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ABSTRACT

Artificial neural networks have been combined with a
rule based system to predict intron splice sites in the
dicot plant Arabidopsis thaliana . A two step prediction
scheme, where a global prediction of the coding
potential regulates a cutoff level for a local prediction of
splice sites, is refined by rules based on splice site
confidence values, prediction scores, coding context
and distances between potential splice sites. In this
approach, the prediction of splice sites mutually affect
each other in a non-local manner. The combined
approach drastically reduces the large amount of false
positive splice sites normally haunting splice site
prediction. An analysis of the errors made by the
networks in the first step of the method revealed a
previously unknown feature, a frequent T-tract pro-

longation containing cryptic acceptor sites in the 5 "end

of exons. The method presented here has been com-
pared with three other approaches, GeneFinder, Gene-
Mark and Grail. Overall the method presented here is an
order of magnitude better. We show that the new
method is able to find a donor site in the coding
sequence for the jelly fish Green Fluorescent Protein,
exactly at the position that was experimentally ob-
served in A.thaliana transformants. Predictions for
alternatively spliced genes are also presented, together
with examples of genes from other dicots, monocots
and algae. The method has been made available
through electronic mail (NetPlantGene@cbs.dtu.dk), or
the WWW at http://mww.cbs.dtu.dk/NetPlantGene.html

INTRODUCTION

selection of splice sites in pre-mRNA is based on information
from different length scales in the nucleotide sequeh8g (n
plants the bias in the nucleotide composition of exons and introns
has in particular been assigned an important role for the correct
recognition of splice sites. Very often the high AU content of dicot
introns is stressed2,4,5). It has been claimed, based on
experiments with synthetic introns, that appropriate splice site
consensus sequences together with the elevated AU level are the
principal requirements of the pre-mRNA to be spliced correctly
(6). It was found, that the splicing ability of synthetic introns
varies with infusions of AU-rich sequences. The latter may
compensate for the complete lack of the polypyrimidine tract
found in mammalian introns as suggested by work showing that
soybean pre-mRNA cannot be spliced correctly by human HelLa
cells (7). Even among monocot and dicot plants there seem to be
large differences in splicing features, as experiments show that
the pre-mRNA of monocots can only be poorly spliced in dicot
cells B,9). Also the more or less non-existent branch point
consensus sequence, which seems to be reduced to a single
adenine nucleotide in dicots differs markedly from the clear
consensus sequence found in yeast. In plant genes, the presenc
of a strong donor site helps the recognition of a matching acceptor
site (and vice versa), which would otherwise remain crypiic (
Identification of active splice sites from local sequence analysis
is difficult due to the presence of a large number of false but
consensus-like splice sites. This holds true for sequence analysis,
but is likely to be true for the splice site selectionivoas well.
It is therefore important to use non-local information to filter out
false positives. It is unclear precisely how this filtering warks
vivo, but a number of computational methods and rules for
removing false positives can be constructed. These include use of
protein coding potential, predicted exon and intron length, and
strength of neighboring splice sites. Furthermore some non-
sequence specific knowledge can be used. This includes the exon

The biochemistry of splicing and the processing of introns iand intron length distributions and the average GC content.
nuclear pre-mRNA in plants has not been understood to the sam#/e present a data driven algorithmic approach for the

degree as in mammals and yeagi)( In virtually all organisms

recognition of splice sites based on the experimental evidence in

there has been much experimental evidence indicating that the GenBank entries. The approach is a further development of
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the NetGene methodll), which is founded on the earlier and 666, that would give the canonical ending of the exon:
observation of complementarity between splice site strength aBiFSR, and give the correct frame for the splice sites). Moreover,
the strength of the associated exon. Small exons (or long exanpoly-T tract would appear that again may present a sequencing
with a weak coding potential) tend to have strong consenspsoblem for the determination of the precise number of Ts. Based
splice sites, while strong exons allow for weaker splice gites ( on these considerations we have discarded the entry from the
A large part of the GenBank entries has been discarded becadataset.

many of them are of surprisingly low quality, as they contain

numerous false and conflicting splice site assignmeiis ( Neural network algorithms

Many of these errors stem from incorrect interpretation of o )
sequence data by the experimentalists. The networks used in this study are of the multi-layer error-back-

propagation typel@). They are fully connected and have three
layers: an input layer, one hidden layer and an output layer. The

MATERIALS AND METHODS network input is a segment of nucleotides from the nucleotide
sequence. The sequence of nucleotides is sparsely encoded: A a
The data set (1000), C as (0100), G as (0010) and T as (0001) to avoid

algebraic dependencies between nucleotides in the encoding. The

Considerable effort went into the preparation of a high quality,. \+ consists of one unit, giving a real valued output between
data set which does not contain errors of the type prewouslyfoua_% and 1.0. Using a threshold this number is interpreted as a

in GenBank {2). The main criteria for the genes extracted Wer€; yoq4ry assignment for the middle nucleotide in the input
no missing exons; contains at least two introns; low seque dow.

identity between genes. A detailed description of the methodSy o hayorks were trained by standard error backpropagation

used for extracting and correcting the data set is given elsewh : . ; ; ;
: on two different tasks: (i) detection of coding nucleotides
(12). The data set contains 146 genes extracted from GenBa%g) 0 J

rsus non-coding nucleotides), and (ii) the prediction of splice

(rel.87) comprising 764 donor sites and 766 acceptor Sites.  gjios (gefined as the first and last intron nucleotide, respectively).
The data was divided into two parts, where the first part WaS\\e used the correlation coefficient 4 to quantify the

used for network training, and the second for testing t . . P
generalization ability of the final method. The training SerEerformance and stop the training of the coding/predicting

