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ABSTRACT
The accumulation of deleterious mutations due to the process known as Muller’s ratchet can lead to

the degeneration of nonrecombining populations. We present an analytical approximation for the rate
at which this process is expected to occur in a haploid population. The approximation is based on a
diffusion equation and is valid when N exp(2u/s) @ 1, where N is the population size, u is the rate at
which deleterious mutations occur, and s is the effect of each mutation on fitness. Simulation results
are presented to show that the approximation estimates the rate of the process better than previous
approximations for values of mutation rates and selection coefficients that are compatible with the biological
data. Under certain conditions, the ratchet can turn at a biologically significant rate when the deterministic
equilibrium number of individuals free of mutations is substantially .100. The relevance of this process
for the degeneration of Y or neo-Y chromosomes is discussed.

NEW mutations arise continuously within popula- of the least-loaded class can be seen as successive clicks
tions, the vast majority probably being slightly of the ratchet.

deleterious (Crow 1993). An effectively infinite asexual One of the important questions in this process con-
population subject to recurrent deleterious mutations cerns the rate or speed at which it operates, or: how
will achieve an equilibrium resulting from the continu- much time does it take for the ratchet to click one
ous appearance of new mutations opposed by selection notch? Because the degeneration of the Y chromosome
against them: deterministic mutation-selection balance. (Charlesworth 1978, 1996; Rice 1994; Charles-
With independent and identical effects of each muta- worth and Charlesworth 1997, 1998) and the fate
tion, the equilibrium number of mutations in a haploid of asexual populations (Pamilo et al. 1987; Gabriel
randomly mating population follows a Poisson distribu- et al. 1993; Lynch et al. 1993, 1995) may involve the
tion with mean u/s (Kimura and Maruyama 1966; operation of Muller’s ratchet, the quantification of its
Haigh 1978), where u is the per genome mutation rate rate is of great biological importance.
and s is the selection coefficient against a deleterious Haigh (1978) suggested that the most important pa-
mutation. At this deterministic equilibrium, the number rameter for the ratchet mechanism would be n0, because
of individuals free of mutations (the best or “least- it is the loss of the best class that drives the process; the
loaded” class) in a large population of N breeding smaller the n0, the faster the ratchet is likely to be.
adults, is n0 5 N exp(2u/s). Although Haigh suggested an expression [Equation 9a

But random genetic drift plays a role in a finite popula- in Haigh (1978)] for the time between clicks of the
tion, and it may perturb this equilibrium, leading to the ratchet, this is basically a fit to his simulation results.
loss of the best class. In the absence of recombination, Bell (1988) also suggested an expression based on a
and with the reasonable assumption that back mutation fit of the time to extinction of the best class as a function
is negligible for strongly selected mutations, the loss of of n0 (roughly 10 n0). Several attempts toward the quanti-
this class is irreversible and mutations will continually fication of the process have subsequently been made,
accumulate in the population, leading to the decline either using a quantitative genetics approach for esti-
of its mean fitness. This is the process known as Muller’s mating the rate of change of the average number of
ratchet (Muller 1964; Felsenstein 1974). Once the mutations (Pamilo et al. 1987; Gabriel et al. 1993;
best class is lost, the new least-loaded class is now the Lynch et al. 1993; Higgs and Woodcock 1995; Prügel-
one that has one mutation, but this is also subject to Bennett 1997) or using diffusion theory to calculate
stochastic loss, so that a repetition of successive losses the mean time to loss of the least-loaded class (Stephan

et al. 1993; Charlesworth and Charlesworth 1997).
In this article, it is shown that the size of the best class
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equation, for the case n0 . 1, which almost certainly is the difference between the current mean fitness and
the mean fitness at equilibrium.applies to the evolution of the Y chromosome (Charles-

