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ABSTRACT

Tractable forms of predicting rates of inbreeding (AF) in selected populations with general indices,
nonrandom mating, and overlapping generations were developed, with the principal results assuming a
period of equilibrium in the selection process. An existing theorem concerning the relationship between
squared long-term genetic contributions and rates of inbreeding was extended to nonrandom mating and
to overlapping generations. AF was shown to be ~%,(1 — o) times the expected sum of squared lifetime
contributions, where o is the deviation from Hardy-Weinberg proportions. This relationship cannot be
used for prediction since it is based upon observed quantities. Therefore, the relationship was further
developed to express AF in terms of expected long-term contributions that are conditional on a set of
selective advantages that relate the selection processes in two consecutive generations and are predictable
quantities. With random mating, if selected family sizes are assumed to be independent Poisson variables
then the expected long-term contribution could be substituted for the observed, providing % (since o =
0) was increased to %. Established theory was used to provide a correction term to account for deviations
from the Poisson assumptions. The equations were successfully applied, using simple linear models, to
the problem of predicting AF with sib indices in discrete generations since previously published solutions

had proved complex.

RAY and Thompson (1990) proved a fundamen-

tal relationship between the sum of squared long-
term genetic contributions of ancestors and rates of
inbreeding for random mating populations in discrete
generations. One consequence of this relationship was
that rates of inbreeding were tied to the numerator
relationship matrix for the first time. This narrowed
the conceptual gap between the central parameter for
genetic evaluation of individuals using best linear unbi-
ased prediction and one of the key properties of a breed-
ing scheme. Another important consequence was to
set out in a formal way a model for the mechanics of
inheritance of selected advantage, a concept that Rob-
ertson (1961) had introduced but had left unclarified.
An achievement of the methods of Wray and Thomp-
son (1990) was to obtain, for the first time, accurate
predictions of AF in mass selection through modeling
pathway extensions. However, this was done by using a
recursive algorithm, so that although the mechanics
were clear, the overall structure of the prediction re-
mained obscure.

Woolliams et al. (1993) advanced the understanding
of the structure of the prediction by obtaining a closed
form for the prediction of AF. It was shown to have terms
involving variances of family size in one generation, with
additional terms for the proliferation or reduction of
ancestral lines over many generations that could be
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predicted as a result of the selective advantage of the
ancestor. Furthermore, it was clear that under equilib-
rium conditions, the model would lend itself to geomet-
ric summation of terms across generations. This led to
simple forms for the expected long-term contribution
of an ancestor. Wray etal. (1994) extended the methods
to index selection, although the form of the model is
a hybrid of the approach of Woolliams et al. (1993)
and Hill (1972), since the conditional arguments of
pathway extension that had been carried out for mass
selection were found to be too complex for index selec-
tion. Nevertheless, worthwhile predictions were made
available in a tractable form.

Santiago and Caballero (1995) used an approach
that made no direct reference to the theory of contribu-
tions to predict AF in mass selection. They obtained a
neater closed form for AF than that derived by Wool-
liams et al. (1993) through an argument based on total
drift, relating the change through selection to loss of
genetic variance. Unlike the previous work of Wray and
Thompson (1990) and Woolliams et al. (1993), who
had considered the population in relation to an unse-
lected base generation, Santiago and Caballero
(1995) developed predictions based upon equilibrium
genetic variance. Nomura (1996) extended the ap-
proach of Santiago and Caballero (1995) to mass
selection with overlapping generations but with the im-
portant restriction that the males and females selected
from a cohort remain the same in both number and
identity throughout the breeding life of the cohort.

This article examines the issues raised by the work
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TABLE 1

Notation used to derive Equations 1-27

t,u Time variables

ne, q Number of breeding categories, indexed by q

m, f Denotes the two sexes in discrete generations,
i.e., ¢ = m (male) or f (female)

Iy Tig) Observed long-term genetic contribution of in-

dividual i (in category q)

r.u(a, ©) The genetic contribution of individual i born
at time u to selected parents of sex q born at
time t

F., AF Inbreeding coefficient at time t, and rate of in-
breeding

® Deviation from Hardy-Weinberg equilibrium

Xy X Number of parents in category g and a simple
monoecious population, respectively

C.(t) Sum of squared contributions for individuals
born at time u to selected parents at time t

C Converged sum of squared contributions, inde-
pendent of time in an equilibrium

L Generation interval

Sio) Set of selective advantages for individual i in
category q

Wit Expected contribution of i in category q condi-
tional upon s

) Variance of contribution of i in category g con-
ditional upon s,

n; Number of selected offspring of i

Oni Expected number of selected offspring of i con-
ditional upon s

Voi Variance of the number of selected offspring of
i, conditional upon s

Vi devi Deviation of V,,; from Poisson, i.e., Vygevi = Vii —
en,i

o, By Linear model for g = o + Bq(si) — )

described above. First, the relationship between AF and
the realized long-term genetic contributions is extended
to include nonrandom mating and overlapping genera-
tions. Second, an important result for the prediction of
AF is developed by demonstrating a relationship be-
tween AF and the expected squared long-term contribu-
tion conditional on the selective advantages for random
mating. Finally, as an example of application, predic-
tions of AF for sib indices, previously considered by
Wray et al. (1994), are reexamined using the equilib-
rium methods for expected long-term contributions de-
veloped by Woolliams et al. (1999) and compared to
results from simulation.

RELATIONSHIP BETWEEN AF AND LONG-TERM
GENETIC CONTRIBUTIONS

This section discusses the relationship between AF
and realized long-term genetic contributions. In doing
so, it derives the expected increase in homozygosity at
the level of a neutral locus in contrast to the matrix
method of Wray and Thompson (1990). The notation
that is used is shown in Table 1. The model for the

population is assumed, for the present, to have discrete
generations with X, male parents and X; female parents.
For calculation of inbreeding coefficients every allele is
considered as unique in the base population (t = 0).
It does not matter if the base generation has the struc-
ture of an unselected and unrelated population.

Discrete generations: Consider one of these alleles in
the base population at a neutral locus (say allele B). Let
the gene frequency at time t, in the parents of sex g
that have been selected to produce generation t + 1,
be denoted by Pg(q, t). The gene frequency can be
described in terms of genetic contributions similar to
Equation 1 of Woolliams et al. (1999). Let A; be the
gene frequency of an allele B in individual i, where A; =
1, %, or 0 if i is BB, B-, or --, respectively (where - repre-
sents any other allele), then the individual gene frequen-
cies can be treated as breeding values for frequency. The
average of the gene frequency in the parents of sex g
in generation t is given by

t
PB(ql t) = 2 ri,O(qv t)Ai,O + 2 2 ri,U(ql t)ai,ul (l)
i u=1 i

where r;,(q, t) is the genetic contribution of individual
i born at time u to the parents of sex q at time t, with
breeding value for frequency of allele B given by A,
and Mendelian sampling terms a;, = A, — %(Age +
Asm). Equation 1 separates out the base generation,
which provides the foundation alleles, and subsequent
generations, which influence the frequency of the allele
through the Mendelian sampling of their parent alleles.
The variance of the Mendelian sampling terms will de-
pend on Ay, and Agm; Var(a;,) = 0 if both Ay and Agam
are homozygotes, % if they are both heterozygotes, or
Y6 otherwise. Since B is unique, A, is 0 for all individuals
except for one individual for which A, = %. The genetic
contribution of an individual to the generation of its
birth is r,,(m, t) = X' if i is male or 0 if i is female, and
r.(f, t) = X¢tifiis female or O if i is male.