| . X . etworks:
contains 109 genes and two times 539 splice sites. The test sé

contains 37 genes, 225 donor sites and 227 acceptor sites. The _ (PN)(NfP)
imbalance of splice sites stems from two entries which start in the - - : : :
middle of an intron located in theBTR. In order to compensate /(N + N)IN + PO + NI(P + P)
for the fact that some GenBank entries contain parts of adjacééreP is the number of correctly predicted coding nucleotides
genes without annotation, each entry was reduced such that ofate positives)N is the number of correctly predicted non-coding
150 nucleotides (nt) before and after the transcribed part of thacleotides (true negatived)’ is the number of incorrectly
sequence were included. predicted coding nucleotides (false positives) &hds the
The data set was divided into two parts, such that the first 1@@mber of incorrectly predicted non-coding nucleotides (false
genes constituted the training set and the remaining 37 gemggyatives). Output activities larger than a threshold of 0.5 are
constituted the test set (the complete set was kept in lexicographieaérpreted as coding predictions, while output activiéies
order according to their GenBank LOCUS$?2). Pairwise represent non-coding predictions. A perfect prediction Give4.0
comparison between the two sets was performed in order to chedhereas a truly imperfect prediction gives= —1.0, which is
that no pair of closely related genes were present in both padstually just as good. A random prediction gives a valu@ of
This was done to ensure that the prediction method will extraclose to zero. Networks that have been stopped with a maximal
general information about the splice sites rather than jusbrrelation coefficient have a balanced prediction of coding and
memorizing the training set. non-coding nucleotides. A balanced prediction gives more
Two sequences were removed from the test set after the fimalormation about the coding properties of the pre-mRNA than a
evaluation of the splice site prediction system due to a seemingliased prediction.
wrongly placed exon in ATSUCSYN (X60987) and one wrong A different measure is used to evaluate and stop the training of
and one very suspicious acceptor site in ATU08315 (U08315)the splice site predicting networks. The network training was
ATU08315: from homology with z18242 it appears that th&topped when the false positive rate at a sensitivity level of 95%
third intron is misplaced and should be six positions aheaglas minimal. The false positive rate is given by
(2043/2044 instead of 2049/2050). Homology with U20502 and

235108 confirms this. Furthermore, in the absence of a cDNA F=_P 2

homolog, the borders of the last intron (which is located in a N+ P

poorly conserved region) remain uncertain. We have therefonhereP' is the number of incorrectly predicted splice sites and

discarded the entry. N + Pf the total number of non-splice sites, while the sensitivity,
ATSUCSYN: the entire first exon shows no homology to otheor true positive rate, is given by

sucrose synthases, albeit these proteins are highly conserved.

However, conserved sequence elements can be found, with the S= Lf 3

initiator ATG located at position 585 (instead of 464) and a P+N

possible donor site at 671/672. This produces a frameshift in tihe keep the sensitivity level at 95%, the threshold separating the
downstream exon, suggesting that there are likely sequencisjice site predictions from the non-splice site ones cannot be kept
errors in that area (maybe two Ts are lacking between position 6840.5, but must be adjusted uBik 95%. The virtue of this
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criterion is that a large number of true splice sites are detected. — - - g o
. s ——

This is essential for the subsequent application of rules because H, sapiens -
the system only selects splice sites among the predictions from the
splice site detecting network, see below. 20}

of introns

Information content in the splice site sequence context

The local sequence information available to the networks can bé
visualized using sequence logaks)( which are based on Bt
Shannon’s information measufies(17). The donor (or acceptor) &

sites are aligned, and for each colupf(i) is computed -l

T §
R() = 2.0+ > P¢ - log,(PY) 4 i i
a=h o 100 200 300 400 500 600
whereP* is the probability of finding nucleotide a C{A,C,G, T}, Tntron lengh
at positioni. In each column the four nucleotide letters have heights
corresponding to their frequencs). Figure 1. The two intron length distributions frofthaliana(766 introns) and
Homo sapiengl573 introns) shown in one histogram. Only introns <600 nt are
included.
RESULTS
Exon and intron lengths . T : . : T .
M A thaliana —
— H. sapieng -

The length distributions oArabidopsis thalianaexons and
introns were compared with the case of human genes. The
average length of internal exons was 179 nt, which is longer than
the average for human exord %0 nt). The bulk of the exons
(74%) are between 40 and 200 nt long, the smallest is 9 nt, whilg
the longest exon is 2151 nt. This compares very well with the®
length distribution of human exons (data not shown), and 2 M
suggests that similar evolutionary mechanisms govern theg wh T
internal exon lengths in plants and mammals. The intron length H
distribution (Figl) differs from the length distribution of human
introns. The average lengthAthalianaintrons is 146 nt, while

the average for human introns is much longer at 740 nt (Tolstrup,

o Theriaoe = o o

Dalsgaard, Engelbrecht and Brunak, manuscript in preparation). | o
However, both distributions peak at an intron length between 80 5 1o 15 20 25 0 15 0
and 90 nt, but where 84% of Althalianaintrons are between 65 Number of introns per gene

and 200 nt long, only 31% of human introns are found in this

!ength interval, most of th(_em are Ionge_r. This indicat_es that AP 5 The number of introns ber gen haliana (146 gen n

intron length of 80-90 nt is favorable in both organisms. Thq{%:;eng%% ggnebs(;. gnlngnZspiitr?Zt?ezrtt t\f\l/oain?rg)nsﬁa?:iﬁsl)lj(?eg.

longest occurring intron in thethalianadata set is 1242 nt long.

A minimum intron length of 70-73 nt in dicots has been

postulated earlief}. Our data set contains four introns below this

size._ln ATHATCC1A:M85523 the shortest intron (sec_ond ofucleotide frequencies

two) is 59 nt long, in ATHANSYNAB:M92354 the tenth intron

(of 10) is 63 nt long, in ATU06745:U06745 the second intron (ofhe nucleotide frequencies for exons and introns are given in

10) is 69 nt long, and in ATU12126:U12126 the sixth intron (offable 1. Arabidopsis thalianagenes have a high content of

eight) is 69 nt long. A minimum functional length of 55—70 nt isadenine and thymine, while the average frequencies of the four

perhaps more realistic, at least fathaliana This length is nucleotides is closer to 25% in human genes (data not shown).

slightly smaller than the minimum length of 64 nt given byThe introns contain less cytosine and guanine than exons and

Filipowicz et al (2). much more thymine, while the adenine content differs only by
We have investigated the number of intrors.thalianagenes  1%. A similar tendency holds true for human genes although the

and compared them with the number of introns in human genalssolute values differ.