Let us now make the simplifying assumption that theworth 1996), is presented, together with simulations
changes in mean fitness are sufficiently small that theyof asexual haploid populations to check its validity. Ges-
can be approximated by small perturbations from thesler (1995) has derived an approximation that seems
equilibrium value (Stephan et al. 1993). This impliesto work well for the case n0 , 1. Comparisons between
that the system is close to its equilibrium state most ofthe simulation results and the predictions from the ana-
the time, as is supported by our simulations (see Figurelytical expression suggest that the formulas seem to pre-
9). We assume that the perturbations in w are mostlydict the rate of the process better than the previous
due to small fluctuations in the least-loaded class. Thisformulas for a region of parameter space that is of bio-
assumption was employed by Stephan et al. (1993) andlogical interest (Charlesworth and Charlesworth
Charlesworth and Charlesworth (1997), and is jus-1997).
tified in practice by the observation that, for large N,
the distribution among the classes that are present at
any time remains close to the Poisson distribution givenAPPROXIMATION BASED ON THE
by the deterministic equilibrium formula [see Table 1DIFFUSION EQUATION
and Figure 4 of Charlesworth and Charlesworth

We start with a haploid asexual population at equilib- (1997)]. We may express the mean fitness close to equi-
rium under mutation-selection balance, with x0 5 librium as a Taylor expansion in x/x0:exp(2u/s) being the frequency of individuals in the
least-loaded class. The existence of this equilibrium re-
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. (2a)quires that the number of individuals in the best class
(n0 5 Nx0) be .1. When n0 , 1, this equilibrium may

Taking just the linear term in (2a), we obtain annot be approached in a finite population, because it
approximation for the reduction in mean fitness belowrequires the existence of individuals that have a very
its equilibrium value aslow probability of actually being present (Gessler 1995;

Gessler and Xu 1999).
Dw ≈ K 11 2

x
x0
2, (2b)The way the frequency of the best class varies through

time is dictated by mutation taking it below the equilib-
rium value, selection restoring it to that value, and by as previously assumed by Stephan et al. (1993), where
stochastic fluctuations due to drift. We wish to quantify K 5 x0[]w/]x]eq.
how much time it takes for the frequency of the best When the frequency x is above its equilibrium value,
class (from now on denoted by x), with initial value x0, the system responds with a reduction of mean fitness
to reach the value zero. One way to do this is to use a (Dw , 0) toward the equilibrium value, and when the
diffusion equation for the density function of the time opposite happens, so that x goes below x0 (Dw . 0), the
until absorption occurs, subject to the condition that x 5 system responds with an increase in w. The forces under-
0 is the only absorbing state (Ewens 1979, Equations lying the response of the system toward equilibrium are
4.39, 4.40, p. 123). To solve this equation, one has to selection (when x , x0) and mutation (when x . x0),
evaluate the deterministic change (drift coefficient) and which are parameterized by K in our small-perturbation
stochastic variance (diffusion coefficient) in x. model. K can be estimated as follows. If by chance the

Assuming a Wright-Fisher population, the diffusion least-loaded class goes extinct (x 5 0), then the ratchet
coefficient is just the variance due to binomial sampling has clicked and the mean fitness will decline toward a
of N individuals from the previous generation (Stephan new deterministic equilibrium value, (1 2 s)e2u. Then
et al. 1993; Charlesworth and Charlesworth 1997), the net loss of mean fitness due to a click of the ratchet

would be given by Dw ≈ se2u if the distribution instantane-
ously recovered its Poisson equilibrium with a new least-b(x) 5

x(1 2 x)
N

≈ x
N

(1a)
loaded class with abundance n0, after the loss of the
least-loaded class. In practice, stochastic flucuationsassuming x ! 1.
mean that this equilibrium is never achieved exactly.The drift coefficient, representing the expected