Initially assume that there is random mating. For any
generation the probability of homozygotes for B is ob-
tained from the product of the gene frequencies in the
male and in female parents and is Pg(m, t)Ps(f, t). The
inbreeding coefficient F, for the neutral locus is then
the sum over all distinct alleles at the locus,

Fo= 23 2 ro(m, t — Drio(f, t = DAY

alleles i

t—1
+ E 2 2 ri,u(mv t— 1)ri,u(f1 t— 1)a%u: (2)
alleles y=1 i

where r;,(q, t — 1) is the average contribution to parents
of sex g at time t — 1. (Note the breeding values and
Mendelian sampling terms will depend on the allele but
this dependence has not been made explicit to spare
notation.) For each allele the cross-product termsin A;,
A, are zero since A;, = 0 except for a single individual.
Since the Mendelian sampling terms from different in-
dividuals are independent of all other terms for a neu-
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tral locus, all cross-products of the Mendelian sampling
terms are zero.

More precisely, for each allele and each ancestor, the
term Ziri (M, t — D (f, t — 1)a?, should be the sum of
products of contributions of the ancestor to each male
and female mating pair:

fu@(m), t = Dri,(5*(F), t — Dalde.  3)
i mates (j(m),j*(f))
This will account for any nonrandom mating of parents.
For a neutral locus, the covariance between r; and g
will be 0 (Wool liams and Thompson 1994; Wool liams
et al. 1999), and the expectation of Equation 3 is
E[Zi Zmaes ey (M), t — Driy(G*(F), t — DIE[@L].
Let the first of these, the expectation of the cross-prod-
ucts of contributions to mates, be C,(t — 1). Note that
(i) Ci_i(t — 1) = Osince an individual without offspring
cannot contribute to both sexes and (ii) the first term
in Equation 2 is %Cy(t — 1) since A has a value %, for
each of its two alleles and 0 otherwise.

Assume equilibrium values for (i) the deviation from
Hardy-Weinberg frequencies arising from the nonran-
dom mating (w, equivalent to «, of Caballero and
Hill 1992) and (ii) AF, attained by generation 2 (this
assumption is removed later); then Equation 2 can be
further simplified using results given in appendix a,
namely, Z.ee E[a2,] = ¥ foru = 1 and %(1 — w)(1 —
AF)'~1 for u = 2. Therefore,

E[FH—l] = 1/2Co(t) + 1/4C1(t)
t—1

£ S0 - )@ — ARG, @)
E[F] = %Co(t — 1) + %C(t — 1)
£ YU - 0)d - ARG - 1), (5)

Subtracting (5) from (4) and rearranging terms,
E[Fi1 — F] = %Co(t) — %Co(t — 1)
+ ¥Ci(t) — YUCi(t — 1)
+ (1 — 0)(1 — AF)Cy(D)

£ S0 - w)d — ARy

X LA = ARG, () — Gt — D]. (6)

Assuming equilibrium, then a steady state of pedigree
developmentwill occur and the expectation of the cross-
products will be determined by the number of genera-
tions over which they have developed, i.e., C,(t) =
Cy,-1(t — 1) since both terms represent contributions
t — u generations after the birth of the ancestor. This
is not a strong assumption in the context of the problem
since in the absence of an equilibrium there would be
no single AF to predict.

Therefore, the terms in C,(t) can be modified to terms
in C,_4(t — 1), and each term of the sum within the

square brackets of Equation 6 can be reduced to
—AFC,(t — 1). After repeating this process for the C,(t)
term [and temporarily neglecting the term in wAFC,(t —

DI,
E[Fu: — F] = %Co(t) — %Co(t — 1) + Y%Cu(D)
— YoCy(t — 1)
— AF [%Cu(t — 1)

t—2

+ SV — 0)(1 — AF)e

X Gyt — DI Q)

For large enough t, the terms in C,(t) will converge for
a given u. Therefore, %,Cy(t) = %Co(t — 1), and %,Cy(t) —
YoCi(t — 1) =%(1 — 0)Cy(t — 1); then by adding and
subtracting the term %AFCy(t),

E[Fi1 — Fd = %AFCo(t — 1) + (1 — w)Cy(t — 1)

t—2
+ 3% - ) — AF)u
u=2

X Gyt — DI ®)

Finally, note E[F,, — F] = AFE[1 — F] and that the
term in square brackets in Equation 8 is E[F], giving

AF =¥ = 0)Ci(t — DL - %CMOT ™ (9)

This result holds for t large enough for contributions
from early generations to have converged. If it is as-
sumed that the base generation used for defining the
inbreeding coefficients was chosen to be part of a period
of equilibrium, then Cy(t — 1) = Cy(t) = C,

AF = (1 — 0)C[1 — %C] = %(1 — »)C, (10)

where C is the sum of squared converged contributions
for a generation, chosen arbitrarily within the period
of equilibrium. Including the term neglected between
Equations 6 and 7 would replace [1 — %C] ! by [1 —
% + %)C] L. For random mating, omitting the term
[1 — %C] ! leads to an underestimate with a fractional
error of ~¥%,C, which in turn is ~2AF.

Since C = E[ZZmates (jmyj=ryliu(1(M), 1) riu(J*(f), D]
for large u <t, forany i the termsr;,(j(m), t) and r;,(j(f),
t) converge to the same value for all j in generation t
providing the population mixes. This value will be the
long-term contribution of ancestor i to the population,
denoted by r;. This will occur with or without random
mating. Thus C = E[Zir?] for a generation of ancestors,
which leads to

AF = Y(1 — ) E[Er?} (11)

E[AF] = 7%(1 — @)(XnE[rfm] + XE[rin]D). (12)

In Equation 12, the expectations are conditional on the
individual i being a selected ancestor; however, since
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r, = 0 for an unselected ancestor, Equation 12 can also
be given as

E[AF] = 7(1 — )(TwElrim] + TELriHD. (13)

where T, and T; are the number of candidates for selec-
tion in each sex and the expectation is for a candidate
(i.e,, it is not conditional on i being selected). (E[AF]
is used in Equations 12 and 13, rather than simply AF,
to emphasize that the result is an expectation over repli-
cate populations.)

This result was obtained for ® = 0 by Wray and
Thompson (1990) but the derivation differs in several
aspects. First, in the derivation of Wray and Thompson
the base was unselected and therefore not in equilib-
rium at the start of the selection process, and this led to
an impression that the contributions used for estimating
rates of inbreeding must be the generation after an
unselected base. It is now evident that the choice of
generation on which the estimate is obtained is arbitrary
except that it is at the start of some period of local
equilibrium during which some “equilibrium AF” may
exist. Second, the derivation using the probability of
homozygosity for an assumed allele is of value since the
proof of Wray and Thompson (1990) is heavily based
upon the properties of the numerator relationship ma-
trix. Third, it extends the result to incorporate nonran-
dom mating, although the result was given without proof
by Woolliams and Thompson (1994). Caballero and
Hill (1992) noted that the result of Wray and Thomp-
son (1990) was a poor predictor of AF with nonrandom
mating and it is now clear why this was so.

Even though the development of the pedigree may
be in equilibrium (which will imply the genetic variance
being selected upon is in equilibrium) this does not
imply that equilibrium values of w and AF for the alleles
defined in the arbitrary base are immediately attained.
Equation 4, using appendix a, assumes that these pa-
rameters were in equilibrium for the Mendelian sam-
pling in generation 2. However, the following argument
shows that this does not affect the result. Assume the
equilibrium conditions have not been attained by gener-
ation 2; then for this generation plus a small number
of generations following (i.e., up to attainment of equi-
librium) there will be terms of the form 8C,(t) in Equa-
tion 4 and 8C,(t — 1) in Equation 5. Providing t is
sufficiently large compared to the period of attainment,
these terms will cancel in Equation 6 since C,(t) is a
convergent series. Thus Equations 10-13 will hold for
the equilibrium values of w and AF.