(Fig. 2). The highest number of introns found in fkthaliana In Table2 the nucleotide frequencies of the average codon in

genes is 30 (ATHACOACAR:L27074). The average number oA.thalianais shown. The most frequent nucleotide(s) at position

introns is five for both organisms and the distributions are veigne is guanine, in position two adenine or thymine, and in position

similar. These findings indicate that larger genomes like thiree it is thymine. The main difference from the reading frame

human genome do not have more introns than small genomes, futhuman genes is that the third position here is occupied

rather that the length of introns increase with genome size onfyteferably by cytosine or guanine.
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Table 1.The nucleotide distribution in the data set given for

translated exon (E), intron (1), untranslated exon (M), and
non-transcribed DNA (N) i
AT, A I.& i;m:
Class  Countnl % A C G T ¥ ;E.JIL.N w L‘i‘:i i
E 186,585  39.46 27.60 2105 2436 26.48 E II gy
I 113,369 22,73 2645 1531 1737 4086 2
M 20,905 644 2932 1844 1651 3573 E
N 149,462 3136 3258 17.53 1677 3312 % a8 b ]
=
Sum 470321 10000 2898 1843 2011 3247
o .
Notice, in introns, the high presence of adenine and, especially,
thymine. 0y i i ; L
) i) -0 -2 1

-4 =¥
Dhilasae fros spoe e
Table 2. The nucleotide distribution at the three
codon positions for the translated exon sequence in
A.thaliana Figure 3. The expected and observed number of dinucleotides upstream from
the acceptor site in the alignment of all acceptor sites in the data set. The
expected number of AG dinucleotides (with the A at a given position) is the
Nucleotide | Position 1 | Position 2 | Position 3 product of the frequency of A at that position and G at the next position
multiplied by the total number of sequences (766).

A 0.29 0.31 0.23

c 0.19 0.23 021

G 0.34 0.18 0.23

T 0.18 0.28 033 i
The non-organism specific reading frame pattern I
G/non-G on the two first codon positions is clearly
visible (34).

The dinucleotide frequencies and the ‘mutual informations
(17,18) of the exons and introns did correspond quite well to th
frequencies found for dicots in earlier woti8); In the first 13 nt A
downstream from the donor site, there is generally a selecti
against the GT dinucleotide. Only at position five downstrear
can a positive selection for the GT dinucleotide be observed. Al
upstream from the donor site GT is suppressed, and only 33 (
dinucleotides were found in the last 5 nt of the exons, while 7
instances were to be expected from the G and T frequenci T TR
These findings support the view that the GT dinucleotide at intrc,. *FFraiasmsssaFaamiyssssisitiiermtaiarrrannsaazasnnne
position five is used for donor site recogniti@g)( _ _ o

It has been propose#l() that the scenario for localization of Figure 4. The sequence logo plot for tAghalianadonor sites in the data set.

N ] - " The most frequent nucleotides correspond to the consensus sequence for dicot
the acceptor site in mammals is the following: Once the lariat he}ﬁam donor sites, AGTAAGT.
been formed, the sequence from the branch point to the splice site,
consisting of between 20 and 30 nt, is scanned, and the first AG
dinucleotide is used as the splicing acceptor. To find out whethiarthe introns (41%). In the exons the corresponding value is 26%
our data set supports this theory, we scanned for AG dinucleotid@able 1). In introns, adenine is the second most common
up to 70 nt upstream from the acceptor site and compared thgcleotide, 27%, while guanine and cytosine occur at 17% and
result with the expected number of AG dinucleotides upstreafrb%, respectively. According to Wiebaetil. (7), the average
from the acceptor site (Fig). It is clear that there is a very strong thymine/adenine level for dicotyledonous plants is 73% in introns
selection against AG dinucleotides close to the acceptor site aamt 55% in exons. Th&thalianagenes examined in this paper
30 nt upstream into the intron. Only very few AG dinucleotidetave the percentages 67 for introns and 54 for exons. However,
are found in this region consistent with the scanning hypothestSoodall and Filipowicz4) report thafA.thalianahas the lowest

The sequence context of the splice sites has been visualizediaswn thymine/adenine level in dicots, namely 50.5%. This
logos (Figst and5). In the donor site logo (Fig) we notice alot  number is not confirmed by our analysis.
of structure. The highest frequency nucleotides correspond to thé-or the acceptor site logo (Fi.we see much the same pattern
well known consensus sequence for dicot plant donor $igs ( with a lot of structure on the intron side and a high thymine level.
AG|GTAAGT. There is a lot more structure in the intron part thaffhere seems to be more structure on both the intron and the exon
in the exon part, in particular, there is a high frequency of thymirgidde of acceptor sites compared with donor sites. The dicot
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Figure 6. Percentages of false positive test set donor site predictions plotted

Figure 5. The sequence logo plot for thehalianaacceptor sites in the data ~ against the sensitivity level for five different prediction methods. The line
set. The most frequent nucleotides correspond to the consensus sequence fégSignated ‘local’ is the prediction of the ense‘mble of tt‘_e local donor site
dicot plant acceptor sites, TGYAGT. predicting neural networks. The line designated ‘combined’ is the performance
of the local network ensemble with a threshold controlled by the derivative of
the coding prediction output. The NetPlantGene line is the final performance
of the present method including the rule based system. The diamond is the
performance of Xgrail, the sensitivity level is fixed for this method therefore

consensus sequence given by Weital. (18) is TGYAG|GT in
only one data point appears on the plot.

agreement with the corresponding positions in the logo.
A separation of the splice sites according to their intersections
with the triplet reading frame was also examined. While the

resulting three logos differed somewhat in appearance, no
informative pattern, was visible (data not shown). The ratio

between the three possible intersections was 3:1:1, with the type cmégffej! ,
of splice site that cuts the beginning (or the end) of the reading i comereal
NetPlamGene -~ -

frame being the most common. In human genes the correspon-

ding ratios are close to 2:1:1. It has been suggested that the weaker
consensus sequences in plants, compared with humans, gre o1} P
somehow compensated by their large A and T confit (

Below, we return to the reading frame when we analyze thg
weights of the trained networks.

