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ABSTRACT
Tractable forms of predicting rates of inbreeding (DF) in selected populations with general indices,

nonrandom mating, and overlapping generations were developed, with the principal results assuming a
period of equilibrium in the selection process. An existing theorem concerning the relationship between
squared long-term genetic contributions and rates of inbreeding was extended to nonrandom mating and
to overlapping generations. DF was shown to be z1⁄4(1 2 v) times the expected sum of squared lifetime
contributions, where v is the deviation from Hardy-Weinberg proportions. This relationship cannot be
used for prediction since it is based upon observed quantities. Therefore, the relationship was further
developed to express DF in terms of expected long-term contributions that are conditional on a set of
selective advantages that relate the selection processes in two consecutive generations and are predictable
quantities. With random mating, if selected family sizes are assumed to be independent Poisson variables
then the expected long-term contribution could be substituted for the observed, providing 1⁄4 (since v 5
0) was increased to 1⁄2. Established theory was used to provide a correction term to account for deviations
from the Poisson assumptions. The equations were successfully applied, using simple linear models, to
the problem of predicting DF with sib indices in discrete generations since previously published solutions
had proved complex.

WRAY and Thompson (1990) proved a fundamen- predicted as a result of the selective advantage of the
tal relationship between the sum of squared long- ancestor. Furthermore, it was clear that under equilib-

term genetic contributions of ancestors and rates of rium conditions, the model would lend itself to geomet-
inbreeding for random mating populations in discrete ric summation of terms across generations. This led to
generations. One consequence of this relationship was simple forms for the expected long-term contribution
that rates of inbreeding were tied to the numerator of an ancestor. Wray et al. (1994) extended the methods
relationship matrix for the first time. This narrowed to index selection, although the form of the model is
the conceptual gap between the central parameter for a hybrid of the approach of Woolliams et al. (1993)
genetic evaluation of individuals using best linear unbi- and Hill (1972), since the conditional arguments of
ased prediction and one of the key properties of a breed- pathway extension that had been carried out for mass
ing scheme. Another important consequence was to selection were found to be too complex for index selec-
set out in a formal way a model for the mechanics of tion. Nevertheless, worthwhile predictions were made
inheritance of selected advantage, a concept that Rob- available in a tractable form.
ertson (1961) had introduced but had left unclarified. Santiago and Caballero (1995) used an approach
An achievement of the methods of Wray and Thomp- that made no direct reference to the theory of contribu-
son (1990) was to obtain, for the first time, accurate tions to predict DF in mass selection. They obtained a
predictions of DF in mass selection through modeling neater closed form for DF than that derived by Wool-
pathway extensions. However, this was done by using a liams et al. (1993) through an argument based on total
recursive algorithm, so that although the mechanics drift, relating the change through selection to loss of
were clear, the overall structure of the prediction re- genetic variance. Unlike the previous work of Wray and
mained obscure. Thompson (1990) and Woolliams et al. (1993), who

Woolliams et al. (1993) advanced the understanding had considered the population in relation to an unse-
of the structure of the prediction by obtaining a closed lected base generation, Santiago and Caballero
form for the prediction of DF. It was shown to have terms (1995) developed predictions based upon equilibrium
involving variances of family size in one generation, with genetic variance. Nomura (1996) extended the ap-
additional terms for the proliferation or reduction of proach of Santiago and Caballero (1995) to mass
ancestral lines over many generations that could be selection with overlapping generations but with the im-

portant restriction that the males and females selected
from a cohort remain the same in both number and
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TABLE 1 population is assumed, for the present, to have discrete
generations with Xm male parents and Xf female parents.Notation used to derive Equations 1–27
For calculation of inbreeding coefficients every allele is
considered as unique in the base population (t 5 0).t,u Time variables
It does not matter if the base generation has the struc-nc, q Number of breeding categories, indexed by q

m, f Denotes the two sexes in discrete generations, ture of an unselected and unrelated population.
i.e., q 5 m (male) or f (female) Discrete generations: Consider one of these alleles in

ri, ri(q) Observed long-term genetic contribution of in- the base population at a neutral locus (say allele B). Let
dividual i (in category q) the gene frequency at time t, in the parents of sex qri,u(q, t) The genetic contribution of individual i born

that have been selected to produce generation t 1 1,at time u to selected parents of sex q born at
be denoted by PB(q, t). The gene frequency can betime t
described in terms of genetic contributions similar toFt, DF Inbreeding coefficient at time t, and rate of in-

breeding Equation 1 of Woolliams et al. (1999). Let Ai be the
v Deviation from Hardy-Weinberg equilibrium gene frequency of an allele B in individual i, where Ai 5
Xq, X Number of parents in category q and a simple 1, 1⁄2, or 0 if i is BB, B·, or ··, respectively (where · repre-

monoecious population, respectively sents any other allele), then the individual gene frequen-Cu(t) Sum of squared contributions for individuals
cies can be treated as breeding values for frequency. Theborn at time u to selected parents at time t
average of the gene frequency in the parents of sex qC Converged sum of squared contributions, inde-
in generation t is given bypendent of time in an equilibrium

L Generation interval
si(q) Set of selective advantages for individual i in PB(q, t) 5 o

i
ri,0(q, t)Ai,0 1 o

t

u51
o

i
ri,u(q, t)ai,u, (1)

category q
mi(q) Expected contribution of i in category q condi- where ri,u(q, t) is the genetic contribution of individual

tional upon si(q) i born at time u to the parents of sex q at time t, withs2
i(q) Variance of contribution of i in category q con-

breeding value for frequency of allele B given by Ai,uditional upon si(q)
and Mendelian sampling terms ai,u 5 Ai,u 2 1⁄2(Asire 1ni Number of selected offspring of i

un,i Expected number of selected offspring of i con- Adam). Equation 1 separates out the base generation,
ditional upon si(q) which provides the foundation alleles, and subsequent

Vn,i Variance of the number of selected offspring of generations, which influence the frequency of the allele
i, conditional upon si(q) through the Mendelian sampling of their parent alleles.

Vn,dev,i Deviation of Vn,i from Poisson, i.e., Vn,dev,i 5 Vn,i 2
The variance of the Mendelian sampling terms will de-un,i
pend on Asire and Adam; Var(ai,u) 5 0 if both Asire and Adamaq, bq Linear model for mi(q) 5 aq 1 bT

q (si(q) 2 sq)
are homozygotes, 1⁄8 if they are both heterozygotes, or
1⁄16 otherwise. Since B is unique, Ai,0 is 0 for all individuals
except for one individual for which Ai,0 5 1⁄2. The geneticdescribed above. First, the relationship between DF and
contribution of an individual to the generation of itsthe realized long-term genetic contributions is extended
birth is ri,t(m, t) 5 X21

m if i is male or 0 if i is female, andto include nonrandom mating and overlapping genera-
ri,t(f, t) 5 X21

f if i is female or 0 if i is male.tions. Second, an important result for the prediction of
Initially assume that there is random mating. For anyDF is developed by demonstrating a relationship be-

generation the probability of homozygotes for B is ob-tween DF and the expected squared long-term contribu-
tained from the product of the gene frequencies in thetion conditional on the selective advantages for random
male and in female parents and is PB(m, t)PB(f, t). Themating. Finally, as an example of application, predic-
inbreeding coefficient Ft for the neutral locus is thentions of DF for sib indices, previously considered by
the sum over all distinct alleles at the locus,Wray et al. (1994), are reexamined using the equilib-

rium methods for expected long-term contributions de- Ft 5 o
alleles

o
i

ri,0(m, t 2 1)ri,0( f, t 2 1)A2
i,0

veloped by Woolliams et al. (1999) and compared to
results from simulation.

1 o
alleles

o
t21

u51
o

i
ri,u(m, t 2 1)ri,u( f, t 2 1)a2

i,u, (2)

RELATIONSHIP BETWEEN DF AND LONG-TERM where ri,u(q, t 2 1) is the average contribution to parents
GENETIC CONTRIBUTIONS of sex q at time t 2 1. (Note the breeding values and

Mendelian sampling terms will depend on the allele butThis section discusses the relationship between DF
this dependence has not been made explicit to spareand realized long-term genetic contributions. In doing
notation.) For each allele the cross-product terms in Ai,0so, it derives the expected increase in homozygosity at
Aj,0 are zero since Ai,0 5 0 except for a single individual.the level of a neutral locus in contrast to the matrix
Since the Mendelian sampling terms from different in-method of Wray and Thompson (1990). The notation

that is used is shown in Table 1. The model for the dividuals are independent of all other terms for a neu-
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tral locus, all cross-products of the Mendelian sampling square brackets of Equation 6 can be reduced to
2DFCu(t 2 1). After repeating this process for the C2(t)terms are zero.

More precisely, for each allele and each ancestor, the term [and temporarily neglecting the term in vDFC1(t 2
1)],term Riri,u(m, t 2 1)ri,u( f, t 2 1)a2

i,u should be the sum of
products of contributions of the ancestor to each male

E[Ft11 2 Ft] 5 1⁄2C0(t) 2 1⁄2C0(t 2 1) 1 1⁄4C1(t)and female mating pair:
2 1⁄4vC1(t 2 1)o

i
o

mates (j(m),j*( f ))
ri,u( j(m), t 2 1)ri,u( j*( f ), t 2 1)a2

i,u. (3)
2 DF [1⁄4C1(t 2 1)

This will account for any nonrandom mating of parents.
1 o

t22

u52

1⁄4(1 2 v)(1 2 DF)u21For a neutral locus, the covariance between ri and ai

will be 0 (Woolliams and Thompson 1994; Woolliams
et al. 1999), and the expectation of Equation 3 is 3 Cu(t 2 1)]. (7)
E[Ri Rmates (j(m),j*(f )) ri,u(j(m), t 2 1)ri,u(j*(f ), t 2 1)]E[a2

i,u].
For large enough t, the terms in Cu(t) will converge forLet the first of these, the expectation of the cross-prod-
a given u. Therefore, 1⁄2C0(t) ≈ 1⁄2C0(t 2 1), and 1⁄4C1(t) 2ucts of contributions to mates, be Cu(t 2 1). Note that 1⁄4vC1(t 2 1) ≈ 1⁄4(1 2 v)C1(t 2 1); then by adding and(i) Ct21(t 2 1) 5 0 since an individual without offspring
subtracting the term 1⁄2DFC0(t),cannot contribute to both sexes and (ii) the first term

in Equation 2 is 1⁄2C0(t 2 1) since A2
i,0 has a value 1⁄4 for E[Ft11 2 Ft] 5 1⁄2DFC0(t 2 1) 1 1⁄4(1 2 v)C1(t 2 1)

each of its two alleles and 0 otherwise.
2 DF[1⁄2C0(t 2 1)1 1⁄4C1(t 2 1)Assume equilibrium values for (i) the deviation from

Hardy-Weinberg frequencies arising from the nonran-
1 o

t22

u52

1⁄4(1 2 v)(1 2 DF)u21

dom mating (v, equivalent to aI of Caballero and
Hill 1992) and (ii) DF, attained by generation 2 (this

3 Cu(t 2 1)]. (8)assumption is removed later); then Equation 2 can be
further simplified using results given in appendix a, Finally, note E[Ft11 2 Ft] 5 DFE[1 2 Ft] and that the
namely, Ralleles E[a2

i,u] 5 1⁄4 for u 5 1 and 1⁄4(1 2 v)(1 2 term in square brackets in Equation 8 is E[Ft], giving
DF)u21 for u $ 2. Therefore,

DF 5 1⁄4(1 2 v)C1(t 2 1)[1 2 1⁄2C0(t)]21. (9)
E[Ft11] 5 1⁄2C0(t) 1 1⁄4C1(t)

This result holds for t large enough for contributions
from early generations to have converged. If it is as-1 o

t21

u52

1⁄4(1 2 v)(1 2 DF)u21Cu(t) (4)
sumed that the base generation used for defining the
inbreeding coefficients was chosen to be part of a periodE[Ft] 5 1⁄2C0(t 2 1) 1 1⁄4C1(t 2 1)
of equilibrium, then C1(t 2 1) 5 C0(t) 5 C,

1 o
t22

u52

1⁄4(1 2 v)(1 2 DF)u21Cu(t 2 1). (5) DF 5 1⁄4(1 2 v)C[1 2 1⁄2C]21 ≈ 1⁄4(1 2 v)C, (10)

where C is the sum of squared converged contributionsSubtracting (5) from (4) and rearranging terms,
for a generation, chosen arbitrarily within the period

E[Ft11 2 Ft] 5 1⁄2C 0(t) 2 1⁄2C 0(t 2 1) of equilibrium. Including the term neglected between
Equations 6 and 7 would replace [1 2 1⁄2C]21 by [1 21 1⁄4C1(t) 2 1⁄4C1(t 2 1)
(1⁄2 1 1⁄4v)C]21. For random mating, omitting the term

1 1⁄4(1 2 v)(1 2 DF)C2(t) [1 2 1⁄2C]21 leads to an underestimate with a fractional
error of z1⁄2C, which in turn is z2DF.

1 o
t22

u52

1⁄4(1 2 v)(1 2 DF)u21
Since C 5 E[RiRmates ( j(m),j *( f ))ri,u( j(m), t) ri,u( j*( f ), t)]

for large u ! t, for any i the terms ri,u( j(m), t) and ri,u( j( f ),
3 [(1 2 DF)Cu11(t) 2 Cu(t 2 1)]. (6) t) converge to the same value for all j in generation t

providing the population mixes. This value will be theAssuming equilibrium, then a steady state of pedigree
long-term contribution of ancestor i to the population,development will occur and the expectation of the cross-
denoted by ri. This will occur with or without randomproducts will be determined by the number of genera-
mating. Thus C 5 E[Rir 2

i ] for a generation of ancestors,tions over which they have developed, i.e., Cu(t) 5
which leads toCu21(t 2 1) since both terms represent contributions

t 2 u generations after the birth of the ancestor. This
DF ≈ 1⁄4(1 2 v) E 3o

i
r 2

i 4 (11)
is not a strong assumption in the context of the problem
since in the absence of an equilibrium there would be E[DF] ≈ 1⁄4(1 2 v)(XmE[r 2

i(m)] 1 X fE[r 2
i(f )]). (12)

no single DF to predict.
Therefore, the terms in Cu(t) can be modified to terms In Equation 12, the expectations are conditional on the

individual i being a selected ancestor; however, sincein Cu21(t 2 1), and each term of the sum within the
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ri 5 0 for an unselected ancestor, Equation 12 can also tion in overlapping generations is that the base genera-
tion will contain the equivalent of L cohorts, where Lbe given as
is the period of time over which the long-term contribu-

E[DF] ≈ 1⁄4(1 2 v)(TmE[r 2
i(m)] 1 TfE[r 2

i(f )]), (13)
tions sum to one, since this is the period required for
the population to turn over a generation for those geneswhere Tm and Tf are the number of candidates for selec-

tion in each sex and the expectation is for a candidate destined to remain in the population in the long-term.
Woolliams et al. (1999) show this genetic generation(i.e., it is not conditional on i being selected). (E[DF]

is used in Equations 12 and 13, rather than simply DF, interval is different from the average age of the parents
when there are selection advantages between groupsto emphasize that the result is an expectation over repli-

cate populations.) (see also Bijma and Woolliams 1999). To balance (8)
there is a need to add and subtract terms of magnitudeThis result was obtained for v 5 0 by Wray and

Thompson (1990) but the derivation differs in several 1⁄2C0(t) (DF/generation) or equivalently 1⁄2C0(t)L (DF/
unit time), where L is the generation interval. Thusaspects. First, in the derivation of Wray and Thompson

the base was unselected and therefore not in equilib- the error term in Equation 10 is [1 2 1⁄2CL]21, and
consequently ignoring this term results in an underesti-rium at the start of the selection process, and this led to

an impression that the contributions used for estimating mate with a fractional error of 2 3 (DF per generation).
Equation 11 is obtained by summing over all individualsrates of inbreeding must be the generation after an

unselected base. It is now evident that the choice of born in a single cohort. With overlapping generations,
individual ancestors within cohorts will have differentgeneration on which the estimate is obtained is arbitrary

except that it is at the start of some period of local life histories, since they will be used at different breeding
ages or for different purposes. If Xq is the number ofequilibrium during which some “equilibrium DF” may

exist. Second, the derivation using the probability of individuals with a lifetime breeding profile categorized
by q, then the approximation will behomozygosity for an assumed allele is of value since the

proof of Wray and Thompson (1990) is heavily based
E[DF/unit time] ≈ 1⁄4(1 2 v) o

categories q
XqE[r 2

i(q)], (14)
upon the properties of the numerator relationship ma-
trix. Third, it extends the result to incorporate nonran-
dom mating, although the result was given without proof where the expectations are over the squared contribu-
by Woolliams and Thompson (1994). Caballero and tions from a single cohort and are conditional on selec-
Hill (1992) noted that the result of Wray and Thomp- tion in category q. Although the approach is different,
son (1990) was a poor predictor of DF with nonrandom Equation 14 is equivalent to the result of Hill (1972,
mating and it is now clear why this was so. 1979) when random selection and random mating is

Even though the development of the pedigree may assumed. However, Equation 14 clearly shows that the
be in equilibrium (which will imply the genetic variance rate of inbreeding is related to the sum of squared
being selected upon is in equilibrium) this does not lifetime contributions irrespective of selection and non-
imply that equilibrium values of v and DF for the alleles random mating.
defined in the arbitrary base are immediately attained.
Equation 4, using appendix a, assumes that these pa-

RELATIONSHIP BETWEEN DF AND EXPECTEDrameters were in equilibrium for the Mendelian sam- CONTRIBUTIONS
pling in generation 2. However, the following argument
shows that this does not affect the result. Assume the Since DF is proportional to E[r 2

i ], the task of predict-
ing DF in selected populations would be made easier ifequilibrium conditions have not been attained by gener-

ation 2; then for this generation plus a small number tractable and general methods for calculating expected
squared contributions were available. However, E[r2

i ] 5of generations following (i.e., up to attainment of equi-
librium) there will be terms of the form dCu(t) in Equa- m2

i 1 s2
i and consequently there is a need to predict

both the mean and variance of the contributions. Com-tion 4 and dCu(t 2 1) in Equation 5. Providing t is
sufficiently large compared to the period of attainment, monly, the prediction of means is a simpler task than the

prediction of variances. General methods for predictingthese terms will cancel in Equation 6 since Cu(t) is a
convergent series. Thus Equations 10–13 will hold for expected long-term contributions in selected popula-

tions have been developed by Woolliams et al. (1999).the equilibrium values of v and DF.
Overlapping generations: If DF is taken per unit time The objective of the following section is to obtain a

relationship between the variance of the long-term con-then the structure of the preceding proof holds. The
reduction in the variance of the Mendelian sampling tributions and their expectations, which will then permit

development of general methods for the prediction ofterm over initial cohorts, before an equilibrium DF/
unit time is established, is not straightforward since it E[r 2

i ] and consequently for DF. The relationship will
need to assume random mating and is developed bywill depend upon the age structure of the population;

but the previous argument used to overcome deviations conditioning on the selective advantage(s), si, for an
ancestor. The selective advantage(s) of the ancestor, iffrom equilibrium can be applied. However, one distinc-
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inherited, will partly determine the breeding success of were a covariance, then this would result in selection
for increased squared contributions, breaking the as-its descendants, with diminishing impact over genera-

tions. The proof uses the result E[r 2
i ] 5 Es[r 2

2|si] 5 sumption of equilibrium. The right-hand side is then
equal to 1⁄2Es[r 2

i |si], since Es[un,i] 5 2. Therefore,Es[m2
i ] 1 Es[s2

i ], where mi 5 E[ri|si] and s2
i 5 Var[ri|si],

and the subscript s on the E indicates that the expecta-
Es[s2

i ] 5 1⁄2Es[r 2
i |si] 5 1⁄2Es[m2

i ] 1 1⁄2Es[s2
i ], (22)tion is being taken over the selective advantages.

Monoecious population: The proof is simplest in the which leads to the result that
case of a monoecious diploid population of X parents

Es[s2
i ] 5 Es[m2

i ]. (23)in discrete generations without selfing. Random mating
is assumed (v 5 0). Extension to overlapping genera- Finally, if X is the number of parents in each generation,
tions and to two sexes follows by analogy but is compli- then
cated by the need for matrices, and so this extension is

E[DF] ≈ 1⁄4X Es[r 2
i ] 5 1⁄4X(Es[m2

i ] 1 Es[s2
i ]) 5 1⁄2XEs[m2

i ].made in appendix b. The long-term contribution of
individual i is given by (24)

ri 5 1⁄2 o
offspring j

rj. (15) The power of this result is that it requires only the mean
conditional on the selective advantages to be modeled,

These sums may be restricted to the selected offspring which can be done for a wide class of genetic structures
since unselected offspring have no long-term contribu- using the methods of Woolliams et al. (1999). Note
tion. It is assumed that conditional on the selective ad- that the set of selective advantages used for conditioning
vantage si of the parent i, the genetic contribution of must completely describe the interrelationship between
the offspring is independent of the number of offspring one generation of selection and the next. This is embod-
selected from parent i (denote this number by ni). Then ied in the assumption that conditioning on the selective
from Equation 15, advantage si removes associations between the number

of offspring selected and the subsequent success of theE[ri|si,ni] 5 1⁄2niE[rj|si, j offspring of i] (16)
offspring. For example, the mates of the individual pro-

Var[ri|si,ni] 5 1⁄4niVar[rj|si, j offspring of i]. (17) vide a selective advantage that must be accounted for
(Woolliams and Thompson 1994; Santiago andEquation 17 requires random mating. Let un,i and Vn,i
Caballero 1995).be the mean and variance of ni|si; then

One of the critical assumptions of the proof leading
mi 5 1⁄2un,iE[rj|si, j offspring of i]. (18) to (24) is that the selected family sizes are distributed

as a Poisson variable. However, departures from this willThe derivation of mi in a general genetic framework was
occur, for example, (i) when the litter sizes are notdescribed by Woolliams et al. (1999).
Poisson; (ii) when negative covariances between full-The variance s2

i is derived using the statistical result
sibs and between half-sibs are induced by using sib indi-that the unconditional variance is the expectation of the
ces for selection; (iii) when selection intensity becomesconditional variance plus the variance of the conditional
large; and (iv) when there are common environmentalexpectation. Applying this result to Equations 16 and
variances associated with litters. (The occurrence of the17 gives
last two causes will depend on the model chosen for s,

s2
i 5 1⁄4un,iVar[rj|si, j offspring of i] which is addressed in the discussion.)

To account for this deviation let Vn,i 5 un,i 1 Vn,dev,i in1 1⁄4Vn,iE[rj|si, j offspring of i]2. (19)
Equation 19, where Vn,dev,i may be positive or negative

Assume now that the number selected from parent i according to the circumstances. Then the component
has a Poisson distribution. For example, this would be in un,i can be treated as previously and Equation 21
the case if litter size before selection had a Poisson becomes
distribution. Then un,i can replace Vn,i in the second term

s2
i 5 1⁄4un,iE[r 2

j |si, j offspring i]of Equation 19 to obtain

1 1⁄4Vn,dev,iE[rj|si, j offspring of i]2 (25)s2
i 5 1⁄4un,i(Var[rj|si, j offspring of i]

and Equation 23 becomes1 E[rj|si, j offspring of i]2), (20)

Es[s2
i ] 5 Es[m2

i ] 1 1⁄2 Es[Vn,dev,iE[rj|si, j offspring of i]2]which can be recognized as

(26)s2
i 5 1⁄4un,i E[r 2

j |si, j offspring of i]. (21)

with the resultIf expectations are now taken over si, Woolliams and
Bijma (1999) show that by assuming an equilibrium

DF 5 1⁄2XEs[m2
i ] 1 1⁄8XEs[Vn,dev,iE[rj|si, j offspring of i]2].

there is no covariance between un,i and E[r 2
j |si,

j offspring of i]. A heuristic explanation is that if there (27)
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Anticipating an observed result, the magnitude of terms individual i in category q conditional on its selective
involving si in E[rj|si, j offspring of i] contributes very advantage si(q) with variance s2

i(q). The steps given above
little to the second term of Equation 27 and only the in Equations 16–27 for a single category remain the
constant term, independent of si, needs be considered. same but changes are needed since terms must be rede-
In the current context E[rj|ss, j offspring of i] ≈ X21 and fined as vectors and matrices. The notation to develop
the second term in Equation 27 becomes 1⁄8Es[Vn,dev,i]/ the argument therefore becomes more complex but the
X. For example, in mass selection with fixed litter sizes, result remains simple. For this reason the proof is given
Santiago and Caballero (1995) used the approxima- in appendix b. The conclusion is that if family sizes after
tion that Es[Vn,dev,i] ≈ 2n21

o , where no is the number of selection are assumed to be distributed as independent
offspring per parent, with the result that the correction Poisson variables, then
for the deviation from Poisson is (28T)21 where T is

E[DF] 5 1⁄2o
q

XqEs[m2
i(q)]. (28)the total number of individuals born.

One of the benefits of Equation 24 is that the rate of
inbreeding can be obtained from predicting means, This simple result shows that the rate of inbreeding,
often using regression techniques. Accounting for devia- when approximated by the sum of squared contribu-
tions from the Poisson distribution introduces the need tions, is equal to one half of the sum of the squares of
for estimating variances of family size to obtain Equation expected lifetime contributions. Instead of using the
27. Nevertheless, the multigenerational problem of esti- observed contribution, as in Equation 12, the expected
mating the variance of a long-term genetic contribution contribution can be substituted, but this is done at the
has been reduced to estimating the variance of family cost of changing the coefficient from 1⁄4 to 1⁄2. This is
size after selection in a single generation. because the expected contribution is being used to

Extension to overlapping generations: With overlap- model both the mean and the variance.
ping generations, individuals within a cohort that are As previously, for a parent from category q, define
selected to breed at any point in their lifetime can be the matrix Vn(q),dev of size nc 3 nc to be the (co)variance
divided into breeding categories. These categories are

matrix for the number of selected offspring in each of
defined by the age of breeding, how often, and for what

the nc categories, expressed as deviations from indepen-purpose the individual breeds. Categories are particu-
dent Poisson variances. For each q, neglecting terms inlarly important in selection. As an example, consider
s (for empirical reasons given earlier), there will be a termmass selection where all selected individuals can have
dq defined by aTVn(q),deva, where a is the vector with theprogeny born at ages 1, 2, or 3. If the population is
qth element equal to the expected long-term contribu-making genetic progress the average merit of individuals
tion for an individual from category q, i.e., Es[mi(q)] 5born 3 years ago is less than the average merit of an
aq. Note dq may be negative since it is a variance deviationindividual born 1 year ago. Therefore an offspring of
and is not a variance. This term is introduced in Equa-a 3-year-old parent will have a selective disadvantage
tion B6 of appendix b. From appendix b we arrive atcompared to an offspring of a 1-year-old parent and so

is expected to make a smaller genetic contribution in E[DF] 5 1⁄2o
q

XqEs[m2
i(q)] 1 1⁄8o

q
Xqdq. (29)

the long-term (see Bijma and Woolliams 1999). If an
individual is a parent at all ages then its genetic contribu-

Although the proof has been based upon a monoe-tion is expected to be greater than an individual chosen
cious diploid organism with no selfing, the extensionfor breeding only at a single age. Breeding purpose is
to a dioecious organism is clear from the proof foralso important: if one group of parents are given more
overlapping generations. Having discrete generationsmating opportunities, then these would be expected to
with two sexes is identical to having two categories, i.e.,have more offspring and, other factors being equal,
males and females. Finally note that, other than assum-ultimately a greater long-term genetic contribution.
ing an equilibrium and random mating, there have beenFor these reasons partition of the selected individuals
no assumptions on the type of selection index used,into categories is necessary to obtain the general result.
the nature of the genetic variation, or the populationIt is assumed that the categories are defined so that an
structure.individual belongs to a single category that describes its

lifetime genetic contribution. To continue the example
of mass selection, where the only distinction among
parents is the breeding age, there would be potentially APPLICATIONS AND RESULTS
seven categories. If {x} denotes age x at breeding, then

Sib indices in discrete generations: The theory is illus-these categories are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2,
trated by selection on a general sib index of the form3}. The number of categories will inevitably depend on
I 5 b1(P 2 Pfs) 1 b2(Pfs 2 Phs) 1 b3Phs, where P is thethe complexity of the breeding scheme, but the essential
phenotype of the candidate, Pfs is the phenotypic meanpoint is that they can be defined and enumerated. Let
of its full-sibs (including candidate), and Phs is the phe-nc be the number of categories indexed from q 5 1 . . .

nc, and mi(q) be the expected long-term contribution of notypic mean of its half-sibs (including candidate and



1857Inbreeding and Contributions

TABLE 2 In Wray et al. (1994) the selective advantages were
based on the breeding values Ai(x), and this approach isGenetic parameters for a population selected
adopted here but slightly modified. A sire i has onewith a sib index
selective advantage, namely, its own breeding value plus
the average breeding value of its d mates (i.e., its mateXm, Xf, d Number of male and female parents and

mating ratio d 5 Xf/Xm group) and this aggregate value is denoted by Ai(hs). A
nm, nf, no Number of male and female offspring in dam i has two selective advantages: first, the selective

a full-sib family, no 5 nm 1 nf advantage of its mate (Ai(hs)) and second, its own breed-
P, Pfs, Phs Phenotype of candidate and its full- and ing value expressed as a deviation from the average

half-sib family means
breeding value of the mate group to which it belongsI, b1, b2, b3 Index and weights for selection I 5 b1
(denoted Ai(fs)). The average breeding value of the full-(P 2 Pfs) 1 b2(Pfs 2 Phs) 1 b3Phs
sib family from dam i is 1⁄2(Ai(hs) 1 Ai(fs)). Thus, in thispm, pf Selection proportions for males and fe-

males: pm 5 (nmd)21, pf 5 nf
21 hierarchical scheme, si(m) 5 (Ai(hs)), and si(f) 5 (Ai(hs),

vm, vf, im, if, Truncation points, intensities of selection, Ai(fs))T. The two selective advantages for a dam are inde-
km, kf and variance reduction coefficients pendent.

s2
I , s2

A, rI Variance of the index, total genetic vari- Expected long-term genetic contributions were mod-
ance, and accuracy of selection

eled following Woolliams et al. (1999) as E[ri(q)|si(q)] 5s2
Am, s2

Af, s2
e Genetic variance among selected sires and

mi(q) 5 aq 1 bT
q (si(q) 2 sq), where si(q) denotes the vectordams and residual variance

of selective advantages for a selected individual of sexAi(hs), Aj(fs) Mean breeding value of the half-sib family
of sire i and the mean breeding value of q expressed as a deviation from the mean of its contem-
the full-sib family of dam j expressed as poraries sq, bq is the vector of regression coefficients of
a deviation from the half-sib family ri(q) on si(q) 2 sq, aq is the mean contribution of selected

n(Ai(hs)) Variance of Ai(hs) and similarly defined for parents of sex q, and T denotes the transpose. In the
Ai(fs): n(Ai(hs)) 5 s2

Am 1 s2
Af/d, n(Ai(fs)) 5

parameterization used, the mean of Ai(fs) is always zero.s2
Af(1 2 d21)

To simplify the notation it is assumed that Ai(hs) is alreadyrFS, rHS Correlation of indices among full-sibs and
expressed as a deviation from the mean of the contem-half-sibs, respectively: rHS 5 [b2

3v(Ai(hs)) 2
b2

2v(Ai(fs))(d 2 1)21]/s2
I ; rFS 5 [b3v(Ai(hs)) 1 porary group, and so sq is omitted from this point on-

b2v(Ai(fs)) 2 b2
1(1⁄2h2

0 1 s2
e)n21

o ]/s2
I wards.

Step 1. Prediction of expected contributions: The predictionIn the initial unselected base population, the phenotypic
of expected genetic contributions is covered in detailvariance was assumed to be 1 and the initial heritability h2

0.
by Woolliams et al. (1999). The current article only
summarizes the procedure for a sib index, without deri-
vation. Prediction of mi(q) requires the prediction of a 5full-sibs). Mass selection is a special case, with b1 5 b2 5
(am, af)T and b 5 (bT

m, bT
f ). In discrete generations, (am,b3 5 1 (or any constant .0). This formulation was used

af) 5 [1/(2Xm), 1/(2Xf)] always. Solutions for b arealso by Wray et al. (1994) in their study of rates of
obtained applying the method of Woolliams et al.inbreeding. Every generation, the highest ranking Xm

(1999), using Bulmer’s (1980) equilibrium genetic vari-sires and Xf dams are selected as parents for the next
ances. A summary of equations used is given in appen-generation. Each sire is mated at random to d 5 Xf/Xm

dix c. For the example (am, af) 5 (0.0250, 0.0083), b 5dams and each dam produces a total of no offspring, nm

(0.0447, 0.0149, 0.0130).male, and nf female, which are available for selection
Step 2. Rates of inbreeding assuming Poisson variances:in the next generation. The unselected base population

From step 1, mi(m) 5 [0.0250 1 0.0447Ai(hs)]. The ex-is assumed to have a phenotypic variance of 1 with a
pected squared mean is a simple sum of squared terms:heritability of h2

0 for the selected trait. Additional nota-
XmE[m2

i(m)] 5 Xm[0.02502 1 0.04472n(Ai(hs))(1 2 X21
m )].tion used for the sib index is shown in Table 2. An

The (1 2 X21
m ) term accounts for variances about theexample is given at each step and this is a selection

sample mean of the selected group rather than the truescheme for Xm 5 20, Xf 5 60, nm 5 nf 5 4, with index
mean.weights b1 5 1, b2 5 1.5, and b3 5 2. The principal

The terms arising from XfE[m2
i (f)] are calculated analo-parameters for this scheme are presented in Table 3

for easy reference. gously. Since the two selected advantages of the females

TABLE 3

Principal parameters, as described in Table 2, for the example selection scheme used throughout

Xm 5 20 Xf 5 60 d 5 3 nm 5 nf 5 4 h2
0 5 0.4 (b1, b2, b3) 5 (1.0, 1.5, 2.0)

pm 5 0.083 pf 5 0.25 vm 5 1.383 vf 5 0.674 im 5 1.839 if 5 1.271
km 5 0.838 kf 5 0.759 s2

I 5 1.331 s2
A 5 0.302 s2

Am 5 0.050 s2
Af 5 0.052

rI 5 0.636 rFS 5 0.390 rHS 5 0.205 n(Ai(hs)) 5 0.269 n(Ai(fs)) 5 0.140
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are mutually independent, the expected mean squared with the exception of d 5 3, h2 5 0.4, where underesti-
mates of up to 8% were observed. The trends in ratesis simply the sum of squared terms. The expected long-

term contribution of a female parent is of inbreeding were also accurately tracked with classical
weights with no increases in the magnitude of the errors,

mi(f ) [0.0083 1 0.0149Ai(hs) 1 0.0130Ai(fs)] even though schemes had rates of inbreeding .0.03.
The most serious trend in the errors was a pattern ofand the sum of squared means is

underprediction characterized by high mating ratio and
XfE[m2

i(f )] 5 Xf[0.00832 1 0.01492n(Ai(hs))(1 2 X21
m )

large family sizes (both of which increase the selection
intensity) and increased family weights. More surpris-1 0.01302n(Ai(fs))].
ingly, the errors also increased with the numbers of

As previously mentioned, the term is defined as a devia-
parents at a constant d (i.e., Xm 5 20, Xf 5 60 compared

tion from the mean over all ancestors so n(Ai(fs)) requires
to Xm 5 80, Xf 5 240), and also the errors were not

no correction.
present for h2 5 0.01 and increased sharply as h2 in-

The rate of inbreeding ignoring deviations from Pois-
creased. To explore these errors further, the long-term

son variances is predicted from DF 5 1⁄2(XmE[m2
i(m)] 1

contributions for selected males were plotted against
XfE[m2

i(f )]) 5 (0.0227 1 0.0090)/2 5 0.0158.
Ai(hs) for the following schemes with d 5 3, weights (1.0,

Step 3. Correction for deviations of Vn from Poisson vari-
1.5, 2.0): I, Xm 5 20, h2 5 0.4, no 5 16; II, Xm 5 80, h2 5

ances: Deviations from Poisson variances can be ac-
0.4, no 5 16; III, Xm 5 80, h2 5 0.01, no 5 16; and IV,

counted for by correcting the rate of inbreeding using
Xm 5 80, h2 5 0.4, with no 5 4. The results for simulated

Equation 28, where dq 5 aTVn(q),deva and Vn(q),dev is the (2 3
(S) and predicted (P) were as follows: I, S 5 0.0231,

2) matrix with (co)variances of the number of selected
P 5 0.0220; II, S 5 0.0070, P 5 0.0058; III, S 5 0.0028,

offspring of a parent of sex q (q 5 m, f) as a deviation
P 5 0.0029; IV, S 5 0.0037, P 5 0.0037. Note that scheme

from independent Poisson variances. The calculation
II is simply scheme I with four times the number of

of the deviation from Poisson family variance for fixed
parents and expected long-term contributions of I are

numbers of selection candidates per full-sib family is
consequently four times bigger than II. The prediction

described in appendix d. The approach adopted was
of DF for scheme II is close to (but not precisely) 1⁄4 of

derived in detail by Burrows (1984), although exten-
that for I. However, the ratio of the simulated DF for

sion to two sexes was required and the method was
scheme II compared to I was closer to 1⁄3, i.e., much

made more flexible by incorporating results from Men-
greater than would be expected from scaling. Serious

dell and Elston (1974). Applying the method to the
prediction error occurs only for scheme II.

example gives
Figure 1 shows that the accuracy of prediction with

low h2 (scheme III) is because the linear model used isVn(m),dev 5 (0.186,0.751|0.751,20.079),
a good fit (i.e., the contributions are a simple linear

Vn(f ),dev 5 (0.020,0.159|0.159,20.154).
regression on the selective advantage) and similarly for
low selection intensity (scheme IV). However, for bothThe total correction to the predicted DF is 0.0016, and

the prediction, using Equation 29, is 0.0175. The mean the other two schemes the linear model predicts a sub-
stantial proportion of the selected males to have nega-DF derived from 1000 simulations was 0.0183 (SE 5

0.0001). tive contributions, although rates of inbreeding are ac-
curately predicted in one case (scheme I) but not inGeneral fit: Extensive simulations were carried out as-

suming an infinitesimal model with factorial combina- the other (scheme II).
Closer replicate-by-replicate analysis shows that de-tions of Xm 5 20, 40, 80; d 5 1, 2, 3 (and 5 for Xm 5

20, 40); total offspring of 4, 8, and 16 per full-sib family spite the expectation, the substantially greater variance
of contributions (approximately proportional to DF/equally divided between sexes; and with h2 5 0.1, 0.2,

0.4, and 0.6; weights used were (1.0, 0.75, 0.5) for d . Xm) in scheme I obscures the nonlinearity in the majority
of replicates. When both linear and quadratic terms for1 [changed to (1.0, 0.75, 0.75) for d 5 1] and (1.0, 1.5,

2.0) for d . 1 [changed to (1.0, 1.5, 1.5) for d 5 1]. the selective advantage were included in a regression
model for observed contributions, the quadratic termClassical weights were also examined since these weights

were the subject of the study of Wray et al. (1994), was not statistically significant (defined here as P ,
0.01) in .60% of the replicates. In contrast, for schemealthough they are suboptimal after the first round of

selection from an unselected base population. Results II, this percentage was ,15%. Thus the accuracy of
prediction depends on the goodness-of-fit of the linearhave been tabulated and summarized by Woolliams

and Bijma (1999). model within a replicate, so more parents may promote
greater proportional prediction errors, even thoughWith weights (1.0, 0.75, 0.5, or 0.75) the accuracy was

excellent for all schemes, with all errors ,4%. With these errors will be associated with lower rates of in-
breeding.weights (1.0, 1.5, 1.5, or 2.0) accuracy was also very

good, accurately tracking trends with the changes in The pattern of the correction for deviations from
Poisson distribution for selected family sizes is worththe parameters and with a large majority of errors ,2%
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Figure 1.—The expected long-term contribution and lower and upper quartiles obtained from simulation (as a function of
the selective advantage Ai(hs)), together with the expected long-term contribution predicted from assuming a linear model for
four example schemes. The curves obtained from simulation are the result of sampling 8000 individuals. The following schemes
all have d 5 3 with weights (1.0, 1.5, 2.0): I, Xm 5 20, h2 5 0.4, no 5 16; II, Xm 5 80, h2 5 0.4, no 5 16; III, Xm 5 80, h2 5 0.01,
no 5 16; and IV, Xm 5 80, h2 5 0.4, no 5 4. n, linear prediction; d, simulated expectation; s, lower and upper quartiles.

noting. These corrections are negative for b2, b3 , 1, of-fit of the models used to implement the theory rather
than those used to derive it.reduce in size as the index weights increase, and were

Theory: The first theorem relating the rate of inbreed-generally positive for b2, b3 . 1. For mass selection, b1 5
ing in a population to the squared long-term contribu-b2 5 b3 5 1, the correction is of the order of 21/(8T).
tions was previously derived by Wray and Thompson
(1990) but the proof here has several useful extensions.
In contrast to Wray and Thompson (1990), the proofDISCUSSION
is direct in using identity by descent rather than proper-

The theory described in this article provides a power- ties of the numerator relationship matrix, and it also
ful tool for predicting rates of inbreeding in selected incorporates nonrandom mating and overlapping gen-
populations and for providing insights into the forces erations. The simplest relationship (DF ≈ 1⁄4Rr 2

i ) is not
that contribute to the rate of loss of variation. The rela- exact and was shown to underestimate the rate of in-
tionship of Wray and Thompson (1990) has been de- breeding by a fraction of the order of (2DF), providing
rived directly from consideration of identity by descent there was no major deviation from random mating, and
and has been extended to cover overlapping genera- is therefore small for any practical scheme. In overlap-
tions and nonrandom mating. Applicability was then ping generations, with rates of inbreeding per unit time
advanced by showing how expected long-term contribu- and per generation both of interest, it is shown that
tions, which are predictable by general methods, can this error is 2(DF/generation), where the generation
be used in place of observed long-term contributions interval was defined by the period over which the long-
to predict the rates of inbreeding, if random mating term genetic contributions sum to 1.
was assumed. Finally, the methods were applied to sib The importance of the relationship between rates of
indices in discrete generations, for which the previous inbreeding and squared genetic contributions is that it
solutions were complex (Wray et al. 1994). In doing so, holds for selected populations, with no assumptions on
some insight was gained into the origin of the prediction the form of selection, providing (i) the genes are ulti-

mately mixed, and (ii) an equilibrium exists over whicherrors, and these appeared to arise from the goodness-
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a stable DF may be defined. A further caveat is that the overlapping generations. The validity of the derivation
was checked using general sib-indices as an example inrate obtained applies to a neutral, unlinked gene. The

extension of other relationships to predict DF in selected discrete generations, and a companion article (Bijma
et al. 2000) provides verification in overlapping genera-populations does not always hold. For example, using

the relationship Var(dq) 5 q(1 2 q)DF, where q is the tions with mass selection with lifetime selection, thereby
removing a serious restriction of Nomura (1996). Thefrequency of a neutral gene and dq is the change in

frequency per unit time, will not hold if selection is not limitation to random mating arises from Equation 17,
although in one special case, partial full-sib mating withrandom since it assumes mutual independence of dq

over consecutive intervals. The increments, dq, are also no selection, the analysis can be completed (using re-
sults of Ghai 1965) and shown to agree with the resultscorrelated for overlapping generations due to the many

intervals over which the progeny of a single parent may of Caballero and Hill (1992). This provides an indi-
rect verification of Equation 13 for nonrandom mating.be selected. As a consequence the justification for the

proof by Hill (1979) for DF with overlapping genera- Woolliams et al. (1999) show how the expected long-
term contribution may be calculated in general for dif-tions is invalid, even in the absence of genetic selection,

although the result is correct and agrees with the previ- ferent inheritance models (e.g., imprinted variation, ma-
ternal additive, or sex-linked variation) with differentous proof of Hill (1972). Closer examination of Hill

(1979) shows that its justification lies in an intuitive selection indices (sib indices or best linear unbiased
predictors). Using long-term contributions follows theargument for the relationship that was to be proved

later by Wray and Thompson (1990). Consequently path of Wray and Thompson (1990) and Woolliams
et al. (1993) and differs from Santiago and Caballerothe methods derived here may be seen to arise as a

natural development of the results of Hill (1972, 1979) (1995; mass selection in discrete generations) and
Nomura (1996; a special case of mass selection withfor selected populations.

The form of Equation 4 shows that the sum of squared overlapping generations), who base their predictions
on genetic variation transmitted to descendants. Thislong-term contributions for any given cohort may be

usefully interpreted in the absence of an equilibrium. is because the approach using genetic variation cannot
be sustained for general selection schemes. SantiagoThe sum of squared contributions for a cohort is the

proportion of the new variation (the Mendelian sam- and Caballero (1995) suggest (their Equation 13) that
a change in covariance between a general selective ad-pling variance) arising from within that cohort that is

lost to the population in the long term. This includes vantage and a neutral gene following selection is deter-
mined by the reduction in genetic variation. This is trueall mutational variance arising in prior generations,

since the choice of base is arbitrary. Therefore the sum for mass selection, where the index of selection is solely
a function of the total breeding value and residual error,of squared contributions of cohorts (particularly those

still to converge!) is important, irrespective of equilib- but will not be true in general (Woolliams et al. 1999).
Bijma et al. (2000) show why there is agreement betweenrium, and provides a meaningful measure of risk, and

merits attention in both breeding and conservation the two approaches for mass selection in discrete gener-
ations and also why the current methods are requiredschemes. The operational tools described by Grundy

et al. (1998) are based upon controlling sums of squared to cope with overlapping generations.
Prediction: Usable predictions were obtained bycontributions of cohorts and have meaning and validity

beyond the infinitesimal model (e.g., Villanueva et al. Wray et al. (1994) and an alternative form based upon
Wray et al. (1994) was used by Villanueva and Wool-1999). However, there are clearly greater problems in

providing deterministic predictive tools to analyze popu- liams (1997). However, the method of Wray et al.
(1994) was complicated, although it attempted to modellation dynamics if the assumption of equilibrium is re-

moved, and those provided by Woolliams et al. (1999) the expected proliferation of ancestral lines. The au-
thors believe the proposed method is conceptually sim-assume this equilibrium.

The second, novel theorem derived in this article is pler than that of Wray et al. (1994) and is open to
development.concerned with showing how the formulas with ob-

served long-term contributions may be translated into In any attempt to obtain prediction formulas, a bal-
ance has to be achieved between accuracy and simplicity.formulas with expected long-term contributions. The

latter are advantageous since they use predictable enti- We have used simple linear models to interpret the
theory. Thus in application the prediction consists ofties. The major change is that the expected can be

substituted for the observed, providing the constant of two elements: (i) the squared expected contribution
and (ii) the deviation from independent Poisson fami-proportionality is increased from 1⁄4 to 1⁄2. The critical

step in the proof is that the error variance of a long-term lies. The first of these elements was applied precisely as
described by Woolliams et al. (1999), with correctionscontribution given the selective advantage is related to

the square of its mean, i.e., the coefficient of variation for finite numbers only being used to obtain the sample
variance of selective advantages. No other modificationsis relatively constant. Apart from random mating, the

scope of this proof is very broad and is applicable to were needed because the other terms in the squared
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expected contribution were estimates of regression coef- In an ideal selection scheme, an ancestor’s long-term
contributions will be zero or, once its Mendelian sam-ficients, which were assumed to be relatively robust to

finite sampling. This assumption may be justified in part pling term is above a critical threshold, linearly related
to the sampling term (Woolliams and Thompson 1994;by the excellent agreement obtained by Woolliams et

al. (1999) between simulations and deterministic pre- Grundy et al. 1998). Consequently it would be expected
dictions of expected long-term contributions. The sec- that in an ideal scheme, the long-term contribution of
ond element, calculating the deviation from indepen- a selected ancestor will show an approximate linearity
dent Poisson families, only required extension of the with its breeding value. This argument suggests that if
method of Burrows (1984) to two sexes. The correla- the design objective is for a scheme to generate gain
tion coefficients among full-sibs and half-sibs used for efficiently from the resources available, a linear model
calculating this element were those obtained assuming for the relationship between the long-term contribution
infinite numbers but, to compensate for this, no reduc- and the selective advantage should prove sufficient. If
tion for finite samples was applied to the squared means. so, then the need for improved deterministic models

The choice of selective advantages has as an objective to cater for the schemes with large prediction errors
the minimum number needed to make the selective would be removed. The viewpoint that the schemes with
processes in different time periods independent. Using large prediction errors are inefficient is supported by
sib indices as an example, the authors considered both the results of Villanueva and Woolliams (1997), who
the method presented, where only breeding values were showed that when using sib indices, efficient schemes
included as selective advantages, and an alternative had d # 2 for which the methods presented here had
definition in which the selective advantages were the a good fit.
half-sib mean and deviation of the full-sib mean from the In conclusion, this article has (i) established a broader
half-sib mean. The potential benefit from the alternative theorem (compared to Wray and Thompson 1990)
parameterization is that the environmental covariances concerning the relationship between squared long-term
in the index arising from the sib means are accounted genetic contributions and rates of inbreeding, in partic-
for within the expected long-term contribution. Condi- ular extending the theorem to nonrandom mating and
tioning on the sib means is more than is strictly necessary to overlapping generations; (ii) shown that, for random
for conditional independence between generations. mating, the relationship can be generalized from long-
However, while results using the alternative parameter- term contributions that are simply observed to encom-
ization were as accurate in most cases (results not pass expected long-term contributions that can be pre-
shown), the underestimates explored in the results dicted; and (iii) shown how these equations might be
tended to be more severe. One reason for this is that interpreted with simple linear models in the context of
terms included in the expected long-term contribution predicting rates of inbreeding with sib indices in dis-
are modeled by linear functions, whereas modeling the crete generations. Together with the findings of Wool-
environmental correlations by the method of Burrows liams et al. (1999), the findings of this study show how
(1984) allows part of the nonlinearity to be accounted rates of inbreeding may be predicted in general popula-
for. Therefore, the more terms that are included linearly tions with complex structures and genetic models.
in the expected long-term contribution, the greater the
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To obtain Equations 18 and 19, we need to defineWray, N. R., J. A. Woolliams and R. Thompson, 1994 Prediction
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vector with elements gp 5 E[rj(p)|si(q), j(p) offspring of
i(q)], and h to be a vector with elements hp 5 Var[rj(p)|si(q),
j(p) offspring of i(q)]. This results in

APPENDIX A: THE EXPECTED MENDELIAN
mi(q) 5 1⁄2uT

n,i(q)g (B4)SAMPLING VARIANCE

s2
i(q) 5 1⁄4uT

n,i(q)h 1 1⁄4gTVn,i(q)g. (B5)The expected Mendelian sampling variance in genera-
tion 1 summed over all alleles in the founders can be It is now possible to make the same assumption as for
calculated using the following argument. For the prog- discrete generations, i.e., that the number in category
eny of the carrier founder i* of the allele the gene p selected from parent i(q) has a Poisson distribution:
frequency has mean 1⁄4, i.e., half of the gene frequency

s2
i(q) 5 1⁄4o

p
un,i(q),p(hp 1 g2

p)in carrier (1⁄2) plus half of that in mate (0), with s2
a 5

1⁄16. For progeny of other parents, s2
a 5 0. Therefore,

5 1⁄4o
p

un,i(q),pE[r 2
j(p)|si(q), j(p) offspring of i(q)]. (B6)for a single allele, the Mendelian sampling variance is

s2
a 5 ni*/(16X), where ni* is the number of offspring of

Then by taking expectations over si(q) in (B6), and us-i* selected in generation 1, and where X is the total
ing the equilibrium property that Es[r 2

i(q)] is unchangednumber selected. Summing over all alleles (two per
from generation to generation, show (Woolliams andbase individual), and since the sum of the number of
Bijma 1999) thatoffspring selected over all parents is 2X, the expected

variance is 1⁄4. o
categories q

XqEs[s2
i(q)] 5 1⁄2 o

categories q
XqE[r 2

i(q)|si(q)] (B7)
At generation 2 and later, with true random mating

the Mendelian sampling variance will be reduced. For o
categories q

XqEs[s2
i(q)] 5 o

categories q
XqEs[m2

i(q)]. (B8)
dioecious species this will be delayed by a generation
through nonrandom mating, and in general the ex- Thus 1TNm 5 1TNn and substitution into Equation 17
pected variance is 1⁄4(1 2 v)(1 2 DF)u21 in generation gives the result
u . 1, where DF is the rate of inbreeding among the

DF 5 1⁄21TNm 5 1⁄2o
q

XqEs[m2
(q)]. (B9)

parents.
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APPENDIX C: PREDICTION OF EXPECTED GENETIC P is a (3 3 3) matrix, with pij being the regression
CONTRIBUTIONS FOR SIB INDICES coefficient of selective advantage i of a selected offspring

on the selective advantage j of the parent. This matrixExpected genetic contributions were calculated using
describes exactly how the selection process in one gener-equilibrium genetic parameters. The genetic parame-
ation is related to the same process in the next genera-ters were obtained by iterating rounds of selection start-
tion. The elements of II are derived by standard selec-ing from an unselected base generation with additive
tion theory (described in detail in Appendix B ofgenetic variation h2

0 and the phenotypic variance 1. The
Woolliams et al. 1999) and account for the effects ofiterative equations were s2

A,t11 5 s2
Am,t 1 s2

Af,t 1 1⁄2h2
0 and

selection. Let z 5 rIsA/sI; then the elements of II ares2
Ax,t 5 1⁄4s2

A,t(1 2 kxr
2
t ), where s2

A,t is the additive genetic
variance in generation t, rt denotes the accuracy of selec-
tion in generation t (see Villanueva et al. 1999), and

p11 5 1⁄2(1 2 kmb3z), p12 5 1⁄2(1 2 kmb3z), p13 5 1⁄2(1 2 kmb2z),

p21 5 1⁄2(1 2 kfb3z)/d, p22 5 1⁄2(1 2 kfb3z)/d, p23 5 1⁄2(1 2 kfb2z)/d,

p31 5 1⁄2(1 2 kfb3z)(1 2 d21), p32 5 1⁄2(1 2 kfb3z)(1 2 d21), p33 5 1⁄2(1 2 kfb2z)(1 2 d21).x 5 m or f as appropriate. Equilibrium variances were
obtained in five iterations. In the remainder of this Example. For Xm 5 20, Xf 5 60, h2

0 5 0.4, nm 5 nf 5
appendix the notation used is given in Table 2. 4 with weights b1 5 1.0, b2 5 1.5, b3 5 2.0. The principal

Calculation of the expected long-term genetic contri- parameters for the scheme are given in Table 3. Using
butions followed the methods of Woolliams et al. the formulas given above,
(1999). Briefly these methods depend upon defining

1⁄2L 5 (0.797, 0.797, 0.598|0.551, 0.551, 0.413)two regression models: the first describes the relative
fitness of a parent as a linear function of its selective 1⁄2P 5 (0.123, 0.123, 0.155|0.045, 0.045,
advantages; the second regression model describes the

0.055 |0.090, 0.090, 0.109).relationship of the selective advantages of the selected
offspring with those of its parent. In discrete generations The solutions are a 5 (0.0250, 0.0083) and b 5 (0.0447,
these models will depend only upon the sex of the 0.0149, 0.0130).
parent and the sex of the selected offspring (in overlap-
ping generations they may also depend on age).

APPENDIX D: THE VARIANCES OF FAMILY SIZEFor discrete generations the values of am and af are
AFTER SELECTION WHEN LITTER SIZESsimply (2Xm)21 and (2Xf)21, respectively, and so the only

ARE CONSTANTterm that needs more detailed description is the calcula-
tion of b. b is a vector of three regression coefficients, The variances of family size when litter sizes are con-
the first (b1) describing the regression of the long-term stant are derived by combining results of Burrows
contribution of a selected male on its selective advan- (1984) and Mendell and Elston (1974), which extend
tages Ai(hs) and the remaining (b2, b3) describing the and formalize results used by Woolliams et al. (1993).
regression of the long-term contribution of a selected For simplicity, litters are assumed to have n males and
female on its two selective advantages (Ai(hs), Ai(fs)). In n females, and there are T candidates for selection in
the remainder of the appendix the selective advantages each sex. The basic approach of using factorial mo-

ments, i.e., E[nij(q)(nij(q) 2 1)], where nij(q) is the num-are indexed 1–3 as above.
ber of sex q (i.e., q 5 m or f) selected from the full-sibb is derived from the formula of Woolliams et al.
family with sire i and dam j, was described in detail by(1999), which has been simplified for application to
Burrows (1984). Since Burrows (1984) was workingdiscrete generations,
in the context of forestry only a single sex was considered

b 5 N21(I 2 1⁄2PT)(1⁄2LT)(1⁄2, 1⁄2)T, and hence some extension to two sexes is necessary.
The approach of Burrows (1984) has been preferredwhere N is a diagonal matrix with elements (Xm, Xf, Xf),
since it results in elegant formulas.I is the identity matrix, and where II and L are described

Denote nij(q) as the number of offspring selected ofbelow.
sex q from the full-sib family of sire i and dam j, and

L is a (2 3 3) matrix, where li1 is the regression
ni*(q) as the number selected from sire i (i.e., summedcoefficient for the relative fitness of a male parent on
over all its mates). Note that the variance of familyits selective advantage, and where li2, li3 are the corre-
size can be simply expressed in terms of the factorialsponding coefficients for the selective advantages of a
moments:female parent. When i 5 1 the relative fitness is for

having male offspring selected and i 5 2 for having Var[nij(q)] 5 E[nij(q)(nij(q) 2 1)]
female offspring selected. These coefficients will de-

2 E[nij(q)](E[nij(q)] 2 1) (D1)pend on the index of selection used and the selection
intensity. The coefficients are derived using Appendix Var[ni*(q)] 5 E[ni*(q)(ni*(q) 2 1)]
A of Woolliams et al. (1999). The elements are l11 5

2 E[ni*(q)](E[ni*(q)] 2 1). (D2)
l12 5 imb3s21

I , l21 5 l22 5 ifb3s21
I , l13 5 imb2s21

I , and l23 5
ifb2s21

I . To obtain deviations of the variance from Poisson family
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size, the term in E[nij(q)](E[nij(q)] 2 1) in Equation D1
Cov[ni*(m), ni*( f )] 5 E[ni*(m)ni*( f )]

is replaced by E[nij(q)]2 and a similar change is made
in Equation D2. 2 E[ni*(m)]E[ni*( f )]. (D7)

Burrows (1984) derived the asymptotic form (Bur-
The expected cross-products are derived analogously torows 1984, Equations 4–12),
the variance and are given by

E[nij(q)(nij(q) 2 1)]
E[nij(m)nij( f )] 5 [n2XmXf]/[T 2R(pm, pf, rFS)] (D8)

5 [n(n 2 1)Xq(Xq 2 1)]/[T(T 2 1)R(pq, rFS)], (D3)

where Xq is the total number of that sex selected and T E[ni*(m)ni*( f )] 5 [d/R(pm, pf, rFS)
is the total number of candidates, pq the proportion

1 d(d 2 1)/R(pm, pf, rHS)]selected (i.e., Xq/T), and rFS the correlation between
full-sibs. R(p, r) is the ratio p2/F(v, v; r), where F(v, 3 [n2XmXf/T 2]. (D9)
v; r) is the upper-quadrant probability that both vari-

The rationale of the term R(pm, pf, r) as a ratio of proba-ables of a standardized bivariate normal distribution
bilities for random selection and with correlation r re-with correlation coefficient r exceed v; v is defined by
mains unchanged but has been extended to the situa-F(v) 5 1 2 p; and F(v) is the distribution function of
tion with two sexes with different selection proportions.the standard univariate normal distribution. The ratio
This ratio is calculated from Mendell and Elstonis essentially the probability of two sibs being above
(1974) using R(pm, pf, r) ≈ pf/F[(imr 2 vf)(1 2 kmr2)21/2],the index truncation point when the index correlation
which was found by Wray et al. (1994) to be the moreamong sibs is zero (as in random selection) divided by
accurate implementation of their results (there are twothe probability with correlation r. Burrows (1984) uses
possible implementations since the approximation istabulated values for the coselection ratio R(p, r), but
asymmetric in male and female parameters).these values can be approximated closely by results from

To obtain the variances and covariances conditionalMendell and Elston (1974): R(p, r) 5 p/F[(ir 2
upon the selective advantage, the regression model de-v)(1 2 kr2)21/2]. This approximation is used through-
rived for the expected number of offspring selected isout. To allow extension to two sexes we denote R(p, r)
used (see appendix c).by R(p, p, r). [It seems more natural to the authors to

Thus, for a dam family,use a term equal to 1/R(p, p, r) in the formula, which
describes the proportional increase in coselection; how-

E[nij(m)]2 5 d22(1 1 l2
12v(Ai(hs)) 1 l2

13v(Ai(fs)))ever, we have used R(p, p, r) to maintain continuity of
notation with Burrows (1984).] (D10)

Burrows (1984) derived the additional result to use
for the variance of half-sib family sizes. In this article

E[nij(m)]E[nij( f )] 5 d21(1 1 l12l22v(Ai(hs)) 1 l13l23v(Ai(fs)))only paternal half-sib families are considered,

(D11)E[nij(q)nik(q)] 5 [n2Xq(Xq 2 1)]/[T(T 2 1)R(pq, pq, rHS)],

E[nij( f )]2 5 1 1 l2
22v(Ai(hs)) 1 l2

23v(Ai(fs)),(D4)

(D12)where j and k are distinct mates to a common parent i,
and rHS is the correlation between half-sibs. Therefore,

and for a sire family,for a sire with d mates,

E[ni*(m)]2 5 1 1 l2
11v(Ai(hs)) (D13)E[ni*(q)(ni*(q) 2 1)] 5 o

j
E[nij(q)(nij(q) 2 1)]

E[ni*(m)]E[ni*( f )] 5 d(1 1 l11l21v(Ai(hs))) (D14)
1 o

j?k
E[nij(q)nik(q)]

E[ni*( f )]2 5 d 2(1 1 l2
21v(Ai(hs))). (D15)

5 [d(1 2 n21)/R(pq, pq, rFS) Example. For Xm 5 20, Xf 5 60, h2
0 5 0.4, nm 5 nf 5

1 d(d 2 1)/R(pq, pq, rHS)] 4 with weights b1 5 1.0, b2 5 1.5, b3 5 2.0, most parame-
ters for this scheme are given in Table 3, and the l

3 [n2Xq(Xq 2 1)]/[T(T 2 1)].
values are derived in appendix c. The coselection ratios
are R(pm, pm, rFS) 5 0.350, R(pm, pm, rHS) 5 0.546, R(pm,(D5)
pf, rFS) 5 0.482, R(pm, pf, rHS) 5 0.656, R(pf, pf, rFS) 5

The covariances of male and female family size are 0.589, R(pf, pf, rHS) 5 0.742.
Applying the results of this appendix gives Vn(m),dev 5

Cov[nij(m), nij( f )] 5 E[nij(m)nij( f )]
(0.186, 0.751|0.751, 20.079) and Vn(f ),dev 5 (0.020,
0.159|0.159, 20.154).2 E[nij(m)]E[nij( f )] (D6)