Overlapping generations: If AF is taken per unit time
then the structure of the preceding proof holds. The
reduction in the variance of the Mendelian sampling
term over initial cohorts, before an equilibrium AF/
unit time is established, is not straightforward since it
will depend upon the age structure of the population;
but the previous argument used to overcome deviations
from equilibrium can be applied. However, one distinc-

tion in overlapping generations is that the base genera-
tion will contain the equivalent of L cohorts, where L
is the period of time over which the long-term contribu-
tions sum to one, since this is the period required for
the population to turn over a generation for those genes
destined to remain in the population in the long-term.
Woolliams et al. (1999) show this genetic generation
interval is different from the average age of the parents
when there are selection advantages between groups
(see also Bijma and Wool liams 1999). To balance (8)
there is a need to add and subtract terms of magnitude
Y,Co(t) (AF/generation) or equivalently %,Co(t)L (AF/
unit time), where L is the generation interval. Thus
the error term in Equation 10 is [1 — %CL]%, and
consequently ignoring this term results in an underesti-
mate with a fractional error of 2 X (AF per generation).
Equation 11 is obtained by summing over all individuals
born in a single cohort. With overlapping generations,
individual ancestors within cohorts will have different
life histories, since they will be used at different breeding
ages or for different purposes. If X, is the number of
individuals with a lifetime breeding profile categorized
by g, then the approximation will be

E[AF/unittime] = 7,(1 — w) X XE[riyl, (14)

categories

where the expectations are over the squared contribu-
tions from a single cohort and are conditional on selec-
tion in category g. Although the approach is different,
Equation 14 is equivalent to the result of Hill (1972,
1979) when random selection and random mating is
assumed. However, Equation 14 clearly shows that the
rate of inbreeding is related to the sum of squared
lifetime contributions irrespective of selection and non-
random mating.

RELATIONSHIP BETWEEN AF AND EXPECTED
CONTRIBUTIONS

Since AF is proportional to E[r?], the task of predict-
ing AF in selected populations would be made easier if
tractable and general methods for calculating expected
squared contributions were available. However, E[r?] =
w? + o? and consequently there is a need to predict
both the mean and variance of the contributions. Com-
monly, the prediction of means is a simpler task than the
prediction of variances. General methods for predicting
expected long-term contributions in selected popula-
tions have been developed by Wool liams et al. (1999).
The objective of the following section is to obtain a
relationship between the variance of the long-term con-
tributions and their expectations, which will then permit
development of general methods for the prediction of
E[r?] and consequently for AF. The relationship will
need to assume random mating and is developed by
conditioning on the selective advantage(s), s, for an
ancestor. The selective advantage(s) of the ancestor, if
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inherited, will partly determine the breeding success of
its descendants, with diminishing impact over genera-
tions. The proof uses the result E[r?] = EJr3ls] =
E[w?] + EJfo?], where w; = E[rils] and o? = Var[ri|s],
and the subscript s on the E indicates that the expecta-
tion is being taken over the selective advantages.

Monoecious population: The proof is simplest in the
case of a monoecious diploid population of X parents
in discrete generations without selfing. Random mating
is assumed (o = 0). Extension to overlapping genera-
tions and to two sexes follows by analogy but is compli-
cated by the need for matrices, and so this extension is
made in appendix b. The long-term contribution of
individual i is given by

=% > (15)
offspring j

These sums may be restricted to the selected offspring
since unselected offspring have no long-term contribu-
tion. It is assumed that conditional on the selective ad-
vantage s of the parent i, the genetic contribution of
the offspring is independent of the number of offspring
selected from parent i (denote this number by n;). Then
from Equation 15,

E[rilsi,n] = %nE[rls, j offspring of i] (16)
Var[ris,n] = %n\Var[rls, j offspring of i]. (17)
Equation 17 requires random mating. Let 6,; and V,;

be the mean and variance of nj|s;; then
wi = %0,E[rls, j offspring of i]. (18)

The derivation of p; in a general genetic framework was
described by Woolliams et al. (1999).

The variance o? is derived using the statistical result
that the unconditional variance is the expectation of the
conditional variance plus the variance of the conditional
expectation. Applying this result to Equations 16 and
17 gives

o? = Y,0,Varl[rjs, j offspring of i]
+ YV Elrils, j offspring of i]% (19)

Assume now that the number selected from parent i
has a Poisson distribution. For example, this would be
the case if litter size before selection had a Poisson
distribution. Then 6,; can replace V,; in the second term
of Equation 19 to obtain

of = Y0ni(Var[rls, j offspring of i]
+ E[rls, j offspring of i1%), (20)
which can be recognized as
o? = Y00 E[r?ls, j offspring of i]. (21)

If expectations are now taken over s, Woolliams and
Bijma (1999) show that by assuming an equilibrium
there is no covariance between 6, and E[r?s,
j offspring of i]. A heuristic explanation is that if there

were a covariance, then this would result in selection
for increased squared contributions, breaking the as-
sumption of equilibrium. The right-hand side is then
equal to %E[r?s], since EJ[6,;] = 2. Therefore,

Efof] = %E[rfls] = %E[ui] + %E[cf], (22)
which leads to the result that
El[of] = E[uf]. (23)

Finally, if X is the number of parents in each generation,
then

E[AF] = %X E[r7] = %X(E[nd] + Eof]) = %XE[].
(24)

The power of this result is that it requires only the mean
conditional on the selective advantages to be modeled,
which can be done for a wide class of genetic structures
using the methods of Woolliams et al. (1999). Note
that the set of selective advantages used for conditioning
must completely describe the interrelationship between
one generation of selection and the next. This isembod-
ied in the assumption that conditioning on the selective
advantage s, removes associations between the number
of offspring selected and the subsequent success of the
offspring. For example, the mates of the individual pro-
vide a selective advantage that must be accounted for
(Woolliams and Thompson 1994; Santiago and
Caballero 1995).

One of the critical assumptions of the proof leading
to (24) is that the selected family sizes are distributed
as a Poisson variable. However, departures from this will
occur, for example, (i) when the litter sizes are not
Poisson; (ii) when negative covariances between full-
sibs and between half-sibs are induced by using sib indi-
ces for selection; (iii) when selection intensity becomes
large; and (iv) when there are common environmental
variances associated with litters. (The occurrence of the
last two causes will depend on the model chosen for s,
which is addressed in the discussion.)

To account for this deviation let V,; = 0,; + Vigeyi IN
Equation 19, where V,q4,; may be positive or negative
according to the circumstances. Then the component
in 0,; can be treated as previously and Equation 21
becomes

of = Y,0n:E[r?ls, j offspring i]
+ YiVoaeiELrlsi, j offspring of i]?  (25)
and Equation 23 becomes
E[o?] = E[m?] + Y% EdVageiElrls, j offspring of i]4]
(26)
with the result
AF = Y XE [l + Y%XE[Vi e ELrlsi, j offspring of i]?].
@7
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Anticipating an observed result, the magnitude of terms
involving s in E[rls, j offspring of i] contributes very
little to the second term of Equation 27 and only the
constant term, independent of s, needs be considered.
In the current context E[rjls;, j offspring of i] = X~* and
the second term in Equation 27 becomes %E[Vygei]/
X. For example, in mass selection with fixed litter sizes,
Santiago and Caballero (1995) used the approxima-
tion that Ej[V,g.] = —n,*, where n, is the number of
offspring per parent, with the result that the correction
for the deviation from Poisson is (—8T) ! where T is
the total number of individuals born.

One of the benefits of Equation 24 is that the rate of
inbreeding can be obtained from predicting means,
often using regression techniques. Accounting for devia-
tions from the Poisson distribution introduces the need
for estimating variances of family size to obtain Equation
27. Nevertheless, the multigenerational problem of esti-
mating the variance of a long-term genetic contribution
has been reduced to estimating the variance of family
size after selection in a single generation.