0sit
",
\

F;

Splice site predicting networks

To find an optimal network configuration for the donor site
recognition problem, we did train and test a wide range of
architectures. Networks with 3—71 nt in the input window and 0
with 0, 2, 5, 10, 15 and 20 units in the hidden layer have been
examined.

From these runs a network architecture with 23 nt visible in th&igure 7. Percentages of false positive test set acceptor site predictions plotted
input window and 10 hidden units was chosen. To further enhan@gainst the sensi.tivity level for five different prediction methods. See legend to

. . .. Figure 6 for details.

the performance of the donor site recognition, 10 networks with
this architecture initialized differently were trained. The average
output of these networks was used as the result (a so called neural
network ensemble). This ensemble was able to recognize 13&ady benefit from a combination of local and global sequence
the 225 test set donor sites with only 62 false positives, equival@mormation.
to a correlation coefficient of 0.65 (Fi). We trained and tested the acceptor site networks on a lot of

To get a view of the pattern of the false donor sites we hadiferent network architectures. From these runs an ensemble of
plotted the sequence logo for the alignment of all the test sHd networks with 61 nt present in the input window and 15 units
non-donor sites that the network ensemble classifies as domothe hidden layer were chosen. The percentage of false positives
sites (data not shown). The false donor sites clearly follow ttas function of the sensitivity (true positive rate) is shown in Figure
consensus of thA.thalianadonor sites. Also there is a clear 7. The quality of the acceptor site prediction is very similar to the
overweight of thymine and adenine on the ‘intron’ side of thguality of the donor site prediction, showing that it is equally
false splice sites. The fact that no network can make a bettifficult to predict donor and acceptor sites from local informa-
performance using local information, indicates that the selectigion only.

0001 |

Sensitivily %
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Figure 8. Combined weight logos of the positive (top) and negative (bottom) weights from the input to the three hidden units sensitive to the reading frame pat
in the window. For two of the weight vectors the components were shifted one position to the left and right, respectively. The logo therefore covers the input win
from position 2 to position 200.

It is interesting that good acceptor site recognition requiresfianked by high frequencies of T in the intron part, but in the right
much larger window, 61, than donor site recognition, 23part of the window the networks look for G deficiency instead.
However, we should not be too surprised that a difference existsThe acceptor site network has strong weights for the consensus
as in the cell different mechanisms in the spliceosome are usedTgnon-C)YAGQGNNG. This should be compared with the
the identification. Donor sites are recognized by base pairing tonsensus read from the logo TGY&3. In the network
the U1l snRNA, while several less sequence specific elemenmtgights deficiency of C at position one in the logo is more
seem to be involved in the recognition of the acceptor site.  significant than a large weight on G, and a strong weight for a G

As for donor sites we have plotted the information logo for théour positions into the exon can be observed as well. We assume
alignment of the false positive acceptor sites that the netwotlkat this G is part of the reading frame which is recognized in the
assigned (data not shown). The false positive acceptor sigeon by the acceptor site network.
follow the consensus except in position —4 where the guanine is
substituted by thymine. As with the false positive donor sites themacognition of coding DNA

is a clear overpopulation of thymine and adenine on the ‘intron’
side of the false acceptor sites. In order to utilize global information which is available in the DNA

sequence we have trained large window networks to discriminate
Analysis of the local network weights betwee_n cgding r?md non-coding nucleotides. When the middle
nucleotide in the input window belongs to a translated exon the
It is highly interesting to understand as precisely as possible whegtwork will be trained to answer yes, otherwise no. We also trained
sequence features the networks are looking for. These featuresratvorks to predict untranslated exons, but the prediction of
encoded in the weights, especially those connecting the inpuritranslated exons proved to be very hard. Untranslated exons tenc
window positions and the hidden units. For each hidden unit its be more intron- than exon-like. Their nucleotide frequencies
incoming weight vector will show the positions and nucleotideorrespond more to those of introns than those of exons {Jable
types that will excite or inhibit its activation. Networks with 101, 151, 201, 251, 301, 351 and 401 nt visible
Examination of the weights in the local network shows that they the input window were examined, with different numbers of
essentially learn what is present in the corresponding logasits in the hidden layer. The best network had a window of
together with negative weights of an anti-consensus sequen261l nt, 15 hidden units, and a correlation coefficient of 0.75. This
For the donor site network the consensus sequenkETAGGT  network was able to recognize 89.7% of the true coding
can be identified as strong weights in the network. Donor sites aracleotides and 87.4% of the non-coding nucleotides. An
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Figure 10.The average activity of the six hidden units at all donor sites in the Figyre 11. The average activity of the six hidden units at all acceptor sites in
test set. The qualitative differences of the reading frame units and the statisticae test set. The qualitative differences of the reading frame units and the
transition-region recognizing units can be seen clearly. statistical transition-region recognizing units can be seen clearly.

ensemble of six networks, one with a window size of 101 nt, fowesult of the difference in average intron length in human and
with a window of 201 nt and one with a 251 nt window, was usedl.thalianagenes.

in the final system. The reason for the use of networks with

suboptimal window sizes in the ensemble is that these ”et"‘_’oﬂkﬁalysis of the global coding/non-coding network weights

have a better performance for small or large exons, respectively.