In fact, the approach to the neighborhood of equilib-
change in x due to mutation and selection (Stephan

rium takes some time (Haigh 1978), and just after a
et al. 1993; Charlesworth and Charlesworth 1997),

click the new best class is above its equilibrium value,
is

so that Dw , se2u. Haigh (1978) showed that, after a
click, the new least-loaded class rapidly approaches a

a(x) 5
x(e2u 2 w)

w
5 x

Dw
w

, (1b) value close to 1.6 n0, and then the approach to the new
equilibrium value is slower. If this is the case, Equation
2b means that the reduction in mean fitness after a clickwhere w is the mean fitness of the population and Dw
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will not be se2u but z0.6se2u. We thus set K z 0.6se2u

and we test how accurate this approximation is with the
help of simulations (see simulation results below).

We now may write the drift coefficient as

a(x) ≈ 0.6s(1 2 x/x0)x. (2c)

Using these drift and diffusion coefficients, the time
spent in the frequency interval [0, x0] (Ewens 1979,
Equation 4.39) is
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and the time spent in the interval [x0,1] is (Ewens 1979,
Equation 4.40)

Tx0,1 5 #
1

x0

2N
x G(x)




#

x0

0
G(x9)dx9




dx. (3b)

where

Figure 1.—Average time between clicks of the ratchet, 62
G(j) 5 exp322#

j

0

a(z)
b(z)

dz4 5 exp32N0.6s
x0

j1j2 2 x024. SE, for constant s as a function of the population size (as N
increases, u increases so that n0 is maintained constant; s is
set equal to 0.015 ). n0 is 202 for circles and 20.2 for triangles.Using expressions 3a and 3b, and evaluating the inte-
The points joined with a line are the estimated times givengrals numerically for a given population size, mutation
by the approximation presented in the text.rate, and selection coefficient, we obtain the expected

time to loss of the least-loaded class as T(N, u, s) 5
T0,x0

1 Tx0,1. by comparing the probability of survival of each individ-
ual with a pseudorandom number drawn from a uni-
form distribution in the interval [0, 1]. Each run was

SIMULATION METHODS
repeated several times; generally five replicates were

For a given population size (N), genomic mutation performed to obtain the results presented in the next
rate to deleterious mutations (u), and selection coeffi- section.
cient against each mutation (s), haploid asexual popula- Although this simulation procedure does not follow
tions were simulated starting at mutation-selection equi- the fate of each mutation at a particular locus, which
librium (Kimura and Maruyama 1966); i.e., the is extremely time consuming, it gives the same results as
number of individuals in the class with m mutations is the multilocus stochastic simulations of Charlesworth

and Charlesworth (1997) as far as the estimation of
nm 5 N

exp(2u/s)
m! 1us 2

m. the time between clicks of the ratchet is concerned, for
all parameter sets tested (results not shown).

Assuming that the sequence of events is mutation,
reproduction, and selection, populations were then run

SIMULATION RESULTS
for 100 generations. After this initial period, popula-
tions were run for .2000 generations and up to 100,000 If the loss of the least-loaded class is the determining

factor in driving the ratchet (Haigh 1978), one wouldgenerations for conditions under which the ratchet
clicks slowly, so that the average time between clicks of expect that the time between clicks of the ratchet would

stay approximately constant over a range of parameterthe ratchet could be measured. Every generation, the
number of mutations in every individual is counted and values that keep n0 constant. Figures 1, 2, and 3 show

the simulation results for several parameter sets chosenthe number of individuals with the least number of
mutations (least-loaded class) is recorded. If, at a given such that n0 stays constant.

In Figure 1, s is kept constant at 0.015, and N changesgeneration, the number of mutations in the least-loaded
class increases, the ratchet has clicked. To form a new with u to keep n0 constant (either 20.2 or 202). We

observe that the time between clicks of the ratchet doesgeneration, individuals are sampled randomly from the
previous generation, then subjected to the occurrence not change significantly over an order of magnitude

change in N. The increase in N seems to be compensatedof mutations sampled from a Poisson distribution with
mean u, and assigned probabilities of survival as (1 2 s)k, by the increase in u. In Figure 2, u is kept constant, at

0.1, and N changes together with s to keep n0 constantwhere k is the number of mutations that an individual
carries. A new generation of N individuals is constructed (with the same values as in Figure 1). Although for small
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Figure 2.—Average time between clicks of the ratchet, 62
SE, for constant u as a function of the population size (as N Figure 3.—Average time between clicks of the ratchet, 62
increases, s decreases so that n0 is maintained constant; u is SE, for constant n0 as a function of the selection coefficient
set equal to 0.1). n0 is 202 for circles and 20.2 for triangles. (as s increases, u increases so that u/s is constant). The popula-

tion size is 30,000 for circles (n0 5 202) and 3000 for triangles
(n0 5 20.2).

values of n0 there seems to be no significant difference
in the speed of the ratchet over an order of magnitude
change in population size, for a higher value of n0 the time for small population size, deserve some comment.
difference is evident: as s becomes large (small N in the Other things being equal, decreasing s should speed up
plot), the speed of the ratchet is greatly reduced. For the ratchet and decreasing u should slow it down. In
example, for a population size of 705 individuals, with the case of Figure 3, both s and u are changing to keep
a selection coefficient of 0.08, we did not observe any u/s constant, so that a minimum may occur, due to the
click over 50,000 generations, but for a population of fact that the dependence of the time on the mutation

rate is different from that on the selection coefficient.19,000 individuals, with s 5 0.022, the average time for
a click is z1560 generations. In Figure 3, N is kept In the region where s is very small, so that each mutation

has very little effect on fitness, u is also very small. Thisconstant and u changes with s (the mean equilibrium
number of mutations, u/s, has the value 5), so that n0 means that the probability of a mutation occurring is

very small, and the force of mutation that drives individ-is constant. We see that, for either small u and small s
or for large u and large s, the speed of the ratchet is uals from the best class to the next class is greatly re-

duced, leading to a slower ratchet. In the region wheregreatly reduced.
These results show that, as noted previously by Ste- the mutation rate is large, the selection coefficient is

also large, so that although mutations keep appearingphan et al. (1993), the size of the best class is not suffi-
cient to predict the speed of the ratchet, because the at a high rate, selection is so efficient in restoring the

best class that a great number of individuals come fromratchet can turn at very different speeds for a constant
n0. One observes that for the same n0, keeping N con- the least-loaded class, which leads to a slower ratchet.

One observes from the comparison of the theoreticalstant and varying u and s so that u/s is constant, there
is a value of u and s for which the time of the ratchet formula and the simulation results that, as long as s is not

extremely small or large (Figures 1–3), the predictionshas a minimum, i.e., for the same n0, increasing s can both
slow down and speed up the ratchet (see the U-shaped seem to approximate the simulations reasonably well,

especially when N is big (or n0 is large). If N is small, itcurves in Figure 3). This shape is not predicted by any
of the previous formulas. In contrast, such a minimum is more difficult for the system to maintain itself close

to equilibrium, because drift is dominating. In this case,is predicted by the approximation presented here, al-
though in the region of very small u and very small s the an approximation based on small perturbations be-

comes inadequate.approximation gives lower times than the simulations. It
also underestimates the time between clicks of the We now ask how the speed of the ratchet changes

with population size, for a given mutation rate and aratchet for small population size (or small n0).
The possible reasons why this minimum is observed, constant selection coefficient. The simulation results

and the expected times calculated with the various ap-and why the present approximation underestimates the
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Figure 6.—The same as in Figure 4, but for a mutation
Figure 4.—Mean time between clicks of the ratchet (Trat), rate of 0.04 and a selection coefficient of 0.01.

62 SE, as a function of n0 (this is varied by varying N). The
mutation rate is 0.075 and the selection coefficient is 0.02.
The results of the approximations of Charlesworth and

(Charlesworth 1978, 1996; Charlesworth andCharlesworth (1997) are labeled Tc and of Stephan et al.
(1993) are labeled Ts and Ts14 for their Equations 8 and 14, Charlesworth 1997). The values of u 5 0.04 and s 5
respectively. The result from the approximation presented 0.01 might be considered reasonable for the case of a
here is labeled Tp. Drosophila chromosome arm, if widely accepted esti-

mates of mutational parameters are used (Charles-
worth and Charlesworth 1998; Drake et al. 1998).proximations discussed above are shown in Figures 4–6,
In each figure, the time between clicks of the ratchetfor different values of N, u, and s, as a function of n0.
is plotted against n0, for a fixed value of u and s, so thatThe mutation rate and selection coefficient were chosen
an increase in n0 is solely due to an increase in N. Theto lie in the parameter range that may be most rele-
population size varies in the interval [1000; 13,500] invant to the problem of the evolutionary degeneration
Figure 4, [1000; 10,000] in Figure 5, and [1000; 30,000]of an incipient Y chromosome or neo-Y chromosome
in Figure 6.

One observes that the approximation of Charlesworth
and Charlesworth, contrary to what was previously
thought (Charlesworth and Charlesworth 1997;
Orr and Yuseob 1998), greatly underestimates the
speed of the ratchet for large population sizes in the
parameter range considered here. Although Stephan et
al. could not establish exactly the range of validity of
their two approximations, they suggested use of their
Equation 8 for predicting the speed of the ratchet for
the range of selection coefficients considered here.
From comparison with the simulations presented, we
see that their Equation 14 seems to describe the rate
of change with N of the time between clicks of the
ratchet better than their Equation 8, although it always
underestimates the absolute time for this parameter
range.

In simulations done to check the change in the ratch-
et’s speed with different mutation rates (Figure 7), we
can see that the range of parameters for which Stephan
et al.’s Equation 14 gives a better quantification of the
process than their Equation 8 is not only dependent onFigure 5.—The same as in Figure 4, but for a mutation

rate of 0.05 and selection coefficient of 0.015. a large population size and strong selection, but is also
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Figure 9.—The fluctuations in the size of the least-loaded
class through time, for N 5 10,000, u 5 0.075, and s 5 0.02,Figure 7.—The time between clicks of the ratchet, 62 SE, for a single simulation run. The dashed line indicates theas a function of the mutation rate (N 5 10,000, s 5 0.015). equilibrium value of the least-loaded class.

modulated by the mutation rate. In simulations done Equation 14 is based on the assumption that the popula-
to check the change of the ratchet’s speed with different tion size is large enough that the change in mean fitness
s (Figure 8) we see that, for a given N and u, as s in- of the population is sufficiently small to be approxi-
creases, the estimated time given by their Equation 14 mated by small perturbations and that selection is strong
becomes an underestimate. In fact, Stephan et al. stud- enough that the process is mostly trapped in the extinc-
ied the process by dividing it in two separate phases: tion phase. This assumption is not supported by our
the establishment phase, during which the new least- simulations (see Figure 9). The time spent in the estab-
loaded class reaches a value close to that of the determin- lishment phase is the one above the dashed line; the
istic equilibrium, and the extinction phase, during time spent in the extinction phase is the one below this
which the least-loaded class becomes extinct. Their line.

When deriving our approximation, we assumed that
the net loss of mean fitness due to a click of the ratchet
would be K ≈ 0.6se2u, because the system did not re-
cover its new equilibrium instantaneously. In Figure
10A, we plot the mean fitness of the population as a
function of 1 2 x/x0 for a set of simulation runs with
parameters N 5 10,000, u 5 0.04, s 5 0.01, after a click
of the ratchet. As we assumed that the mean fitness
of the population could be approximated as a linear
function of 1 2 x/x0, the slope of the linear regression
line plotted in the figure corresponds to the value of K
in the theoretical approximation. The value assumed
in the derivation (K 5 5.76 3 1023) agrees well with
the one from the regression. However, the agreement
is not good for a population size of only 1000 (Figure
10B). This can be attributed at least to two factors:
either the population size is so small that we cannot
approximate the changes in mean fitness by small per-
turbations and/or the value of K is different from the
one we are assuming. If we calculate the time by substi-
tuting the value of K from the linear fit in the theoretical
expression, we find that the time obtained is still belowFigure 8.—The time between clicks of the ratchet, 62 SE,
the one measured in the simulations, so that an incor-as a function of the selection coefficient (N 5 10,000, u 5

0.075). rect value for K is not the only source of the discrepancy.
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proximately attained. Gessler (1995) has shown that
this balance will not be met for conditions under which
n0 , 1, because selection is too weak to counter mutation
pressure. In this case, the distribution of the number
of mutations is not Poisson but is close to a shifted
negative binomial distribution, whose parametrization
allows an estimation of the rate of the ratchet.

For n0 @ 1, the approximation for the advance of the
ratchet based on a diffusion equation presented here
seems to make a better prediction of the time between
clicks of the ratchet than the previous approximations,
for moderate selection coefficients in a range that is
compatible with the biological data, provided the popu-
lation size is not too small, so that the stochastic fluctua-
tions are not too violent. As noted before by Stephan
et al. (1993), for intermediate selection coefficients the
establishment phase and the extinction phase are
blurred and a separate analysis of these two phases does
not well predict the outcome. An approximation based on
the assumption that the mean fitness of the population
is affected solely by fluctuations of the least-loaded class
(w ≈ (x 2 x0) 1 e2u) (Charlesworth and Charles-
worth 1997) seems to approximate the simulations
reasonably well for a small equilibrium size of the best
class (although this is highly dependent on the mutation
rate), but greatly overestimates the time for a click when
n0 is large or u is low.

The observation that, for a constant n0 and constant
s, we did not observe significant differences in the speed
of the ratchet, over an order of magnitude change in
the population size (Figure 1), suggests that n0s is an
important parameter, although the expression for the
average time between clicks of the ratchet is not an
explicit function of n0s. For the parameter range consid-
ered here we observe that an increase of 10-fold in

Figure 10.—Population mean fitness as a function of 1 2 n0s caused a decrease of z10-fold in the speed of the
x/x0 for a set of simulation runs with parameters u 5 ratchet.
0.04, s 5 0.01, N 5 10,000 (A) and N 5 1000 (B). The line Y and neo-Y chromosome degeneration: Because anplotted is a linear regression line whose slope represents the

incipient Y chromosome, or a neo-Y chromosome re-value of K assumed in the theoretical approximation.
sulting from an autosome fusion or translocation, that
fails to recombine with its homologue in the heteroga-

DISCUSSION metic sex is vulnerable to the ratchet, it is interesting
to calculate the expected rate of its operation underSpeed of the ratchet: The equilibrium size of the
the above approximation. The erosion of a proto-Y chro-least-loaded class, n0, is usually regarded as the chief
mosome is very similar to the degeneration of a haploidparameter that determines the speed of the ratchet
asexual population if one replaces s by hs, where h is the(Haigh 1978; Bell 1988; Gessler 1995; Charles-
dominance coefficient and s is the selection coefficientworth and Charlesworth 1998). The simulations
against homozygous mutations (Charlesworth andpresented here show that this parameter is not sufficient
Charlesworth 1997). In the case of Drosophila, if onefor this purpose, as noted previously by Stephan et al.
assumes an effective population size of males of 5 3(1993). For example, for an equilibrium size of the best
105, a deleterious mutation rate per Y chromosome ofclass of z200 we can get average times for one click of
0.04, and an average selection coefficient against a het-the ratchet varying from 900 to 8000 as a result of
erozygous mutation of 0.01, the present approximationchanges in selection coefficient (0.015–0.04) and muta-
gives a value of z3 3 1025 generations for one clicktion rate (0.075–0.2).
of the ratchet; if one sets 5 generations per year forThe parameter space considered here has been con-
Drosophila, this will correspond to 6 3 1024 years perstrained to ensure n0 @ 1, so that the Poisson distribution

expected under mutation-selection balance can be ap- click. However, if the mutation rate is slightly higher,
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TABLE 1say 0.06, this time would decay to 40,000 years per click.
Our approximation suggests that an increase in the Time for a click of the ratchet for a hypothetical
mean number of mutations from 4 (n0 5 9158) to 6 (n0 5 neo-Y chromosome
1239), just due to an increase in the mutation rate,
increases the speed of the ratchet by 20 orders of magni- u hs n0 Time n0hs
tude. This comes from the fact that there is a more or

0.03 0.005 1239 2 3 104 6less exponential increase of the time between clicks of 0.04 0.005 168 697 0.84
the ratchet with an increase in n0 for a given selection 0.04 0.008 3369 1 3 109 27
coefficient. On the other hand, for a mutation rate of 0.04 0.01 9158 3 3 1025 92
0.04, if hs is z0.005, n0 will be 168 and the estimated 0.05 0.01 3369 4 3 1010 34

0.06 0.01 1239 2 3 105 12average time for a click is 697 generations. Because
0.07 0.01 456 4 3 103 5every click of the ratchet in a haploid population indi-
0.07 0.015 4702 7 3 1019 71rectly leads to the fixation of a deleterious mutation in
0.08 0.015 2414 1 3 1011 36the whole population (Charlesworth and Charles- 0.09 0.015 1239 5 3 106 19

worth 1997), this means that if the ratchet is clicking 0.1 0.015 636 3 3 104 10
every 697 generations, in a period of 1 million years we 0.1 0.02 3369 9 3 1018 67
would expect an incipient Drosophila Y chromosome 0.13 0.02 752 5 3 105 15
to become fixed for z7170 deleterious mutations (again

Average time for a click of the ratchet (in generations),
assuming 5 generations per year). predicted by the proposed approximation, for a population

The neo-Y chromosome system of Drosophila miranda of 500,000 neo-Y chromosomes with various mutation rates
and selection coefficients.constitutes an excellent clock to set the time scale over

which the degeneration of a nonrecombining region is
supposed to occur. The time estimated for the origin

is around one order of magnitude less than that forof the chromosomal rearrangement generating the
Drosophila (Charlesworth and Charlesworthneo-Y in D. miranda is z1.25 million years ago (mya; S.
1997). There is some evidence that the evolution of theYi, personal communication). The neo-Y shows evi-
mammalian Y chromosome has been punctuated by atdence for degeneration, and the neo-X is partially dos-
least four events that suppressed recombination be-age compensated (Steinemann et al. 1993; Steinemann
tween the X and the Y (Lahn and Page 1999), the firstand Steinemann 1998, 1999). These observations seem
event having occurred z300 mya. If the deleteriousto suggest that, if there is a general process responsible
mutation rate and average effect of mutations for afor the degeneration of the nonrecombining segment
mammalian proto-Y chromosome were the same asof the genome such as Muller’s ratchet, it is expected
those estimated for the Y in Drosophila, then with ato show its signature over a time scale of the order of
population of 5 3 104, proto-Y chromosomes would106 years.
degenerate due to this process at an average rate of 1In Table 1 we show the expected time for a click of
click every 40 thousand generations, for a deleteriousthe ratchet, under the approximation proposed here,
mutation rate of 0.04. Our ignorance of the value offor a population of half a million males for various
these parameters does not allow any final conclusionvalues of u and hs. We observe that, for these values for
about the ratchet being a leading process in the degen-the average effect of a mutation, the time for a click of
eration of the mammalian Y, although it seems morethe ratchet becomes biologically irrelevant when n0hs
likely than for the Drosophila case.goes above 15. If the average heterozygous effect of a

Because of the assumptions we have made to derivenonlethal deleterious mutation is of the order of 1%
these results, some caution has to be taken considering(Charlesworth and Hughes 1999), under the above
their implications. First we must note that we have as-approximation, for n0 , 1500 the ratchet may play a
sumed, for simplicity, that all deleterious mutations haverole in the degeneration of the neo-Y, but its rate is
the same effect. However, recent work has suggestedprobably too small to explain the degeneration observed
that an equal effect of mutations assumption does notif n0 . 1000. For the ratchet to be the main process
fit the data from mutation accumulation experiments,causing the degeneration of the neo-Y, n0 has to be
which are designed to measure the mutation rate toprobably ,500. In the case of lethal mutations, which
deleterious mutations and the selection coefficientsprobably occur at a rate of z0.0025 for an incipient Y
against those mutations (Keightley 1996; Davies et al.chromosome (Fry et al. 1999) and with hs of z2%
1999; Fry et al. 1999). The occurrence of many muta-(Crow 1993), the time for a click of the ratchet in a
tions with small effects, and a few with large effects,population of half a million chromosomes is biologically
seems to be more consistent with the results. If this isirrelevant.
the case, the ratchet is expected to turn at a muchMuller’s ratchet is a priori more likely to be an impor-
higher speed than for a single selection coefficient oftant force in driving the degeneration of mammalian Y

chromosomes, given that their effective population size the order of 1% (Gessler and Xu 1999), but each turn
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quency of cryptic deleterious mutations in Caenorhabditis elegans.will cause a very small decline in mean fitness if many
Science 285: 1748–1751.

mutations have very low selection coefficients. It is likely Drake, J., B. Charlesworth, D. Charlesworth and J. F. Crow,
1998 Rates of spontaneous mutation. Genetics 148: 1667–1686.that the degeneration of the Y chromosome and the

Ewens, W. J., 1979 Mathematical Population Genetics. Springer-Verlag,evolution of dosage compensation are driven by selec-
Berlin.

tion to increase the activity of the X relative to the Y in Felsenstein, J., 1974 The evolutionary advantage of recombination.
Genetics 78: 737–756.males, in response to the decline in mean fitness of the

Fry, J., P. Keightley, S. Heinsohn and S. Nuzhdin, 1999 NewY (Charlesworth 1996; Charlesworth and Charles-
estimates of the rates of mildly deleterious mutation in Drosophila

worth 1997). The strength of such selection is deter- melanogaster. Proc. Natl. Acad. Sci. USA 96: 574–579.
Gabriel, W., M. Lynch and R. Bürger, 1993 Muller’s Ratchet andmined by the rate of this decline and will be very weak

mutational meltdowns. Evolution 47: 1744–1757.if it is small.
Gessler, D., 1995 The constraints of finite size in asexual population

We have also assumed independence of mutational and the rate of the ratchet. Genet. Res. 66: 241–253.
Gessler, D., and S. Xu, 1999 On the evolution of recombinationeffects and it has been shown that epistasis slows down

and meiosis. Genet. Res. 73: 119–131.the speed of this process (Charlesworth et al. 1993; Haigh, J., 1978 The accumulation of deleterious genes in a popula-
Kondrashov 1994). However, if there is in fact a distri- tion—Muller’s ratchet. Theor. Popul. Biol. 14: 251–267.

Higgs, P., and G. Woodcock, 1995 The accumulation of mutationsbution of mutational effects with a more or less expo-
in asexual populations and the structure of genealogical trees innential shape, epistasis will not stop the ratchet the presence of selection. J. Math. Biol. 33: 677–702.

(Butcher 1995). Keightley, P., 1996 Nature of deleterious mutation load in Dro-
sophila. Genetics 144: 1993–1999.
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