Extension to overlapping generations: With overlap-
ping generations, individuals within a cohort that are
selected to breed at any point in their lifetime can be
divided into breeding categories. These categories are
defined by the age of breeding, how often, and for what
purpose the individual breeds. Categories are particu-
larly important in selection. As an example, consider
mass selection where all selected individuals can have
progeny born at ages 1, 2, or 3. If the population is
making genetic progress the average merit of individuals
born 3 years ago is less than the average merit of an
individual born 1 year ago. Therefore an offspring of
a 3-year-old parent will have a selective disadvantage
compared to an offspring of a 1-year-old parent and so
is expected to make a smaller genetic contribution in
the long-term (see Bijma and Woolliams 1999). If an
individual is a parent at all ages then its genetic contribu-
tion is expected to be greater than an individual chosen
for breeding only at a single age. Breeding purpose is
also important: if one group of parents are given more
mating opportunities, then these would be expected to
have more offspring and, other factors being equal,
ultimately a greater long-term genetic contribution.

For these reasons partition of the selected individuals
into categories is necessary to obtain the general result.
It is assumed that the categories are defined so that an
individual belongs to a single category that describes its
lifetime genetic contribution. To continue the example
of mass selection, where the only distinction among
parents is the breeding age, there would be potentially
seven categories. If {x} denotes age x at breeding, then
these categories are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2,
3}. The number of categories will inevitably depend on
the complexity of the breeding scheme, but the essential
point is that they can be defined and enumerated. Let
n. be the number of categories indexed fromq =1 ...
n,, and pi be the expected long-term contribution of

individual i in category g conditional on its selective
advantage s, with variance o%,. The steps given above
in Equations 16-27 for a single category remain the
same but changes are needed since terms must be rede-
fined as vectors and matrices. The notation to develop
the argument therefore becomes more complex but the
result remains simple. For this reason the proof is given
in appendix b. The conclusion is that if family sizes after
selection are assumed to be distributed as independent
Poisson variables, then

E[AF] = Vz%Xqu[M?@]- (28)

This simple result shows that the rate of inbreeding,
when approximated by the sum of squared contribu-
tions, is equal to one half of the sum of the squares of
expected lifetime contributions. Instead of using the
observed contribution, as in Equation 12, the expected
contribution can be substituted, but this is done at the
cost of changing the coefficient from ¥, to %. This is
because the expected contribution is being used to
model both the mean and the variance.

As previously, for a parent from category g, define
the matrix V. Of size n, X n. to be the (co)variance
matrix for the number of selected offspring in each of
the n. categories, expressed as deviations from indepen-
dent Poisson variances. For each g, neglecting terms in
s (for empirical reasons given earlier), there will be a term
8, defined by &'V, 0, Where « is the vector with the
gth element equal to the expected long-term contribu-
tion for an individual from category g, i.e., Ej[pig] =
a,. Note 8, may be negative since it is a variance deviation
and is not a variance. This term is introduced in Equa-
tion B6 of appendix b. From appendix b we arrive at

E[AF] = l/ZEXQEs[PviZ(q)] + l/sEquq- (29)
q q

Although the proof has been based upon a monoe-
cious diploid organism with no selfing, the extension
to a dioecious organism is clear from the proof for
overlapping generations. Having discrete generations
with two sexes is identical to having two categories, i.e.,
males and females. Finally note that, other than assum-
ing an equilibrium and random mating, there have been
no assumptions on the type of selection index used,
the nature of the genetic variation, or the population
structure.

APPLICATIONS AND RESULTS

Sib indices in discrete generations: The theory is illus-
trated by selection on a general sib index of the form
I = by(P — Pg) + by(Ps — Ppe) + bsPps, where P is the
phenotype of the candidate, Py is the phenotypic mean
of its full-sibs (including candidate), and Py is the phe-
notypic mean of its half-sibs (including candidate and
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TABLE 2

Genetic parameters for a population selected
with a sib index

Ky Xs, d Number of male and female parents and
mating ratio d = X/X,

N, N, No Number of male and female offspring in

o a full-sib family, n, = n,, + n;

P, Ps, Pps Phenotype of candidate and its full- and
half-sib family means

I, by, 0y, by Index and weights for selection | = b,
(P — Pi) + bo(P, — Prg) + bsPy

Py Pt Selection proportions for males and fe-
males: p, = (Npd) 7%, pr = nit

Vi Vi, iy Truncation points, intensities of selection,

K, Ks and variance reduction coefficients

ot, o4, pi Variance of the index, total genetic vari-
ance, and accuracy of selection

Genetic variance among selected sires and
dams and residual variance

Mean breeding value of the half-sib family
of sire i and the mean breeding value of
the full-sib family of dam j expressed as
a deviation from the half-sib family

Variance of Ay and similarly defined for
Aty V(Aig) = 0am + 03/, v(Aig) =
oi(l —d™)

Correlation of indices among full-sibs and
half-sibs, respectively: pus = [b3V(Aing) —
V(A (d — 1)71/07F; pes = [0aV(Aigns) +
bov(Aigy) — bE(%NE + o2)ng'1/of

2 2 2
OAm: Oaf; Oe

Airsys Aicts)

V(Ai(hs))

Prsy PHs

In the initial unselected base population, the phenotypic
variance was assumed to be 1 and the initial heritability h3.

full-sibs). Mass selection is a special case, with b, = b, =
b; = 1 (or any constant >0). This formulation was used
also by Wray et al. (1994) in their study of rates of
inbreeding. Every generation, the highest ranking X,
sires and X; dams are selected as parents for the next
generation. Each sire is mated at random to d = X/X,,
dams and each dam produces a total of n, offspring, n,
male, and n; female, which are available for selection
in the next generation. The unselected base population
is assumed to have a phenotypic variance of 1 with a
heritability of h3 for the selected trait. Additional nota-
tion used for the sib index is shown in Table 2. An
example is given at each step and this is a selection
scheme for X, = 20, X; = 60, n,, = n; = 4, with index
weights b, = 1, b, = 1.5, and b; = 2. The principal
parameters for this scheme are presented in Table 3
for easy reference.

In Wray et al. (1994) the selective advantages were
based on the breeding values Ay, and this approach is
adopted here but slightly modified. A sire i has one
selective advantage, namely, its own breeding value plus
the average breeding value of its d mates (i.e., its mate
group) and this aggregate value is denoted by Ajygy. A
dam i has two selective advantages: first, the selective
advantage of its mate (Aix,) and second, its own breed-
ing value expressed as a deviation from the average
breeding value of the mate group to which it belongs
(denoted Aity). The average breeding value of the full-
sib family from dam i is %(Ainsy + Aigy). Thus, in this
hierarchical SCheme, Simy — (Ai(hs)): and Sin = (Ai(hs)!
Aigs)". The two selective advantages for a dam are inde-
pendent.

Expected long-term genetic contributions were mod-
eled following Woolliams et al. (1999) as E[riqlsip] =
Mi@ = &g T Bi(sig — ), where s, denotes the vector
of selective advantages for a selected individual of sex
q expressed as a deviation from the mean of its contem-
poraries s;, B, is the vector of regression coefficients of
N ON S — Sy O IS the mean contribution of selected
parents of sex g, and T denotes the transpose. In the
parameterization used, the mean of A4, is always zero.
To simplify the notation it is assumed that Ay, is already
expressed as a deviation from the mean of the contem-
porary group, and so s, is omitted from this point on-
wards.

Step 1. Prediction of expected contributions: The prediction
of expected genetic contributions is covered in detail
by Woolliams et al. (1999). The current article only
summarizes the procedure for a sib index, without deri-
vation. Prediction of g requires the prediction of a =
(am, ap)Tand B = (B, BY). In discrete generations, (o,
af) = [1/(2X.), 1/(2X;)] always. Solutions for @ are
obtained applying the method of Woolliams et al.
(1999), using Bulmer’s (1980) equilibrium genetic vari-
ances. A summary of equations used is given in appen-
dix c. For the example (o, of) = (0.0250, 0.0083), B =
(0.0447, 0.0149, 0.0130).

Step 2. Rates of inbreeding assuming Poisson variances:
From step 1, pim = [0.0250 + 0.0447Ainy]. The ex-
pected squared mean is a simple sum of squared terms:
XmE[Rém] = Xu[0.0250% + 0.0447%v(Aipy)(1 — XaH].
The (1 — X,!) term accounts for variances about the
sample mean of the selected group rather than the true
mean.

The terms arising from X:E[p?] are calculated analo-
gously. Since the two selected advantages of the females

TABLE 3

Principal parameters, as described in Table 2, for the example selection scheme used throughout

X,, = 20 X, = 60 d=3 nm=n=4 h =04 (b, byby) = (L0, 15 2.0)
pm = 0.083 pr = 0.25 vV, = 1.383 vy = 0.674 in = 1.839 ii = 1271
kn = 0.838 ki = 0.759 of = 1.331 i = 0.302 oin = 0.050 o4 = 0.052
P = 0.636 Prs = 0.390 PHs = 0.205 v(Ai(hS)) = 0.269 V(Ai(fs)) = 0.140
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are mutually independent, the expected mean squared
is simply the sum of squared terms. The expected long-
term contribution of a female parent is

Wiy [0.0083 + 0.0149A;s + 0.0130A;]
and the sum of squared means is
XE[wén] = X[0.0083% + 0.0149%(Ainsy) (1 — XiH)
+ 0.0130%v(Aigs) ]

As previously mentioned, the term is defined as a devia-
tion from the mean over all ancestors so v(Ax)) requires
no correction.

The rate of inbreeding ignoring deviations from Pois-
son variances is predicted from AF = %(XnE[pém] +
XE[pén]) = (0.0227 + 0.0090)/2 = 0.0158.

Step 3. Correction for deviations of V, from Poisson vari-
ances: Deviations from Poisson variances can be ac-
counted for by correcting the rate of inbreeding using
Equation 28, where 8, = o'V, qes@ @aNd Vg gey IS the (2 X
2) matrix with (co)variances of the number of selected
offspring of a parent of sex q (q = m, f) as a deviation
from independent Poisson variances. The calculation
of the deviation from Poisson family variance for fixed
numbers of selection candidates per full-sib family is
described in appendix d. The approach adopted was
derived in detail by Burrows (1984), although exten-
sion to two sexes was required and the method was
made more flexible by incorporating results from Men-
dell and Elston (1974). Applying the method to the
example gives

Ve = (0.186,0.751/0.751,0.079),
Vn(f)ydev = (0020,0159|0159,_0154)

The total correction to the predicted AF is 0.0016, and
the prediction, using Equation 29, is 0.0175. The mean
AF derived from 1000 simulations was 0.0183 (SE =
0.0001).

General fit: Extensive simulations were carried out as-
suming an infinitesimal model with factorial combina-
tions of X, = 20, 40, 80; d = 1, 2, 3 (and 5 for X, =
20, 40); total offspring of 4, 8, and 16 per full-sib family
equally divided between sexes; and with h? = 0.1, 0.2,
0.4, and 0.6; weights used were (1.0, 0.75, 0.5) for d >
1 [changed to (1.0, 0.75, 0.75) for d = 1] and (1.0, 1.5,
2.0) for d > 1 [changed to (1.0, 1.5, 1.5) for d = 1].
Classical weights were also examined since these weights
were the subject of the study of Wray et al. (1994),
although they are suboptimal after the first round of
selection from an unselected base population. Results
have been tabulated and summarized by Woolliams
and Bijma (1999).

With weights (1.0, 0.75, 0.5, or 0.75) the accuracy was
excellent for all schemes, with all errors <4%. With
weights (1.0, 1.5, 1.5, or 2.0) accuracy was also very
good, accurately tracking trends with the changes in
the parameters and with a large majority of errors <2%

with the exception of d = 3, h? = 0.4, where underesti-
mates of up to 8% were observed. The trends in rates
of inbreeding were also accurately tracked with classical
weights with no increases in the magnitude of the errors,
even though schemes had rates of inbreeding >0.03.

The most serious trend in the errors was a pattern of
underprediction characterized by high mating ratio and
large family sizes (both of which increase the selection
intensity) and increased family weights. More surpris-
ingly, the errors also increased with the numbers of
parents at a constant d (i.e., X, = 20, X; = 60 compared
to X, = 80, X; = 240), and also the errors were not
present for h?> = 0.01 and increased sharply as h? in-
creased. To explore these errors further, the long-term
contributions for selected males were plotted against
Aing for the following schemes with d = 3, weights (1.0,
1.5,2.0): I, X, = 20, h? = 0.4, n, = 16; I, X;, = 80, h? =
0.4, n, = 16; Ill, X,, = 80, h? = 0.01, n, = 16; and 1V,
Xm = 80, h? = 0.4, with n, = 4. The results for simulated
(S) and predicted (P) were as follows: I, S = 0.0231,
P = 0.0220; Il, S = 0.0070, P = 0.0058; I1I, S = 0.0028,
P =0.0029; 1V, S = 0.0037, P = 0.0037. Note that scheme
Il is simply scheme | with four times the number of
parents and expected long-term contributions of | are
consequently four times bigger than Il. The prediction
of AF for scheme Il is close to (but not precisely) ¥, of
that for I. However, the ratio of the simulated AF for
scheme Il compared to | was closer to %, i.e., much
greater than would be expected from scaling. Serious
prediction error occurs only for scheme 11.

Figure 1 shows that the accuracy of prediction with
low h? (scheme I11) is because the linear model used is
a good fit (i.e., the contributions are a simple linear
regression on the selective advantage) and similarly for
low selection intensity (scheme 1V). However, for both
the other two schemes the linear model predicts a sub-
stantial proportion of the selected males to have nega-
tive contributions, although rates of inbreeding are ac-
curately predicted in one case (scheme I) but not in
the other (scheme II).

Closer replicate-by-replicate analysis shows that de-
spite the expectation, the substantially greater variance
of contributions (approximately proportional to AF/
Xm) inscheme | obscures the nonlinearity in the majority
of replicates. When both linear and quadratic terms for
the selective advantage were included in a regression
model for observed contributions, the quadratic term
was not statistically significant (defined here as P <
0.01) in >60% of the replicates. In contrast, for scheme
Il, this percentage was <15%. Thus the accuracy of
prediction depends on the goodness-of-fit of the linear
model within a replicate, so more parents may promote
greater proportional prediction errors, even though
these errors will be associated with lower rates of in-
breeding.

The pattern of the correction for deviations from
Poisson distribution for selected family sizes is worth
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Figure 1.—The expected long-term contribution and lower and upper quartiles obtained from simulation (as a function of
the selective advantage Ayy), together with the expected long-term contribution predicted from assuming a linear model for
four example schemes. The curves obtained from simulation are the result of sampling 8000 individuals. The following schemes
all have d = 3 with weights (1.0, 1.5, 2.0): I, X, = 20, h? = 0.4, n, = 16; Il, X, = 80, h? = 0.4, n, = 16; IlI, X,, = 80, h? = 0.01,
n, = 16; and 1V, X, = 80, h? = 0.4, n, = 4. A, linear prediction; @, simulated expectation; O, lower and upper quartiles.

noting. These corrections are negative for b,, b; < 1,
reduce in size as the index weights increase, and were
generally positive for by, b; > 1. For mass selection, b, =
b, = b; = 1, the correction is of the order of —1/(8T).

DISCUSSION

The theory described in this article provides a power-
ful tool for predicting rates of inbreeding in selected
populations and for providing insights into the forces
that contribute to the rate of loss of variation. The rela-
tionship of Wray and Thompson (1990) has been de-
rived directly from consideration of identity by descent
and has been extended to cover overlapping genera-
tions and nonrandom mating. Applicability was then
advanced by showing how expected long-term contribu-
tions, which are predictable by general methods, can
be used in place of observed long-term contributions
to predict the rates of inbreeding, if random mating
was assumed. Finally, the methods were applied to sib
indices in discrete generations, for which the previous
solutions were complex (Wray et al. 1994). In doing so,
some insight was gained into the origin of the prediction
errors, and these appeared to arise from the goodness-

of-fit of the models used to implement the theory rather
than those used to derive it.

Theory: The first theorem relating the rate of inbreed-
ing in a population to the squared long-term contribu-
tions was previously derived by Wray and Thompson
(1990) but the proof here has several useful extensions.
In contrast to Wray and Thompson (1990), the proof
is direct in using identity by descent rather than proper-
ties of the numerator relationship matrix, and it also
incorporates nonrandom mating and overlapping gen-
erations. The simplest relationship (AF = ¥,Xr?) is not
exact and was shown to underestimate the rate of in-
breeding by a fraction of the order of (2AF), providing
there was no major deviation from random mating, and
is therefore small for any practical scheme. In overlap-
ping generations, with rates of inbreeding per unit time
and per generation both of interest, it is shown that
this error is 2(AF/generation), where the generation
interval was defined by the period over which the long-
term genetic contributions sum to 1.

The importance of the relationship between rates of
inbreeding and squared genetic contributions is that it
holds for selected populations, with no assumptions on
the form of selection, providing (i) the genes are ulti-
mately mixed, and (ii) an equilibrium exists over which
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a stable AF may be defined. A further caveat is that the
rate obtained applies to a neutral, unlinked gene. The
extension of other relationships to predict AF in selected
populations does not always hold. For example, using
the relationship Var(dq) = q(1 — q)AF, where q is the
frequency of a neutral gene and 38q is the change in
frequency per unit time, will not hold if selection is not
random since it assumes mutual independence of dq
over consecutive intervals. The increments, 8¢, are also
correlated for overlapping generations due to the many
intervals over which the progeny of a single parent may
be selected. As a consequence the justification for the
proof by Hill (1979) for AF with overlapping genera-
tions is invalid, even in the absence of genetic selection,
although the result is correct and agrees with the previ-
ous proof of Hill (1972). Closer examination of Hill
(1979) shows that its justification lies in an intuitive
argument for the relationship that was to be proved
later by Wray and Thompson (1990). Consequently
the methods derived here may be seen to arise as a
natural development of the results of Hil I (1972, 1979)
for selected populations.

The form of Equation 4 shows that the sum of squared
long-term contributions for any given cohort may be
usefully interpreted in the absence of an equilibrium.
The sum of squared contributions for a cohort is the
proportion of the new variation (the Mendelian sam-
pling variance) arising from within that cohort that is
lost to the population in the long term. This includes
all mutational variance arising in prior generations,
since the choice of base is arbitrary. Therefore the sum
of squared contributions of cohorts (particularly those
still to converge!) is important, irrespective of equilib-
rium, and provides a meaningful measure of risk, and
merits attention in both breeding and conservation
schemes. The operational tools described by Grundy
et al. (1998) are based upon controlling sums of squared
contributions of cohorts and have meaning and validity
beyond the infinitesimal model (e.g., Vil lanueva et al.
1999). However, there are clearly greater problems in
providing deterministic predictive tools to analyze popu-
lation dynamics if the assumption of equilibrium is re-
moved, and those provided by Woolliams et al. (1999)
assume this equilibrium.

The second, novel theorem derived in this article is
concerned with showing how the formulas with ob-
served long-term contributions may be translated into
formulas with expected long-term contributions. The
latter are advantageous since they use predictable enti-
ties. The major change is that the expected can be
substituted for the observed, providing the constant of
proportionality is increased from ¥, to %. The critical
step in the proofis that the error variance of a long-term
contribution given the selective advantage is related to
the square of its mean, i.e., the coefficient of variation
is relatively constant. Apart from random mating, the
scope of this proof is very broad and is applicable to

overlapping generations. The validity of the derivation
was checked using general sib-indices as an example in
discrete generations, and a companion article (Bijma
et al. 2000) provides verification in overlapping genera-
tions with mass selection with lifetime selection, thereby
removing a serious restriction of Nomura (1996). The
limitation to random mating arises from Equation 17,
although in one special case, partial full-sib mating with
no selection, the analysis can be completed (using re-
sults of Ghai 1965) and shown to agree with the results
of Caballero and Hill (1992). This provides an indi-
rect verification of Equation 13 for nonrandom mating.

Woolliamset al. (1999) show how the expected long-
term contribution may be calculated in general for dif-
ferentinheritance models (e.g., imprinted variation, ma-
ternal additive, or sex-linked variation) with different
selection indices (sib indices or best linear unbiased
predictors). Using long-term contributions follows the
path of Wray and Thompson (1990) and Wool liams
et al. (1993) and differs from Santiago and Caballero
(1995; mass selection in discrete generations) and
Nomura (1996; a special case of mass selection with
overlapping generations), who base their predictions
on genetic variation transmitted to descendants. This
is because the approach using genetic variation cannot
be sustained for general selection schemes. Santiago
and Caballero (1995) suggest (their Equation 13) that
a change in covariance between a general selective ad-
vantage and a neutral gene following selection is deter-
mined by the reduction in genetic variation. This is true
for mass selection, where the index of selection is solely
afunction of the total breeding value and residual error,
but will not be true in general (Wool liams et al. 1999).
Bijmaetal. (2000) show why there is agreement between
the two approaches for mass selection in discrete gener-
ations and also why the current methods are required
to cope with overlapping generations.

Prediction: Usable predictions were obtained by
Wray et al. (1994) and an alternative form based upon
Wray et al. (1994) was used by Villanueva and Wool-
liams (1997). However, the method of Wray et al.
(1994) was complicated, although it attempted to model
the expected proliferation of ancestral lines. The au-
thors believe the proposed method is conceptually sim-
pler than that of Wray et al. (1994) and is open to
development.

In any attempt to obtain prediction formulas, a bal-
ance hasto be achieved between accuracy and simplicity.
We have used simple linear models to interpret the
theory. Thus in application the prediction consists of
two elements: (i) the squared expected contribution
and (ii) the deviation from independent Poisson fami-
lies. The first of these elements was applied precisely as
described by Woolliams et al. (1999), with corrections
for finite numbers only being used to obtain the sample
variance of selective advantages. No other modifications
were needed because the other terms in the squared
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expected contribution were estimates of regression coef-
ficients, which were assumed to be relatively robust to
finite sampling. This assumption may be justified in part
by the excellent agreement obtained by Wool liams et
al. (1999) between simulations and deterministic pre-
dictions of expected long-term contributions. The sec-
ond element, calculating the deviation from indepen-
dent Poisson families, only required extension of the
method of Burrows (1984) to two sexes. The correla-
tion coefficients among full-sibs and half-sibs used for
calculating this element were those obtained assuming
infinite numbers but, to compensate for this, no reduc-
tion for finite samples was applied to the squared means.

The choice of selective advantages has as an objective
the minimum number needed to make the selective
processes in different time periods independent. Using
sib indices as an example, the authors considered both
the method presented, where only breeding values were
included as selective advantages, and an alternative
definition in which the selective advantages were the
half-sib mean and deviation of the full-sib mean from the
half-sib mean. The potential benefit from the alternative
parameterization is that the environmental covariances
in the index arising from the sib means are accounted
for within the expected long-term contribution. Condi-
tioning on the sib means is more than is strictly necessary
for conditional independence between generations.
However, while results using the alternative parameter-
ization were as accurate in most cases (results not
shown), the underestimates explored in the results
tended to be more severe. One reason for this is that
terms included in the expected long-term contribution
are modeled by linear functions, whereas modeling the
environmental correlations by the method of Burrows
(1984) allows part of the nonlinearity to be accounted
for. Therefore, the more terms that are included linearly
in the expected long-term contribution, the greater the
errors arising from nonlinearity.

Nonlinear relationships between the selective advan-
tage and long-term contributions occurred when high
selection intensities of selection were combined with
moderate heritabilities, large numbers of parents, and
high mating ratios. Results from including quadratic
terms in the model for the expected long-term contribu-
tion (unpublished) confirm that the serious prediction
errors arise from the assumption of linearity rather than
from Equation 29.

There are good reasons to believe that these depar-
tures from linearity should not prove a major problem
where the objective is to design effective breeding
schemes. First, on pragmatic grounds the curvilinear
relationship shown in Figure 1 suggests that 15% of
selected males were being used with no expectation of
long-term contribution to the population (this percent-
age is even higher if the contributions were plotted
against the observed half-sib mean!). The resources
used to keep and breed these animals are clearly wasted.

In an ideal selection scheme, an ancestor’s long-term
contributions will be zero or, once its Mendelian sam-
pling term is above a critical threshold, linearly related
to the sampling term (Woolliams and Thompson 1994;
Grundy et al. 1998). Consequently it would be expected
that in an ideal scheme, the long-term contribution of
a selected ancestor will show an approximate linearity
with its breeding value. This argument suggests that if
the design objective is for a scheme to generate gain
efficiently from the resources available, a linear model
for the relationship between the long-term contribution
and the selective advantage should prove sufficient. If
so, then the need for improved deterministic models
to cater for the schemes with large prediction errors
would be removed. The viewpoint that the schemes with
large prediction errors are inefficient is supported by
the results of Villanueva and Wool liams (1997), who
showed that when using sib indices, efficient schemes
had d = 2 for which the methods presented here had
a good fit.

In conclusion, this article has (i) established a broader
theorem (compared to Wray and Thompson 1990)
concerning the relationship between squared long-term
genetic contributions and rates of inbreeding, in partic-
ular extending the theorem to nonrandom mating and
to overlapping generations; (ii) shown that, for random
mating, the relationship can be generalized from long-
term contributions that are simply observed to encom-
pass expected long-term contributions that can be pre-
dicted; and (iii) shown how these equations might be
interpreted with simple linear models in the context of
predicting rates of inbreeding with sib indices in dis-
crete generations. Together with the findings of Wool-
liams et al. (1999), the findings of this study show how
rates of inbreeding may be predicted in general popula-
tions with complex structures and genetic models.
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APPENDIX A: THE EXPECTED MENDELIAN
SAMPLING VARIANCE

The expected Mendelian sampling variance in genera-
tion 1 summed over all alleles in the founders can be
calculated using the following argument. For the prog-
eny of the carrier founder i* of the allele the gene
frequency has mean Y%, i.e., half of the gene frequency
in carrier (%) plus half of that in mate (0), with o2 =
Y. For progeny of other parents, o2 = 0. Therefore,
for a single allele, the Mendelian sampling variance is
o2 = nu./(16X), where n;. is the number of offspring of
i* selected in generation 1, and where X is the total
number selected. Summing over all alleles (two per
base individual), and since the sum of the number of
offspring selected over all parents is 2X, the expected
variance is %.

At generation 2 and later, with true random mating
the Mendelian sampling variance will be reduced. For
dioecious species this will be delayed by a generation
through nonrandom mating, and in general the ex-
pected variance is %,(1 — o)(1 — AF)“"!in generation
u > 1, where AF is the rate of inbreeding among the
parents.

APPENDIX B: EXTENSION OF THE PROOF RELATING
EXPECTED CONTRIBUTIONS TO RATES
OF INBREEDING TO INCLUDE
OVERLAPPING GENERATIONS

Let X, be the number of parents in category q and
for convenience define a diagonal matrix N with ele-
ments X,. The prediction for AF in overlapping genera-
tions is given by Equation 14. Let g = E[riglsiq] and
O'iz(q) = Var[ri(q)lsi(q)] so that

AF = 1/4§q:Xq(Es[Mi2(q)] + E[ofol)- (B1)

Let m be the vector with element ¢ equal to E[p?,], v
be the vector with element g equal to E[¢%y], and 1 be
the vector with all elements equal to 1, so that AF =
Y1"TNm + ¥,1"Nv. In Equation 16, the n; is no longer a
single number but is a vector of numbers =, where
the pth element n,;¢, is the number of offspring of i(q)
selected that belong to category p.
Thus Equation 16 becomes

Elrwlsomol = %2MieElNels, j(p) offspring of i(q)]
p

(B2)
Var[ri(q)|si(q),ni(q)] = I/AEnp,i(q)Var[rj(p)|si(q), J(p) Offspring Of |(q)]
p

(B3)

To obtain Equations 18 and 19, we need to define
Bn,i(q) = E[ni(q)] with element p given by Gn,i(q)‘p, and I/n,i(q)
to be the variance-covariance matrix for the elements
Niy, and to simplify the expressions define -y to be the
vector with elements v, = E[rylsiq, j(p) offspring of
i(a)], and m to be a vector with elements m, = Var[r;gsiq
j(p) offspring of i(q)]. This results in

i = %OhiwY (B4)
ol = 7Oniom + Yy Vaiwy- (B5)

It is now possible to make the same assumption as for
discrete generations, i.e., that the number in category
p selected from parent i(q) has a Poisson distribution:

ot = a2 Oniwe(Mp + ¥5)
p

1/4%9n,i<q>,p'5[rjz(p>|$i(q)7 i(p) offspring of i(q)]. (B6)

Then by taking expectations over s, in (B6), and us-
ing the equilibrium property that E;[r%,] is unchanged
from generation to generation, show (Woolliamsand
Bijma 1999) that

> XElofp]l = %

categories q

E XqEs [Giz(q)] =

categories q

Thus 1"Nm = 1"Nw and substitution into Equation 17
gives the result

AF = 1/21TNm = ]/ZEXQES[M‘%Q)] (Bg)
q

> XElrflsel (B7)

categories

> XE[uiel (B8)

categories q
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APPENDIX C: PREDICTION OF EXPECTED GENETIC
CONTRIBUTIONS FOR SIB INDICES

Expected genetic contributions were calculated using
equilibrium genetic parameters. The genetic parame-
ters were obtained by iterating rounds of selection start-
ing from an unselected base generation with additive
genetic variation hZ and the phenotypic variance 1. The
iterative equations were o1 = 0m: + 0% + ¥%h§ and
T = 0a(1 — kp?), where o3, is the additive genetic
variance in generation t, p, denotes the accuracy of selec-
tion in generation t (see Villanueva et al. 1999), and
x = m or f as appropriate. Equilibrium variances were
obtained in five iterations. In the remainder of this
appendix the notation used is given in Table 2.

Calculation of the expected long-term genetic contri-
butions followed the methods of Woolliams et al.
(1999). Briefly these methods depend upon defining
two regression models: the first describes the relative
fitness of a parent as a linear function of its selective
advantages; the second regression model describes the
relationship of the selective advantages of the selected
offspring with those of its parent. In discrete generations
these models will depend only upon the sex of the
parent and the sex of the selected offspring (in overlap-
ping generations they may also depend on age).

For discrete generations the values of «,, and «; are
simply (2X,,) "tand (2X;) %, respectively, and so the only
term that needs more detailed description is the calcula-
tion of B. B is a vector of three regression coefficients,
the first (3,) describing the regression of the long-term
contribution of a selected male on its selective advan-
tages Ay and the remaining (B,, Bs;) describing the
regression of the long-term contribution of a selected
female on its two selective advantages (Aing, Aig). IN
the remainder of the appendix the selective advantages
are indexed 1-3 as above.

B is derived from the formula of Woolliams et al.
(1999), which has been simplified for application to
discrete generations,

B = N*'(I — BI)YCLATY(h, 1),

where N is a diagonal matrix with elements (X, X, X¢),
Iis the identity matrix, and where 1l and A are described
below.

A is a (2 X 3) matrix, where \;; is the regression
coefficient for the relative fitness of a male parent on
its selective advantage, and where \;,, \j; are the corre-
sponding coefficients for the selective advantages of a
female parent. When i = 1 the relative fitness is for
having male offspring selected and i = 2 for having
female offspring selected. These coefficients will de-
pend on the index of selection used and the selection
intensity. The coefficients are derived using Appendix
A of Woolliams et al. (1999). The elements are \y; =
A2 = imbsoT !, Mot = Ngp = ol Nz = inbpoi 7t and N3 =
ifb20'|_l.

IT is a (3 X 3) matrix, with ; being the regression
coefficient of selective advantage i of a selected offspring
on the selective advantage j of the parent. This matrix
describes exactly how the selection process in one gener-
ation is related to the same process in the next genera-
tion. The elements of Il are derived by standard selec-
tion theory (described in detail in Appendix B of
Woolliams et al. 1999) and account for the effects of
selection. Let z = p,oa/0y; then the elements of 11 are
= (L — kabs2),
T = (1 — kb2)/d,

i, = Y(1 = Knbs2),
Ty = Y(1 — kbsz)/d,

iy = V(1 = kabs2),
Ty = Y(1 — kibyz)/d,
iy = (1 = kib2)(L — d7h), = (L — kib2)(L — d7Y), e = Y(1 — kb2)(1 — d7Y).

Example. For X,, = 20, X; = 60, h3 = 0.4, n, = n; =
4 with weights b, = 1.0, b, = 1.5, b; = 2.0. The principal
parameters for the scheme are given in Table 3. Using
the formulas given above,

%A = (0.797, 0.797, 0.598/0.551, 0.551, 0.413)
%IT = (0.123, 0.123, 0.155/0.045, 0.045,
0.055 |0.090, 0.090, 0.109).

The solutions are « = (0.0250, 0.0083) and B = (0.0447,
0.0149, 0.0130).

APPENDIX D: THE VARIANCES OF FAMILY SIZE
AFTER SELECTION WHEN LITTER SIZES
ARE CONSTANT

The variances of family size when litter sizes are con-
stant are derived by combining results of Burrows
(1984) and Mendel I and Elston (1974), which extend
and formalize results used by Wool liams et al. (1993).
For simplicity, litters are assumed to have n males and
n females, and there are T candidates for selection in
each sex. The basic approach of using factorial mo-
ments, i.e., E[n;(q)(n;(q) — 1)], where n;(q) is the num-
ber of sex q (i.e., ¢ = m or f) selected from the full-sib
family with sire i and dam j, was described in detail by
Burrows (1984). Since Burrows (1984) was working
in the context of forestry only a single sex was considered
and hence some extension to two sexes is necessary.
The approach of Burrows (1984) has been preferred
since it results in elegant formulas.

Denote n;(q) as the number of offspring selected of
sex g from the full-sib family of sire i and dam j, and
ni-(q) as the number selected from sire i (i.e., summed
over all its mates). Note that the variance of family
size can be simply expressed in terms of the factorial
moments:

Var[ny(@)] = E[ng(a)(ny(@) — 1]

— E[ni(@)1(E[ni(q)] — 1) (D1)
Var[n-(q)] = E[n(q)(ni-(aq) — 1)]

= E[n(DICEMi(xD] — 1). (D2)

To obtain deviations of the variance from Poisson family
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size, the term in E[n;(q)]1(E[n;(q)] — 1) in Equation D1
is replaced by E[n;(q)]? and a similar change is made
in Equation D2.

Burrows (1984) derived the asymptotic form (Bur-
rows 1984, Equations 4-12),

E[ny(@ (@) — 1]
= [n(n = DXXy = DIZIT(T = DR(py, prs)], (D3)

where X, is the total number of that sex selected and T
is the total number of candidates, p, the proportion
selected (i.e., X,/T), and pgs the correlation between
full-sibs. R(p, p) is the ratio p>/®(v, v; p), where ®(v,
v; p) is the upper-quadrant probability that both vari-
ables of a standardized bivariate normal distribution
with correlation coefficient p exceed v; v is defined by
®(v) = 1 — p; and ®(v) is the distribution function of
the standard univariate normal distribution. The ratio
is essentially the probability of two sibs being above
the index truncation point when the index correlation
among sibs is zero (as in random selection) divided by
the probability with correlation p. Burrows (1984) uses
tabulated values for the coselection ratio R(p, p), but
these values can be approximated closely by results from
Mendell and Elston (1974): R(p, p) = p/P[(ip —
V)(1 — kp?)~Y?]. This approximation is used through-
out. To allow extension to two sexes we denote R(p, p)
by R(p, p, p). [It seems more natural to the authors to
use a term equal to 1/R(p, p, p) in the formula, which
describes the proportional increase in coselection; how-
ever, we have used R(p, p, p) to maintain continuity of
notation with Burrows (1984).]

Burrows (1984) derived the additional result to use
for the variance of half-sib family sizes. In this article
only paternal half-sib families are considered,

E[ni(@ni(@)] = [N*X,(X, = DIZIT(T = DRy, Py pris)],
(D4)

where j and k are distinct mates to a common parent i,
and pys is the correlation between half-sibs. Therefore,
for a sire with d mates,

E[ne(@(ni-(@) — D] = ;E[nu(q)(nu(q) - 1]
+ #EkE[nu(q)nik(q)]

= [d(1 = n")/R(py, Po, Prs)
+d(d — 1)/R(py, Py, prs)]
X [nX,(X, — DI/[T(T - D]
(D5)
The covariances of male and female family size are
Cov[ny(m), ny(f)]1 = E[ny(m)n;(f)]
— E[ny(m)JE[n;(f)] (D6)

Cov[ni(m), nix(f)] = E[n-(m)ni(f)]
— Elni(m)IELni(f)]. (D7)

The expected cross-products are derived analogously to
the variance and are given by

E[n;(m)ni(f)] = [N°XeX /[T *R(Pm, Pr, Pes)] (D8)

E[ni-(mni-(f)] = [d/R(pm, Pr, Prs)
+d(d — 1)/R(Pm, Pr, prs)]
X [N2X X/ T 7). (D9)

The rationale of the term R(p., pr, p) as a ratio of proba-
bilities for random selection and with correlation p re-
mains unchanged but has been extended to the situa-
tion with two sexes with different selection proportions.
This ratio is calculated from Mendell and Elston
(1974) using R(pm, Pr, p) = P/ PL(imp — V(L — kup?) ™21,
which was found by Wray et al. (1994) to be the more
accurate implementation of their results (there are two
possible implementations since the approximation is
asymmetric in male and female parameters).

To obtain the variances and covariances conditional
upon the selective advantage, the regression model de-
rived for the expected number of offspring selected is
used (see appendix c).

Thus, for a dam family,

E[ni(m)]> = d72(1 + Mpv(Aiy) + Mav(Ais))

(D10)

E[ny(m)IEN;(f)] = d7* (1 + AphoV(Aigy) + NishasV(Ai))

(D11)
E[ny(f)1 = 1 + Nov(Aiy) + Nav(Aig),
(D12)
and for a sire family,
E[n(m)]? = 1 + Nwv(Aips) (D13)
E[ni-(M)]E[N-(f)] = d(1 + Audav(Ainy)) (D14)
E[n(f)]? = d?(1 + Nw(Aipy)).  (D15)

Example. For X, = 20, X; = 60, h = 0.4, n,, = n; =
4 with weights b, = 1.0, b, = 1.5, b; = 2.0, most parame-
ters for this scheme are given in Table 3, and the \
values are derived in appendix c. The coselection ratios
are R(pm, Pms prs) = 0.350, R(Prmy Pms prs) = 0.546, R(pm,
Pr, prs) = 0.482, R(Pm, Pr, prs) = 0.656, R(pr, pr, prs) =
0.589, R(pr, pr, prs) = 0.742.

Applying the results of this appendix gives Vi ger =
(0186, 0751|0751, _0079) and Vn(f)ydev = (0020,
0.159]0.159, —0.154).