The joint correlation coefficient was 0.76, and the percentagbetworks with many different numbers of hidden units were
91.0% and 89.5%. The optimal window size for coding/non-cocanalyzed, they all seemed to use similar detection principles in
ing networks trained on human geng&$) (vas 301 nt. This is a their internal working albeit with some smaller difference in their
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Figure 12.The NetPlantGene prediction for the test set sequence ATRAH1GNA. The correct exons are depicted as boxes in the top of the figure. The top plot desig
‘Coding’ shows the activity of an ensemble of coding predicting networks, values close to 0.0 indicate intron, while values close to 1.0 indicate exon. In the ‘Do
and ‘Acceptor’ panels the activity of the ensembles of the local splice site predicting networks are shown as impulses. An impulse with a height close to 1.0 indi
a strongA.thalianasplice site. A magenta impulse is a prediction that has been discarded during the refinement, and a cyan colored impulse is a prediction tha
been changed by the rule based system. The variable threshold, computed from the coding predicting ensemble output, is used to select donor and accer
predictions. In this example 11 out of the 12 splice sites are predicted correctly at the cost of five false positive predictions. The donor site at position 584 is m
because it differs considerably from the consensus sequence, and because there is no clear transition between a coding and a non-coding region. This sit
recognized by the rule based system either, because there is another nearby candidate, with a strong splice site prediction in the vicinity of a transition region at p
553. At positions 1425 and 1429 two false acceptor site predictions are removed by the refinement, and at position 848 a donor site prediction is enhanced by tl
based system.

performance. If a network is deprived of resources (weights), titentent combined with a low cytosine and guanine content in the
primary features will stand out more clearly. left side of the input window. In other words, when the nucleotide
Networks with an input window of 201 nt and at least six hiddefrequencies correspond to those fourdl.thalianaintrons. This
units all had correlation coefficients >0.70. For simplicity wemeans that inside an intron, this hidden unit will be active and due
present a weight analysis of the smallest six unit network here ortly.its hidden-to-output weight being negative it will suppress the
The six weights connecting the hidden units and the output uititput activity of the network. This suppression will level off
had about the same numerical size. Five of the weights wesden the input window enters a coding region.
positive, while one was negative, meaning that this unit will be Two units are activated by a high cytosine and guanine content
pro-intron when activated. The weights were approximately or@mbined with a low adenine and thymine content in the right
order of magnitude larger than the thresholds of the hidden uniside of the input window. These units will be deactivated by an
The thresholds of the hidden units had almost been nullified ligtron-like nucleotide composition, while activated inside a coding
the training and were of no numerical importance for the functionegion, note that the added weights from these two units are shown
For the 202 6 input-to-hidden weights we found that three ofin Figure9. Together with other features they recognize the GC
the six hidden units were involved in checking the triplet readingontent. One of the units gives the most accurate prediction of the
frame. A weight logoZ?2) of the combined weights to these threecoding to non-coding border at an acceptor site due to its weights
hidden units can be seen in Fig8rpositive weights in the upper being largest in the left part of the window, while the other gives
part and negative weights in the lower. a more accurate prediction at the donor site because the weights ar
In Table2 the nucleotide frequencies at each codon position cd@rgest in the right part of the window (data not shown). The
be seen. Position 100 in Fig8a, for instance, corresponds to pruning technique ‘optimal brain damag@3), which discards
position one in the codons. The large G corresponds to the largeessential weights, has previously been used with great success
guanine fraction of 0.34 at codon position one. The large negatios networks trained on human ger3.(
T in Figure8b corresponds to the low thymine fraction of 0.18 at
codon position one. This is a general tendency: for each of th&mpining local and global sequence information
four nucleotides at each position in the codons, their size and sign
relative to their size and sign at the two neighboring positiorfsrom the weight analysis we know that the local and global
more or less mirror their frequencies in Tabl#f we again take networks exploit the nucleotide pattern of the reading frame, the
position 100 as reference, this position corresponds to posititransition between coding and non-coding DNA and the consensus-
one in the reading-frame in one of the hidden units, to positidike sequence of the splice sites quite differently. The combined
two in the reading-frame in another hidden unit, and to positicapproach used here proceeds in two steps: a prediction step anc
three in the reading-frame in a third hidden unit. We expect thatrefinement step. The first step is equivalent to earlier work on
one of the three units will be active for a given input windowhuman genesl{). The second step is based on rules found by
where the central nucleotide belongs to an exon. Plots of tirevestigating the mistakes of the first step.
activities of the three reading frames checking hidden units onin Figurel2 a typical output of the coding/non-coding network
presentation of all windows in the test set (Fi@lsand11) ensemble can be seen for the test sequence ATRAH1GNA.
confirmed this. It also appears that the units are mostly inacti®veral interesting features can be observed. The exon covering
when inside an intron. positions 979-1027 is predicted nicely by the ensemble. Strong
The three other hidden units are engaged in the recognitiongglice site predictions are also found at the border of this region.
intron-and exon-like DNA, their weight logos can be seen iin this unproblematic case, the splice sites could be determined
Figure9. One unit will be activated by a high adenine and thymineither from the global prediction or from the local prediction
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alone. However, a conflicting situation is found further downassociated with a biological mechanism previously suggested in
stream. At this point the global network ensemble incorrectlihe splicing literature. The mechanisms may or may not be active
predicts a coding region from position 1250 to 1350, but nim the cell, but their computational efficiency may be used as
corresponding splice sites are found by the local netwoikdications in this direction.

ensembles in this region. The combined system should not predict

splice sites here. At position 1134 a weak acceptor site is predic®gcarding splice sites in uniformly predicted regions

and it is indeed at the start of a region predicted as being coding, . _ ) i )
This splice site should be predicted, while the donor site predictéd@ir amount of false sites are located in the middle of uniformly

at position 1135 is very strong, but in conflict with the predictiofPrédicted strong coding, or non-coding regions. Consequently,
from the global network ensemble, and it should therefore not BBlice sites may safely be discarded in these regions. In the cell
predicted by the combination. How do we combine the predi@_ucleus, one can speculate that these ‘perfect’ sites are hidden due
tions made by the global and local systems? to the secondary structure of the pre-mRNA, and thus not
The combination is made by letting the signal from th&vailable for incorporation in the spliceosome. .
coding/non-coding network ensemble control the threshold of theVVe then need to know when we are in a uniformly predicted
local splice site assigning network ensembles. In regions wifg9ion. The derivative of the coding prediction is not a good
abruptly decreasing output activity of the coding/non-codingf’€asure of strong uniform prediction as it can average to zero in
networks, donor sites should be enhanced and acceptor si@&ONS of O;C_lllatlng prediction as .WeII..To estimate how flat a
should be suppressed. On the other hand regions with abruRfing prediction around a true splice site can be in general, we
increasing output activity should enhance acceptor site assiﬁaded_ all splice sites from the training set with a flank of 1 nt
ment and suppress donor site assignment. Regions with a mor&dg¢ach side, with 2 nt to each side and so on up to 45 nt. For each
less uniform activity should demand a high confidence level #nking length and each splice site the maximal and minimal
suppress false positives. coding prediction values were found. If a splice site is found in a
To obtain this we calculate an approximation to the firsgniformly low coding region, the maximal coding prediction in

derivative of the output activity of the coding/non-codingthis region will be close to zero. The minimal value of all the
network ensembld, This is done by summing oputput values maximal values found for all splice sites with a given flanking
to the left of the potential splice site amdalues to the right of €ngth represent an upper bound for the flatness of the surround-
the splice site. The left side sum is subtracted from the right sUfgs Of @ splice site with a low coding prediction. Likewise, an
and the result is divided by the number of addends. For ea¢RPer bound for the flatness of the surroundings of a splice site
output this gives a value between -0.5 and 0.5. The output of #ff&h @ high coding prediction can be found. A table of flanking
local network ensembleOfca), is interpreted by using the length and max/min values can immediately be used to filter out

following simple formula false splice sites without removing true splice sites from the
training set (data not shown). To allow for values beyond those
Opeat > @A + t 5 in the training set, a 20% margin was added, respectively

. ) i ubtracted, from the max/min values. These values show a
A'is the value calculated from the coding/non-coding networgose.-to linear progression, and therefore in practice we used a
ensemble, aand tare constants. This means@igkifis greater  jinear approximation to the max/min curve. 610 out of 8818
than & + t, the output should lead to the assignment of a splicgyential donor sites from the test set with a non-zero score could

site, otherwise a non-splice site. o be removed, and 819 out of 5708 potential acceptor sites without
We found the optimal values of a and t for all sensitivity 'evel%moving any true sites.

The maximal correlation coefficient for donor site prediction is
0.86 at a sensitivity level of 84%, while the best Correla.ti‘?%canning procedure for acceptor site pairs in T-tract
coefficient for acceptor site prediction is 0.76 at 74% sensmwtpgrol ongation in 5 exon ends
(Figs6 and7).
Figure7 shows the result of the acceptor splice site network and
Post-prediction rule based filtering _of the combination. The detection of l_Jnambiguous acceptor sites
is generally harder than the prediction of donor sites. To

The rule based filtering of splice sites is performed on the basis/estigate this phenomenon further we have checked the false
of predictions from the combined networks as described abovmositives that arise when we have a recognition of 25%, 36% and
The combination can give predictions at different sensitivit$5% true positives. In this low sensitivity region the correspon-
levels, and it is not clearpriori what sensitivity level to choose ding number of false splice sites in the entire test set is 3, 8 and
for the refinement. Loosely speaking we want to extract th20, respectively. The majority of these false splice sites are found
maximal information from the prediction data. A gquantitativebetween 2 and 20 nt downstream from the correct splice site into
measure of gained information can actually be defined for casth® exon. These sites are characterized by having a strong
like this 24), and an analysis showed that this measure did peaknsensus and by an elevated adenine and thymine content
close to the 70% sensitivity level. This is also where the splice sibetween the true splice site and the false. Moreover, the
correlation coefficients C(D) and C(A) peak, similar to the resultoding/non-coding network often shifts from intron to exon
obtained earlier on human geng$)( closer to the false splice site (data not shown). At 25% recognition

We have designed a number of post-processing steps in ordétrue acceptor sites 2 out of 3, at 36% 7 out of 8, and at 55% 14
to (i) discard wrong splice site predictions, (ii) choose betweeawut of 20 false positives were of this kind. Tabkhows the 14
two or more nearby equally strong predictions, and (iii) tdalse splice sites and the sequence from the true acceptor site to
enhance weak (or missing) predictions which must be preferréite false one. The above mentioned false acceptor sites in the
when viewing the prediction non-locally. Each step can b&-tract prolongation are consistent with an experimental observa-
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Table 3.The false acceptor sites detected downstream from the true by a vertebrate donor site. This indicates that the splicing
acceptor splice sites at a true site recognition level of 55% on the test set mechanisms utilize information beyond what is present in the
local context of the splice sites and that splicing will not function
properly without the availability of this information.

GenBank Posiion Exon  Eaoncin  Sequence

ey nenry eniry In non-alternatively spliced genes perfect predictions must
obey a number of constraints, for example that donor and acceptor
TPOSFLI X6l031 1249 2 5 CAATAGGATATGOGC, CAGOCAGTC i i i i
ey s A oL A op v sites must come in alternating order to be correct. If a donor site
prediction is followed not by an acceptor site prediction, but by
ATRGIC  Keles 12 2 TIGCAGTTIOCACTO yet another donor site prediction, something is definitely wrong.
ATUGE2IE  UOE2I6 203 8 §  TICTAGACAGAA Either we missed a site or one of the donor sites is wrong and must
AU winzm o . 6 9 TGTTAGTGTTGCAGCT be discarded. To detect a missing donor (acceptor) site between
ATUBCE - zes B B 4 TTOCAGGTTGCATTTAGGA two acceptor (donor) sites, all potential donor (acceptor) sites
ATSUCSYN ASOGET 790 2 15 TATTAGATATGTAGCC 1 1
e ery, | xewobr 2 R A AACAGGE must be evaluated and compared. This means that we would like
ATPRLIDNA  X§2R24 24719 7 17 TCACAGOTCATTCAGGG
ATPRLIDNA - X282 219 7 17 TCACAGOTCATICAGGG o to qqantlfy the likelihood of cor_13|stently spllced_ pairs of exons
ATRPCLSG  ZVISO9 1799 5 7 CTGCAGTGTCACAGCT and introns. We therefore assign scores to D-intron-A-exon-D
ATTIBGY UG39a0 165649 L} 10 TATTAGGTGCATGAGAGTTTGCAGAG . . .
ATUDSSOS LS99 916 4 Il TTGTAGTTAGAG and A-exon-D-intron-A objects. The score for each potential

‘middle’ splice site is obtained by multiplying a number of factors
(including added combinations of them): the local prediction
The table is subdivided into three parts. The top two sites are already presestrength and confidence, scores from the exon/intron length
with a recognition level of 25% true acceptor sites, the top seven are presemistributions, the distance from the steepest transition in the
with a recognition level of 36% and all 14 are present with a recognition 'eve'coding/non—coding outpult, and maximal and minimal Coding
of 55%. For each false site the sequence is shown starting 6 nt upstream froBUtput in the ‘exon’ and ‘intron’ sequence surrounding the
the true splice site and ending 2 nt downstream from the false splice site. Thﬁotential site.

third column from the left gives the position downstream of the G in the AG i ) :
. . . . . . = 1 X 5 ’
dinucleotide in the false acceptor site. The high A+T content in the exon The scor&D) = Sexon' X Sintron® for the ‘middle’ donor splice

sequence between the true and false acceptor sites can be clearly seenin s '@ is obtained by computlri@xon' andsimron’ separately,
of the entries. Sexon’ = SocalSelength-max 6

whereSgcalis a score quantifying the strength of the donor and
tion made by Loet al.(9,21). In dicot plant nuclei, when the true acceptor sitesiengthis @ score derived from the exon length
acceptor site is eliminated, cryptic acceptor sites located dowtiistribution an._maxis the maximal coding prediction found by
stream are preferentially selected over cryptic sites locatee coding/non-coding network in the exon. These three factors
upstream (in the intron). are described in detail below. The intron sc&gon IS

The observation that a correctly predicted acceptor site is ofteomputed similarly.
followed by a weaker falsely predicted acceptor site, suggests after all the (D) scores have been obtained for the A-exon-
potential method for discarding false predictions. By identifying-intron-A objects the best donor site is reported as a final
all instances of double predictions, where the leftmost predictigitediction providedD) exceeds a threshold of 0.3. If the best
was strongest, and by removing all predictions to the right up &D) value is below the threshold, one of the surrounding splice
a distance of 20 nt, a further 632 out of the remaining 488%tes must be removed. We remove a site if its partner is <50 nt
potential acceptor sites could be discarded at the cost of two teugay, and at least 20% stronger in local network output. If we
sites from the sequence ATU08315. An investigation of the tweannot find the missing site nor remove one of the splice sites, we
sites in ATU08315 showed that they were highly suspicious (seannot improve the prediction, but must leave things as they are.
Materials and Methods). In this way the system is very conservative and produces very few
errors. The acceptor sites are treated similarly.

Selection between nearby donor site predictions

. . . Scoring donor and acceptor sites
Inspection of the donor predictions made it clear that the most 9 P

strongly predicted donor site in a pair is normally the true dondihe strength of the donor and acceptor Sigg is calculated
site. We removed all weaker donor site predictions within 15 fitom the confidence of the splice site predicti6gs, the local
from each strongly predicted donor site thereby reducing thetwork outpuQyoca, and thed value from the coding/non-coding
number of donor predictions by 5413 from 8208 to 2795. Twprediction

true sites from ATSUCSYN and one from ATPGIC were lost by 25, + O 1
_ nf local

this approach. The ATSUCSY N sequence was later discarded due ocal = 3 oA 7
to a wrongly annotated exon (see Materials and Methods). 1+e

Here the confidenc& s of a site is equal to the specificity of the
A model for Scoring intron-exon pairs_coup"ng lowest Sensitivity level that would accept the Splice site. The
between Sp"ce sites speCIfICItySpIS defined as
Experiments 10) indicate that close cooperation exists between Sp= _P_ 8
donor and acceptor sites, and that such cooperation influences P+ P

their mutual selection. A vertebrate acceptor site was spliced tnhereP is the number of correctly predicted splice sites (true
a dicot plant splicing system, when a plant donor site was presemsitives), an€ + P is the total number of splice site predictions.
This was not the case when the plant donor site was substitutete sensitivity levels and the corresponding specificities have
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been determined on the test set. If the local network output fofaise sites. When detecting 95% of the true donor sites, the
site is zero, its confidence is also zero. If the site is predicted bgmbined approach makes 0.097% false donor site assignments.
the network combination at a sensitivity level close to 100% only, The maximal correlation coefficient for acceptor sites was
its confidence was empirically found to ©®.5. Below a reached with a recognition level of 80.2% true positives and
sensitivity level of 50%, the confidence was close to 1.0.034% false positives. The correlation coefficief#t) is 0.83
Empirically we weight the confidence value and the locawith ayccepto= —1.75 andgecepto= 1.04. When detecting 95%
network outpuDjgcq in the relation 1:2. The site closest to theof the true acceptor sites, the combined approach makes 0.26%
largest change in coding value is usually preferred over ifalse acceptor site assignments. 21.1% of the true acceptor sites
competing neighbors. This observation is implemented by tlie the test set could be predicted without any false predictions.
non-linear squashing function 1/(1 #).

) o Comparison with GeneMark, GeneFinder and Grail
Exon/intron length distributions

From the exon length distribution we observed that practically aneesg;?dgt:Eg; ?,Cﬁslit%g:ng'aerggd\i,ﬂ%n?ﬁécgfé%?c:}ga”%m?&hgf
< > i . Likewi i om . : .
exons are <20 or >3000 nt in length. Likewise, the intron lengt:ggneMark 25 (used with itsh thalianamatrices). As mentioned

are found between 55 and 1500 nt. If the distance betwee h I ¢ £ th dina/ di i
predicted donor and its neighboring acceptor site falls outside t{8°Ve: the overall performance of the coding/non-coding net-
ork ensemble on the test set is 0.76 in terms of the correlation

range, one of the predictions is probably wrong, or a site iy

between has been missed. We can also discriminate betw&@gfficient. The overall performance of GeneMark reaches 0.55
lengths inside these constraints, some being more likely th8AY- The reason may be that the inhomogeneous Markov models
others. Exons with a length <45 nt are rare, and there are feviikPrder 4 used by the program have problems in dealing with the
long exons than short exons. Most introns have a length betw: n \_Neak and wreg_ulgr readm_g frameALma}Ilanagenes. To

65 and 100 nt. From these observations &@Agnand intron ~ Mvestigate the prediction quality on protein-coding exons of
length scoreSjengtn can be calculated, estimating how much Wéjlfferent length, a set of ‘partial’ correlation coefficients was
believe in a proposed length. Using simply the raw log-norm Iculated for each method. The data used for the calculation of

distribution of exon lengths, will not work because even thougﬂ partial correlation coefficient in a given length interval is all test
internal exons at length 300 nt are relatively rare, a downscalit ttr;]o?-chmg_mtaterlzlil a;]_(rj]_all gr(f)_te_ltn-codm%exons with Ilert1_gths
to this probability level will be quite harmful in single cases. If at given interval. (This definition produces correlation

one was supposed to make predictions for a large set of test gef@&fficients which are generally lower than the overall perform-
this general distribution could be used to regulate the level gpce correlation coefficients, so the values should not be regarded

larger exons. Instead, we use a piecewise linear candidate eg5rfn 2dditional measure of the absolute quality of the prediction
length score which is increasing from 0.0 to 0.98 for Iength‘éec nique, but .only as a f;ur means O.f comparlson.) In every
between 0 and 20 nt, increasing to 1.0 at 45 nt and then decreadijigf V@l our coding/non-coding network is superior to GeneMark
to 0.98 at 3000 nt where it drops to zero. Likewise, the candidafk Prediction quality. While the former reaches a sustained
intron length score was 0.0 for lengths <55 nt, increased linea rformance on all exon lengths, the latter actually approaches a
to 1.0 for lengths up to 65 nt, being 1.0 between 65 and 100 gative correlation coefficient for short exons, rendering

and decreasing linearly to 0.97 between 100 and 1500 nt whérgneMark useless for exons <50 nt. .
it drops to zero. he prediction quality of the splice site assignment by our

combined method, NetPlantGene, was also compared with that of
Maximal and minimal codi diction i dint an A.thalianaversion of GeneFindef§). We recalculated the
aximal and minimal coding prediction In €xons and Inrons ——\aight matrices used by GeneFinder on our training set to give

A final factor found to be of relevance is the maximal codingt fair comparison between the two methods. When assigning the
prediction for exon&._maxand the minimal coding prediction for Same number of true splice sites GeneFinder assigns nearly an
introns. The predictions of the coding/non-coding network should @fder of magnitude more false splice sites than NetPlantGene. At
least once come close to 1.0 in a potential exon, othewise itdgecognition level of 90% true splice sites NetPlantGene assigns
probably not a correct exon, at least not a coding exon. Likewise, ¥ false donor sites and 90 false acceptor sites. GeneFinder
must assume introns to have at least one very low coding predictR#signs 506 false donor sites and 812 false acceptor sites at the
to accept them. As the coding prediction for very short exons $&@me level. The detailed comparison for all levels can be seen in
known to be weak, a special correction for exons <30 nt was appli€dgures6 and 7. The performance of the GeneFinder donor

where a value of 0.5 was added to the maximal exon predicti@,ﬁediction is very similar to the performance of the local neural
S_max For introns 1 -§._minis used as factor insteadRf ax networks. The local neural network performance is better for high

sensitivity levels and worse for low sensitivity levels. This is
because we have pushed the networks to perform well at the high
sensitivity levels at the cost of a slightly inferior performance at
The final performance of our method, NetPlantGene, on the test et low sensitivity levels by using the stopping criterion for the
is shown in Figure€ and7. They show the false positives plotted training. The GeneFinder performance on acceptor site prediction
against the number of true positives for donor and acceptor sitessignificantly lower even when compared with the local neural
respectively. The maximal correlation coefficient for donor sitesetworks. We think this is a result of the sequence window length
was reached with a recognition level of 88.4% true positives anded by GeneFinder. GeneFinder uses an asymmetric window of
0.02% false positives. The correlation coefficig(®) was 0.90 31 nt (5 exon and 26 intron nt). This window size is significantly
with &4onor= 0.45 anddonor= 1.02. The approach was able tosmaller than the window size of 61 nt found to be optimal for
detect 57.3% or more than half of the true donor sites without angural network acceptor site prediction. We believe that the

NetPlantGene performance
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performance of GeneFinder could be improved to the level of th&ble 4.NetPlantGene predictions in other species, monocots, dicots,
local neural networks by changing the window size to 61 nt angymnosperms and algae, for two gene families: adh coding for alcohol

recalculating the weight matrix. dehydrogenase (ADH), and nia coding for nitrate reductase (NR)
Xgrail predicts exons, we have compared the quality of the
exon/intron and intron/exon border prediction with our method ADH genes  Enwy  # D D Dr A& