPD banding patterns and number of(ARPs) are the physical basis of CAGs.
informative data points).

To determine LOD scores for framework marker orders, it
was impractical in terms of computation time to perform full

MATERIALS AND METHODS multipoint maximum-likelihood calculations on all possible
marker orders (e.g., for 14 markers, there are 14!/2, orStrains, crosses, and genetic markers: Strains used, culture
.4 3 1010, possible orders). Consequently, a sliding “window”conditions, crosses, DNA preparation, and assignment of
at least six (and sometimes as many as eight) markers widemarkers to chromosomes by use of monosomic strains have
was used for comparison of the likelihoods for alternativebeen previously described (Lynch et al. 1995; Brickner et al.
orders of adjacent markers. Markers outside the window were1996). The majority of genetic markers (Table 1) are randomly
considered fixed in terms of relative order (but not in dis-amplified polymorphic DNA (RAPD) polymorphisms between
tance), and maximum-likelihood values were calculated forTetrahymena inbred strains B and C3 that had been previously
maps with all possible orders of markers within the window.assigned to chromosome 1L. Preliminary linkage maps of a
To be considered solid, a marker order had to have a LODsmall subset of these markers have been previously published
score of at least 3.0 relative to the next best order, where(Lynch et al. 1995; Brickner et al. 1996).
likelihoods were calculated using the full set of frameworkMeiotic segregant panels: The meiotic segregants used in
markers, not just those within the window. In principle, usingthis study were generated from three F1 clones (SB983, SB990,
a window size less than the complete framework (i.e., notand SB1804; Bleyman et al. 1992), obtained by crossing to
including all markers) could lead to errors in ordering, butone another cells of inbred strain B and C3. The meiotic
in practice this was not thought to be a problem because thesegregants were obtained from these F1’s by genomic exclusion
window was advanced one marker at a time, and markers faras described in detail in Lynch et al. (1995). Both the MIC
outside the window are only weakly linked to those inside. Inand MAC of each of these meiotic segregants are homozygous
addition, many trials with different starting configurationsfor the germline genome of an independent meiotic product
were done to make sure that results did not depend on initialof the B/C3 MIC; thus each is a whole genome homozygote.
marker choices.A total of 197 meiotic segregants were used, comprising subsets

Next, all remaining markers were placed into intervals rela-of panels 1, 2, and 3 described in Table 2 of Lynch et al.
tive to the framework map. For this step, a given marker was(1995), selected as follows: from panel 1, 25 members derived
placed in turn into each possible interval in the frameworkfrom all three F1 clones (note that the members of panel 1
(including positions off of each end, and far away, or un-were initially obtained for a different purpose; only those
linked). Maximum-likelihood scores were then calculated forhaving an odd number of genetic crossovers between the mat
each position (this procedure is automated by the MAP-and PMR1 loci were kept); from panel 2, 22 members derived
MAKER “try” command). If a marker placed at LOD . 3from SB983, 41 members derived from SB990 and 9 members
around a framework marker (that is, into the dual intervalderived from SB1804, for a total of 72 members altogether;
composed of the two intervals flanking the framework marker),finally, from panel 3, 100 additional members derived from
then it was considered to place at LOD 3 and indicated onSB990.
the map in its maximum-likelihood position. Note that thisRAPD PCR: RAPD polymerase chain reaction (PCR) reac-
placement criterion for nonframework markers is differenttions were performed as originally described (Williams et al.
from that used for the framework markers, and we are there-1990), except that two primers were used instead of one (see
fore always careful to differentiate clearly between the twoLynch et al. 1995). In a few cases (RAPD polymorphisms PM8,
classes of markers in our primary mapping figures. Next aEO1, and BR4), PCR was done at a final Mg21 concentration
window, as above, in which all possible marker orders wereof 5 mm, because the banding pattern was clearer than at
considered, was placed around the new marker, and full maxi-the standard 2.5 mm concentration. Gel electrophoresis was
mum-likelihood calculations were done for all possible orders.essentially as described (Brickner et al. 1996). After electro-
Square brackets, indicating uncertainty in relative order, werephoresis, gels were stained in 2 mg/ml ethidium bromide for
placed around all markers that varied in relative order up to10–15 min, followed by destaining for 15–30 min in deionized
a threshold of LOD 3.water.

Odds against order reversal for adjacent markers were calcu-Linkage analysis and map construction: Genetic data were
lated as differences in maximum-likelihood scores for mapsanalyzed and maps were constructed using MAPMAKER/EXP
using the indicated orders. For the framework, only framework3.0 (Lander et al. 1987), with “error detection” (Lincoln
markers were used, but for all pairs involving nonframeworkand Lander 1992) enabled (see below). Map distances were
markers as well, full maps containing all markers were used.calculated using the Haldane function, v 5 21⁄2ln(1 2 2u),

Maximum-likelihood estimate of the total mapped region:where v represents genetic distance in Morgans and u is the
One method we used to estimate the total mapped region forrecombination fraction (0 # u # 1⁄2). A marker order was
our data (the total genetic length of the region on chromo-considered solid if it had a LOD (Log of the ODds by maxi-
some 1L that was accessible to our random screen for geneticmum likelihood) score .3.0 relative to the next best marker
markers) was the maximum-likelihood method of Chakra-order (that is, the best order is 1000 times more likely to have

generated the observed data than the next best order). varti et al. (1991). The method and its rationale are described
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in detail in the reference above, and only details of its applica- nale). Briefly, one nonterminal marker was dropped from the
tion to our data set are presented here. The relevant ln-likeli- map and the total map length was calculated in its absence.
hood expression for the total data set is This was then repeated for each nonterminal marker in turn,

and the average drop one map length was computed. The
error rate was estimated as one-half the difference betweeno

i?j
ln5#umax

0 1nij

rij
2 urij (1 2 u)nij2rij f (u)du6,

the full map length and the average drop one length, in units
of Morgans (see Weeks et al. 1995).where the sum is over all unique marker pairs (i, j); nij is the

Generation of pseudorandom numbers: Pseudorandomnumber of informative meioses for marker pair (i, j); rij is the
number generation was required for estimating the variancenumber of recombinants for marker pair (i, j); L is the total
associated with the scoring error rate (to introduce randommapped region; u 5 recombination fraction; umax

1⁄2(1 2 e22L)
errors into the data set) and for the Monte Carlo method of(note the dependence on L); and f(u) is the theoretical proba-
estimating the map coverage fraction, used for determinationbility density function of u for a marker pair.
of the total mapped region (see above). In both cases, func-In our case, because all loci considered are syntenic, f(u)
tions from the standard C library were used.reduces to fs(u) as given in Chakravarti et al. (1991):

Unfortunately, the applicable American National Standards
Institute standards do not specify how the functions are to be
implemented (the algorithm is not specified, and the mini-

fs(u) 5 5 2L 1 ln(1 2 2u) , 0 # u , umax , 1⁄2
L2 (1 2 2u)

0, umax # u , 1⁄2
. mum required precision is unacceptably low), and many im-

plementations are seriously flawed (see chapter 7 of Press et
al. 1992). For introduction of random errors into MAPMAKER
files, the function drand48() was used (in SunOS 4.1.3, underNumerical calculations were implemented in the C program-
which MAPMAKER was run). On this system, drand48() isming language and run under the Linux operating system.
considered superior to rand() or random(). For the mapEstimate of map coverage fraction by Monte Carlo method:
coverage fraction Monte Carlo (and all other calculations notWe estimated the map coverage fraction by means of a Monte
directly involving MAPMAKER), the function rand() of theCarlo method using maps containing 20, 40, or 80 markers.

For each choice of number of markers to use, 1 3 106 indepen- GNU (http://www.gnu.ai.mit.edu) standard C library (glibc-
dent random maps were generated by placing all markers 2.0.7) was used under Linux (Red Hat 5.1). This function is
on a map of unit length according to a uniform random considered superior in recent releases of this library, and
distribution. For each map, the coverage fraction, defined drand48(), although still available, has been declared obso-
here as the fraction of the map contained between the two lete.
most distal markers at the ends of the map, was recorded. Expected frequency of meiotic segregants that are nonre-
The Monte Carlo simulation was implemented in the C pro- combinant types over the entire linkage group: We used the
gramming language and run under the Linux operating map and its intermarker distances to calculate the expected
system. probability of observing an individual segregant (either B or

Scoring errors: We used the incomplete penetrance error C3) with no crossovers over the full map, P 5 1/2 Pi (1 2
detection mechanism (Lincoln and Lander 1992) of MAP- ui), where ui is the recombination fraction for the ith in-
MAKER to flag potential scoring errors in the data set. The termarker interval, and the product is over all intervals in
error detection scheme treats all experimentally measured the map for this region. The recombination fraction, u, was
genotypes as “phenotypes” of the true underlying genotype, calculated for each interval from the centimorgan distance
which is considered to be partially penetrant, and likelihood between markers by the Haldane function, u 5 1⁄2(1 2 e22v),
calculations are performed under this assumption. The where v is the distance in centimorgans for the maximum-
method computes a LODerror score for individual data points, likelihood map. Multiplying this probability by the total num-
which is the log of the odds ratio of the probability that the ber of segregants (197) gives the mean expected number of
entire data set would arise if the genotype for the data point individuals (B or C3) that we expect to observe showing no
is scored in error, divided by the probability that the data recombination over the whole chromosome arm.
set would arise if the data point is scored correctly. Because
accurate flagging of potential errors is highly dependent on
correct marker order, we waited until most of the segregants
had been scored before examining putative errors. Then, we RESULTS
retested all scores having a LODerror . 1.5 as determined by

One major goal of our current studies was to investi-MAPMAKER. When an individual genotyping was rechecked,
the RAPD PCR reaction was repeated at least in duplicate, gate the correspondence between the micronuclear and
with double strain B and C3 controls, and these were run side macronuclear genomes of Tetrahymena. We chose to
by side on an agarose gel as described above. In some cases concentrate on the left arm of MIC chromosome 1,of apparent high probability errors, we confirmed that the

which was formerly known as the left arm of chromo-scores were indeed errors and corrected the data. Some of
the apparent errors, even those having high LODerror scores, some 2 (V. Merriam, P. Bruns and D. Cassidy-Hanley,
were found not to be errors. In a few cases where the results personal communication), because it had been mapped
were still ambiguous, the corresponding data point was left in more detail than any other region. We have previously
unscored. The error detection feature also facilitated the de-

reported preliminary micronuclear maps (Lynch et al.tection—and exclusion from the data set—of four meiotic
1995; Brickner et al. 1996; Longcor et al. 1996) thatsegregants that appeared to be heterozygous for at least a

segment of chromosome 1L. include all or portions of the left arm of chromosome
Error rate estimate: Even after screening as above, some 1. However, these maps either contained too few mark-

scoring errors almost certainly remain. An estimate of the ers or were at too low a resolution to allow effectivepercentage of scoring errors in the data set was obtained by
comparison of micronuclear and macronuclear ge-the “drop one” error analysis technique (see Buetow 1991;

Weeks et al. 1995; see results for a discussion of the ratio- nomes. Therefore, we set out to map this region in
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TABLE 1

RAPD loci mapped

Size Size
Locus Primers (kb) Locus Primers (kb)

1AS2a A12 C5 1.0 1JP11a A2 B10 1.2
1AT3/R B20 C5 0.55/0.42 1JP33 A4 B1 0.9
1BB1Ra E10 E12 1.05 1JP34a A4 B5 0.95
1BD6 F1 F20 0.4 1KF2 A2 C6 0.6
1BD8Ra F2 F11 0.4 1KN3 A2 A17 0.3
1BD11 F3 F16 0.33 1LS15 A5 E4 1.1
1BR4a C5 C6 0.65 1MJ10aR G16 G16 0.95
1CH1 A6 B12 1.3 1PM8 B17 B20 0.5
1EM10 D6 E11 2.0 1RT1 F9 H15 0.75
1EO1a A5 A6 1.3 1SN7a D2 D18 0.4
1EO3R A19 B4 0.4 1SN9 D3 D11 0.18
1GM9 E18 F2 0.8 1SP9 E6 F8 1.1
1JB3 A1 A9 1.0 1SP11Ra E1 F5 1.4
1JB10R A2 A9 1.1 1XS10a A8 B8 0.2
1JO7 A2 D8 1.4 1XS19a C2 D8 0.7
1JO9 A11 D11 0.2 1XS24 C4 D2 0.45
1JO13R A14 D15 0.95 1XS35a C6 D20 0.75
1JO16 A5 D20 0.8 1XS36 C7 D8 1.55
1JO39Ra A14 D10 0.75 1YD19 E15 E18 0.95

a MIC-limited RAPD.

greater detail, which primarily involved scoring a larger of the framework. After construction of the framework,
many other markers mapped close to a frameworknumber of independent meiotic segregants.

Micronuclear map of chromosome 1L: The mi- marker, with high and nearly equal LOD scores for
placement into the two intervals flanking the frameworkcronuclear map of the left arm of chromosome 1, gener-

ated by this work, is based on conventional meiotic marker and low LOD scores for placement in all other
intervals. This pattern, coupled with maximum-likeli-recombination and consists largely of RAPD polymor-

phisms identified between inbred Tetrahymena strains hood marker positions close to the associated frame-
work marker for both flanking intervals, primarily repre-B and C3 by random screening (see materials and

methods). Table 1 lists these RAPD markers along with sents uncertainty in marker relative order in a small local
region, but not in the overall location of the marker ontheir associated primers and band sizes. In addition to

the RAPD markers, they include mat, which is the mating the map.
Therefore, in Figure 1, we show all nonframeworktype determination locus, and PMR1, which confers re-

sistance to the drug paromomycin. To construct the markers that placed into a unique (framework-marker-
containing) interval at LOD 3 or better on the map inmap, whole-genome homozygotes made from indepen-

dent meiotic products of B/C3 heterozygotes were their maximum-likelihood positions, with square brack-
ets indicating uncertainty in marker relative order atscored for each locus, and a maximum-likelihood ge-

netic map was constructed using MAPMAKER/EXP 3.0 LOD 3. Of the 40 markers, only three (GM9, JO13R,
and JO16) could not be placed in this way into a unique(see materials and methods). The raw segregation

data are available at the Tetrahymena genome web site interval at LOD . 3 (for details of their placement, see
the Figure 1 legend).(http://lifesci.ucsb.edu/zgenome/Tetrahymena).

Figure 1 shows details of the map and marker place- The left side of Figure 1 illustrates the statistical con-
fidence of the framework in terms of the odds againstments and their associated statistical confidence levels.

As described in detail in Linkage analysis and map con- reversing adjacent framework marker pairs. In a similar
fashion, Figure 2 shows the associated confidence levelsstruction (see also discussion), there are two classes of

markers represented here, each having different statisti- for the relative order of markers within a typical set of
square brackets on the map. Note that in this case,cal criteria for placement. The first is the set of 14

“framework” markers, for which the unique marker or- markers XS36 and BD11 are so close that their relative
order cannot be resolved at all (1:1 odds of reversal),der shown has a very high degree of statistical confi-

dence, which is defined globally for the entire frame- while the odds against reversal of XS36 and JB3 are
6.6:1. As expected, markers located farther away fromwork. The second class includes all nonframework

markers, whose placement criteria are defined in terms each other generally showed higher odds against rever-
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Figure 2.—Example of statistical confidence of marker or-
der assignment within a cluster around a framework marker.
A typical set of markers (1XS36, 1BD11, and 1RT1) that place
at LOD . 3 around a framework marker (1JB3) is illustrated
here (see Figure 1, top). The odds by maximum likelihood
against reversing the relative order of various marker pairs in
the map (indicated by dotted lines) are as shown. As in Figure
1, leading 1’s have been removed from marker names for
clarity. Square brackets have the same meaning as in Figure 1.

sal. Because the odds against reversal for each marker
pair within the square bracket clusters are all well below
1000:1 (other data not shown), which is a commonly
used threshold for mapping, we show only this one
representative example.

The map contains 40 markers altogether, at an aver-
age spacing of 2.3 cM in the Haldane function. The
largest interval is 15.1 cM (between JB3 and PMR1),
and the map has a total length of 88.6 cM. The map
reported here supercedes previously reported maps on
this chromosome arm and represents the first mapping
of any large region of the Tetrahymena genome that
has been done at this level of detail.

Error rate: For dense maps, the rate of scoring errors
in the data set is an important consideration, because
these errors have a major impact on apparent mapFigure 1.—Micronuclear map of chromosome 1L—details
length and marker order (Lincoln and Lander 1992;of marker placements and associated statistical confidence

levels. The thick vertical line at center represents genetic dis- Buetow 1991). We used the error detection feature of
tance in the micronucleus (10-cM scale bar shown at top right). MAPMAKER (Lincoln and Lander 1992) to flag high-
Framework markers (see materials and methods) 1JB3– likelihood error candidates in our data set and to check
1BR4 (note: leading 1’s have been removed from all marker

and correct them if necessary as described in materialsnames for clarity) are shown in boldface to the left of the
and methods. However, even after rechecking the datathick line, with odds against reversal of adjacent framework

markers shown to the left of each pair. Placement of all other in this way, some scoring errors almost certainly remain
markers relative to the framework is shown to the right of in a data set of this size.
the thick line. All markers except 1GM9, 1JO13R, and 1JO16 We estimated the percentage of scoring errors re-
(indicated by parentheses) placed into a unique interval span-

maining using the drop one technique (see Weeks etning a framework marker (see materials and methods) at
al. 1995). The rationale is that most scoring errors intro-LOD 3.0 or better. Square brackets indicate marker relative

orders that cannot be resolved at LOD 3. Placements for duce spurious double crossovers, thereby inflating the
1GM9, 1JO13R, and 1JO16 are indicated to the far right, with apparent map length (in a nonuniform way that is de-
details as follows: The maximum-likelihood position for each pendent on marker spacing). Therefore, if a marker is
marker is as shown on the map, with confidence intervals of

dropped from the analysis, there should be a decreaseplacement shown to the right. Bars indicate odds of placement
in apparent map length, due (mostly) to the removalas follows: thick bars, ,10:1 against; thin bars, 10–100:1

against; hatched bars, 100–1000:1 against. All other intervals of spurious double crossovers associated with that
have odds of placement @1000:1 against in all cases. marker. In contrast, for reasonably dense maps, removal

from the analysis of a marker that has no scoring errors
is expected to have a negligible effect on map length
on average. From the average decrease of the drop one
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that the actual error rate, ε, for our data set is ε 5
ε9 2 0.20% 5 (0.16 6 0.03)%.

One major consequence of errors in scoring is anoma-
lous map expansion. We checked the consistency of our
error rate estimate by examining map expansion with
our data. From the work of Buetow (1991), a map of
length L expands under the addition of scoring errors
(rate ε) to a length L9, given approximately by L9 ≈
[(2)(100)ε 1 1]L. For our data set, L9 (the full map
length with MAPMAKER’s error detection mechanism
disabled) is 107.8 cM. From this, using the above rela-
tion, we obtain a value L ≈ L9/(200ε 1 1) ≈ 82 6 4 cM
for the estimated “zero error” map length. This value
is in reasonable agreement with the 88.6-cM total map
length reported by MAPMAKER with error detection
enabled. As noted previously, MAPMAKER’s error
mechanism is quite effective in mitigating the effect ofFigure 3.—“Drop one” micronuclear map lengths. For each

nonterminal marker on the map (diamonds), the total map scoring errors on map length, so we expect the reported
length with that marker removed is plotted as a function of length with error detection enabled to be a close ap-
marker position. MAPMAKER’s “error detection” was dis- proximation to the zero error length, although someabled. Solid line, least-squares linear fit to the data points.

small expansion effects may not be completely nullified.Inset (squares), the same analysis but with “error detection”
Total mapped region: A fundamental parameter inenabled; axis labels are the same.

any genomic mapping project is the size in centi-
morgans of the entire region mapped, which in this case
corresponds to the total genetic length of the regionlengths relative to the full map length with all markers
on chromosome 1L that was accessible to our randomincluded, we can estimate the overall error rate (see
screen for genetic markers. We shall refer to this num-materials and methods).
ber as the total mapped “region,” primarily to distin-The results of drop one analysis are shown in Figure
guish it from “map length,” by which we mean the dis-3. The error rate appears to be mostly uniform, with
tance between the most distal markers at each end ofno obvious trend over the length of the map, as shown
the map. The distance between most distal markers isby the essentially flat trendline. In this analysis, MAP-
a crude estimate of the total mapped region, but under-MAKER’s error detection was disabled to allow errors
estimates it, because these distal markers, if distributedto have their full effect on map length. With error detec-
in a uniform random fashion over the mapped region,tion enabled (Figure 3, inset), the effective error rate
are expected to fall somewhat short of the region’s end-drops to zero. This is mostly a reflection of the effective-
points. We used two different methods to estimate the

ness of the error detection scheme and is shown only for
total mapped region, and they are in approximate agree-

reference. Nevertheless, it suggests that any remaining ment.
errors in our data set have not greatly influenced map The first is a maximum-likelihood method described
calculations. by Chakravarti et al. (1991). It assumes that markers

The drop one lengths in Figure 3 suggest an error rate are distributed randomly throughout the mapped re-
of z0.2% (see materials and methods for details). gion and uses the theoretical distribution of distances
To get a more accurate estimate, and to determine its between marker pairs to define an expression for the
precision, we introduced random errors into the data ln-likelihood of the total data set (see materials and
set at a rate of 0.20% and observed their effects. See methods). Because this expression depends on the
the discussion for more information on the rationale length of the total mapped region, L, as a parameter,
behind this approach. Briefly, we assumed that the vari- maximizing the likelihood with respect to L yields an
ance in error rate estimation associated with actual er- estimate of the total mapped region. An additional ad-
rors in the data set would be the same as the variance vantage of this method is that it provides statistical con-
caused by errors artificially introduced in a truly random fidence limits on the estimate. The experimental inputs
fashion. We generated 100 independent data sets in to the calculation are a set of two numbers for each
which random errors had been introduced into the marker pair: (1) the number of recombinants and (2)
actual data set and subjected them to a full drop one the number of informative meioses for the pair. There
analysis of map lengths. The results are shown in Figure are n(n 2 1)/2 unique marker pairs for n markers,
4. For the 100 data sets, the calculated error rate, ε9, which for our data set of 40 markers correspond to 780
was ε9 5 (0.36 6 0.03)% (mean 6 SD). Because 0.20% marker pairs. See the discussion for a more thorough

treatment of the assumptions underlying the model.random errors were artificially introduced, we conclude
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Figure 4.—Comparison of
mean-subtracted drop one map
lengths. Open squares, mean and
standard deviation (error bars) of
drop one lengths for 100 indepen-
dent data sets with 0.20% random
errors introduced into the actual
data set. Solid diamonds, drop
one lengths for the actual data set,
mean subtracted and replotted
from Figure 3 for comparison. For
both sets of lengths, the mean of
the corresponding set of drop one
lengths was subtracted to nullify
map expansion caused by intro-
duction of the random errors to
better show the correspondence
between the two sets of drop one
lengths.

Because the validity of the model is strongly contin- maximum by two units represent the approximate edges
of a 95% confidence limit interval for the value of L.gent upon the conformance of the experimental in-

termarker distance distribution to the theoretically ex- These limits are shown by the vertical lines in Figure 6
pected one, we first tested our data against this criterion. and occur at 95.3 and 105.7 cM. The inset shows the
The theoretical cumulative intermarker distance distri- ln-likelihood over a wider range than the main figure
bution is given by F(v) 5 (2Lv 2 v2)/L2 (see Chakra- so that its asymmetrical form may be more clearly seen.
varti et al. 1991), where v represents map distance in The second method we used to estimate the length
Morgans or centimorgans and L is the total mapped
region in the same units. At this stage of the analysis,
we did not know the length of L, so we used the best
estimate that was then available, the total map length
(88.6 cM), i.e., the distance between the most distal
markers. This approximation underestimates L (further
analysis suggested that the underestimation is z5–10%;
see below), but it was close enough to check whether
our data fit the model. Figure 5 plots the experimentally
observed cumulative intermarker distance distribution
for the data set (histogram) and compares it with the
expected theoretical distribution (solid curve). We con-
cluded that our data fit the theoretical expectations
sufficiently well to proceed with the analysis.

The results of the maximum-likelihood calculation
(see materials and methods) are shown in Figure 6.
(In all cases, numerical values quoted below were de-

Figure 5.—Comparison of theoretical and observed cumu-
rived from high-precision application of the calculations lative probability distributions of intermarker distance be-
over relevant ranges, but this level of precision is not tween marker pairs. Hatched bars, histogram showing fraction

of all intermarker pairs in the actual data set having an in-represented in the figure for the sake of clarity and
termarker distance less than the indicated upper bound. Forcomputation time). The likelihood is maximized at an
our data set, there were 780 such unique marker pairs (seeL value of 100.3 cM (arrow in Figure 6). In addition,
text). Solid curve, theoretical cumulative probability distribu-

(asymmetrical) confidence limits on the total mapped tion, as given in the text, using for L the map length, i.e., the
region can be read directly from the ln-likelihood plot. distance between the two most distal markers and evaluated

at the values indicated by the histogram bin labels.The two points where the ln-likelihood falls from its
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Figure 6.—ln-likelihood
for the entire data set as a
function of L, the total
length of the region
mapped. The arrow marks
the length at which the ln-
likelihood is maximum.
Vertical lines, points at
which the ln-likelihood falls
by two units from its maxi-
mum value. Inset, same plot
over a wider range of L val-
ues; axis labels are the same.

of the total mapped region was an evaluation of its integration using the Monte Carlo-generated distribu-
tion yielded a mean that agreed with this value to withindegree of marker coverage. This method has the advan-

tage of requiring very few assumptions—only that the 0.02%). For our map length (distance between most
distal markers) of 88.6 cM, this corresponds to a totalmarkers be distributed randomly. If markers are distrib-

uted in a uniform random fashion over a region of mapped region of (88.6 cM)/0.9512 ≈ 93.1 cM.
The coverage fraction distribution also provides alength L, then the map length, as represented by the

distance between the two most distal markers at the confidence interval on the total mapped region. The
cumulative probability for this case (the integral of theends of the map, is expected to be somewhat less than

L, because the most distal markers will not fall exactly solid curve in Figure 7) is plotted in Figure 8. For a
95% confidence interval, we used the region of theat the ends of the region. The total of the “uncovered”

areas at the ends of L represents the difference between
what we have called the “map length” and the “total
mapped region,” and we can quantitatively determine
its value in a statistical sense. We used this to estimate
the total mapped region from the map length.

To accomplish this, we constructed Monte Carlo-gen-
erated maps of markers distributed randomly over a
region of unit length. For each map, we recorded the
fractional marker coverage, defined in this case as the
fraction of the total mapped region that is contained
between the most distal markers. The resulting probabil-
ity density for maps containing 20, 40, or 80 markers is
plotted in Figure 7. As expected, the probability density
peaks higher and more narrowly, and at a higher cover-
age fraction, when more markers are used.

To calculate the total mapped region for our map,
we focused on the coverage fraction probability density

Figure 7.—Probability density of map coverage fraction forfor the case of 40 markers, as in our data set. The mean
markers placed according to a uniform random distribution.(expectation value) coverage fraction for this distribu-
The coverage fraction is here defined as the fraction of thetion is given by (n 2 1)/(n 1 1), where n is the number map that is contained between the two most distal markers at

of markers (see David 1970). For n 5 40, the mean the ends of the map. Maps contain 20, 40, or 80 markers as
indicated.coverage fraction is 39/41 ≈ 0.9512 (direct numerical



1149Tetrahymena Micronuclear Genome Mapping

Figure 8.—Cumulative probability distribution of map cov-
Figure 9.—Micronuclear mapping precision on the lefterage fraction for the case of 40 markers (the integral of

arm of chromosome 1 as a function of the number of meioticthe solid curve in Figure 7). Arrows indicate map fractions
segregants. Of the 40 markers in this region, the number thatcorresponding to probabilities of 2.5 and 97.5%; i.e., map
can be (r) linked at LOD 3, (j) placed at LOD 3, and (m)coverage fraction is between these values with 95% probability.
placed at LOD 2 is shown for each case.

cumulative probability distribution between 2.5 and Comparison of mapping with 32, 64, and 197 meiotic
97.5%. As can be seen from the figure, the coverage segregants: This detailed study of one chromosome arm
fraction under these conditions is between 0.870 and provided an opportunity to determine how mapping
0.993 with 95% confidence. This translates to a total resolution depends on the number of meiotic segreg-
mapped region between 89.2 and 101.8 cM, which is in ants used in our analysis to guide our efforts in mapping
reasonable agreement with that from the other method the rest of the genome. We therefore examined map-
(see discussion). ping results using panel sizes of 32, 64, and 197 indepen-

Estimate of kilobase pairs/centimorgans for chromo- dent meiotic segregants at each locus. The results are
some 1L: If we assume that the map in Figure 1 covers presented in Figure 9. As can be seen, 32 individuals
most of the left arm of chromosome 1 (and other as- were sufficient to place all of the markers into one
sumptions; see discussion), we can make a crude esti- linkage group at LOD . 3, but were generally insuffi-
mate of the kilobase per centimorgan value for this cient for establishing relative orders and distances. Dif-
region. For the total map length in centimorgans, we ferent unique subsets of 32 individuals from the full
used the average of the two estimates above for the total data set were tried, and no significant differences in
mapped region: 96.7 cM. Tetrahymena has a haploid results were noted (data not shown). Using 64 segreg-
genome physical length of z2.2 3 108 bp (reviewed in ants, correct maps (as seen with 197 segregants) were
Prescott 1994), or 220,000 kb. There are five MIC reproduced for the most part, but with lower LOD
chromosomes, with chromosomes 1 and 2 being the scores (z2).
largest: two large metacentrics that are roughly indistin- B allele segregation bias in panels of meiotic segreg-
guishable in size (Bruns and Brussard 1981). To esti- ants: While checking the data for the expected 1:1 allele
mate the fraction of the genome contained in 1L, we segregation, we observed a B allele bias in the meiotic
used the photometric work of Seyfert (1979). We aver- segregant panels (see Table 2). The overall B:C3 allele
aged the genomic DNA fractions for the two largest ratio was 1.29:1 (probability of x2 ≈ 10225 against 1:1
Tetrahymena chromosomes in Table 5 of Seyfert (they segregation). A bias in the segregation of mat and PMR1
had not yet been assigned numeric designations) to was already evident when the first two meiotic segregant
obtain an estimate of 15.1% for the genome fraction of panels were first obtained (Bleyman et al. 1992). Curi-
chromosome 1 (note that because of the way they are ously, the bias occurs preferentially in the JB3 half of
calculated in Table 5 of Seyfert, the chromosome frac- the map (Table 2). The bias is even more striking in
tions do not sum to unity; we therefore renormalized the numbers of B and C3 segregants that show no recom-
them). Because chromosome 1L is metacentric, we bination at all over the entire length of the map. Based
estimated its physical length as (1/2)(220,000 kb) on the calculated map intermarker distances, we ex-
(15.1%) ≈ 17,000 kb. This leads to a kilobase per centi- pected to observe 43 such nonrecombinants of each
morgan value for 1L of (17,000 kb)/(96.7 cM) ≈ 200 type (see materials and methods). However, the ac-
kb/cM. This value is higher than our previous estimates tual numbers of such nonrecombinants seen were 50
(reviewed in Orias 1998), but is based on more precise of the B type and 27 of the C3 type, a ratio of 1.85:1

(probability of x2 ≈ 0.009 against a 1:1 segregation pat-mapping.
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TABLE 2

Allele ratios in meiotic segregation

No. Total B No. Total B No. Total B
Locus tested B fraction Locus tested B fraction Locus tested B fraction

1XS36 189 112 0.59* 1XS24 179 102 0.57 1BB1R 183 94 0.51
1BD11 183 107 0.58* 1CH1 189 115 0.61** 1JO9 188 100 0.53
1RT1 190 116 0.61** 1GM9 90 59 0.66** 1SN9 155 78 0.50
1JB3 192 121 0.63** 1JO13R 179 106 0.59* 1JO39R 188 94 0.50
1EM10 94 55 0.59 1SP11R 184 106 0.58* 1XS10 175 99 0.57
PMR1 197 112 0.57 1KN3 195 112 0.57* 1LS15 188 101 0.54
1JO7 89 56 0.63* mat 196 107 0.55 1JO16 138 71 0.51
1BD6 95 59 0.62* 1PM8 193 106 0.55 1AT3/R 195 103 0.53
1SP9 180 104 0.58* 1EO1 194 107 0.55 1XS19 117 67 0.57
1JB10R 187 108 0.58* 1AS2 192 105 0.55 1BD8R 182 91 0.50
1JP34 180 106 0.59* 1KF2 195 104 0.53 1JP33 190 101 0.53
1YD19 192 109 0.57 1JP11 194 101 0.52 1BR4 193 105 0.54
1SN7a 179 101 0.56 1EO3R 188 97 0.52 1XS35 186 101 0.54
1MJ10aR 185 105 0.57

Average over all loci 0.56**
* and ** loci excluded 0.54**

The loci are listed in map order (Figure 1).
*Difference from 1:1 ratio is statistically significant (P x2 , 0.05).
**Difference from 1:1 ratio is statistically significant (P x2 , 0.01).

tern). The observed allele segregation bias was complex reduced if any of these represent single recombinational
events, i.e., gene conversions.and nonuniform, and we have found no single satisfac-

Statistical support for the micronuclear map: Becausetory explanation for it and the observations above, de-
of the density of markers, it is important to interpretspite considerable effort. Its possible distorting effects
carefully the information on statistical confidence levelson map calculations are expected to be correspondingly
of marker placements and relative orders in the mi-complex and nonuniform.
cronuclear map. The framework markers have a high
confidence of placement. Relative to the framework,
most other markers have placements localized to smallDISCUSSION
regions of the map, but are often so near other markers

We have mapped a significant portion of the Tetrahy- that very little recombination was observed, and their
mena MIC genome (chromosome 1L) at a higher reso- relative order could not be resolved. This is unlikely to
lution than has been available previously. This study be a serious limitation to the usefulness of the map for
represents the first mapping of any large region of the classical linkage studies involving other experimentally
Tetrahymena genome that has been done at this level important loci, or for map-based cloning, etc. In select-
of detail. The resulting map, consisting of 40 markers ing markers to work with for such studies, it should be
with an average spacing of 2.3 cM in the Haldane func- understood that the choice of framework markers was
tion and a total genetic length (between the most distal somewhat arbitrary (see materials and methods), so
markers) of 88.6 cM, has already proven invaluable for that the apparent dichotomy between framework mark-
investigating the relationship between Tetrahymena’s ers and others is mostly artificial. One is therefore free
MIC and MAC genomes (Wickert et al. 2000) and to choose the most convenient markers among many
should be useful in many other contexts as well. alternative sets without appreciable loss of statistical con-

Map length: The preceding map length (distance be- fidence.
tween most distal markers) is likely to be a slight under- Marker clustering: It is not clear whether the fact
estimate because we know that our data set contains that most other markers mapped close to a framework
some apparent double crossovers in short adjacent inter- marker is due to definite clustering at these locations
vals that are not scoring errors. Such apparent double or is just a consequence of high marker density coupled
crossovers are essentially ignored by MAPMAKER in its with a framework chosen to span the map with even
calculations of map distance with error detection on. If spacing. The end of the map near JB3 is suggestive of
they were to be counted as true double crossovers, we the former, while the end near BR4 perhaps suggests
estimate that they would add roughly another 5 cM to the latter. A statistical analysis of marker clustering was

not conclusive on this point (data not shown).the map (data not shown). This expansion would be
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There are several sets of markers in the map that are not independent, but depend on the details of the
map, particularly the local marker density.appear to be coincident with one another, i.e., show no

An entirely satisfactory method for gauging the appro-recombination. In most cases, we do not know whether
priate variance to use for the error rate estimate is diffi-they are actually coincident or just located very close
cult to find, but it is important to do so. Because wetogether. In one instance, however, we do have more
do not know the locations of actual errors, we cannotinformation. We have shown physically that the coinci-
reconstruct a known “error free” data set to work with.dent pair PMR1 and EM10 is located on the same MAC
We therefore adopted the strategy of adding randomARP, the rDNA (see Wickert et al. 2000). The rDNA is
known errors to the actual data set and examining theone of the smallest ARPs, an z21-kb palindrome derived
effect of these artificially introduced errors on map cal-from a 10.3-kb segment of MIC DNA. Assuming an ap-
culations. If the introduced errors are truly random,proximate ratio of 200 kb/cM (see results), this would
this should allow an accurate determination of the vari-represent only at most z0.05 cM on the map, so observ-
ance of the error rate estimate. We have to assume, foring any recombinants with the number of segregants
this approach to be valid, that the magnitude of thewe have used would be highly unlikely.
effect of individual errors does not depend stronglyThe highest concentration of coincident markers is
on the overall error rate or at least does not changenear the framework marker YD19, where five markers
substantially over the range of z0.2% to 0.4% error rate.(YD19, JP34, SN7a, MJ10aR, and XS24) show no recom-
If this assumption is correct, then the actual variance ofbination at all. XS24 and SN7a have one primer in
the drop one error rate estimate for the real data set iscommon (D2), and one of the YD19 primers (E15) also
expected to be the same as the variance in the estimateshas an identical three-prime end (see Table 1). None
of this number that result from the introduction of trulyof the others have any obvious similarities in primers,
random known errors. We have assumed that actualand all of the RAPD polymorphic bands of the YD19
errors in the data set are random, but we of coursegroup are of different sizes. Despite the fact that all of
have no way to verify this directly. Under the precedingthese markers are coincident on the map, XS24 is in a
assumptions, we arrived at an error rate estimate ofdifferent macronuclear coassortment group from the
(0.16 6 0.03)% for our data set, which seems quiteothers (see the companion article on macronuclear ge-
reasonable.netics; Wickert et al. 2000). In addition, JP34 is MIC-

Total mapped region: The maximum-likelihoodlimited, whereas the others are MAC-destined (see the
method of Chakravarti et al. (1991) for estimatingcompanion article).
total genetic length is useful for maps that contain aThe fact that all of these markers were identified
sufficiently large number of markers. However, the

independently in random screens raises the possibility
method was originally proposed for calculating total

that there may be unusual sequence structure in this genome length, using data simultaneously from all ge-
region. A deletion, though it also could lead to the nomic chromosomes. The method can be adapted for
same result, seems unlikely to be the sole explanation, strictly syntenic markers, but may suffer somewhat in
because the region includes RAPDs in which the poly- accuracy.
morphic band is templated both by B and C3 DNA. The The model is based on the assumption that all in-
cluster of RAPDs having D2 (or E15) in common may termarker distances for locus pairs are statistically inde-
be indicative of a cluster of repeated DNA sequences pendent, which is clearly not the case for syntenic mark-
with similar but not identical copies. Alternatively, a ers, as Chakravarti et al. readily acknowledge. However,
local inversion between inbred strains B and C3 may be they show that violation of this assumption should not
suppressing recombination. More work is required to lead to large errors if markers on several different chro-
determine the exact cause of the clustering at this site. mosomes are considered simultaneously. The assump-

Error rate estimate: The drop one method is a tions of the model are further strained by considering
straightforward and useful procedure for estimating the only syntenic markers, as we have done.
overall rate of scoring errors in an experimental data Estimation of the total mapped region by the ex-
set, without requiring additional genotypings or type pected map coverage fraction does not suffer from this
checks. Unfortunately, the basic drop one procedure problem. It has the advantage of requiring fewer as-
does not provide a means of determining a precision sumptions, but this is also its biggest disadvantage, be-
for this estimate, so the number by itself, without any cause it uses less information from the data set. In partic-
confidence limits, is of limited informativeness. One ular, it relies exclusively on the most distal markers at
simple method of estimating the variance would be to the ends of the map, and the distance between them, for
just use the variance of the set of drop one lengths for making a prediction of the length of the total mapped
the map to calculate the associated variance of the error region. In contrast, the method of Chakravarti et al.
rate estimate. However, this would be incorrect and uses the entire distribution of intermarker distances for
results in gross overestimation. The reason is that the marker pairs, so it should be less sensitive to changes

involving only the terminal markers.drop one lengths for the various nonterminal markers
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Estimating kilobase per centimorgan on chromosome are often reported in genetic maps at this scale, but this
was necessary in this study to allow investigation of the1L: Our estimate of 200 kb/cM for chromosome 1L

relies on some assumptions: first, that our map covers relationship between micronuclear and macronuclear
maps (Wickert et al. 2000). In general, mapping qualitymost of the chromosome arm. We cannot demonstrate

this with certainty, but we have reasons to believe this degraded gracefully and predictably as the number of
segregants was reduced.may be the case. At the present stage of the genome

project, 95% of the roughly 400 genomic markers identi- The micronuclear map reported here is the first medi-
um- to large-scale genomic mapping that has been donefied to date, and all of those in 1L, fall into linkage

groups (Orias 1998). Nevertheless, there is a formal in Tetrahymena at this resolution and is probably near
the limit of marker density that is currently useful forpossibility that some significant portion of chromosome

1L is inaccessible to our random search for polymorphic classical genetic maps. Beyond this limit, diminishing
returns in map resolution accompany large increases inmarkers. We have no reason to suspect this and are not

aware of its having been reported to be the case for panel size and associated labor required. In addition,
the accuracy of distances for a classical genetic mapRAPD polymorphisms in other organisms.

Second, we have assumed that the frequency of mei- (compared to the actual physical map) is limited in
reality, because real recombination frequency is nonuni-otic recombination is approximately uniform over the

chromosome arm, with no significant “hotspots” or lo- form and does not exactly match any simple model.
The map we have constructed seems to be sufficientlycalized suppression of recombination. This is almost

certainly not exactly correct, as suggested by the ob- accurate to map coassortment groups (Wickert et al.
1999) and thus macronuclear pieces (L. Wong, L. Kli-served marker clustering of the YD19 group. Neverthe-

less, it should be a reasonable approximation at the onsky, S. Wickert, V. Merriam, E. Orias and E. Ham-
ilton, unpublished results) to the micronuclear mapcurrent marker density of our maps, as suggested by the

agreement between observed and predicted in- and eventually to the genome sequence. It is this ma-
cronuclear mapping that in turn may well be the mosttermarker distance distributions (Figure 5) under the

assumption of a uniform random distribution of marker useful for cloning mutant genes of interest.
locations. However, we noted a second possible anomaly We thank Laura Wong for maintenance of the PCR supplies, and
in the form of an apparent discrepancy between the Eileen Hamilton, John Cotton, Ruth Finkelstein, and Tim Lynch for

valuable comments on the manuscript. The National Institutes ofphysical sizes and map lengths of the PM8 and KN3 ARPs
Health supported this work through grant RR 09231. The work re-[compare physical lengths of the ARPs from Longcor et
ported here is being submitted by S.W. in partial fulfillment of theal. (1996) to the map lengths of the same ARPs as seen
requirements for the degree of Doctor of Philosophy in Molecular,

in Wickert et al. (1999)]. Cellular, and Developmental Biology at the University of California,
Our previously reported estimates of micronuclear Santa Barbara.

kilobase per centimorgan for Tetrahymena (see Orias
1998) were probably somewhat low. As we mapped more
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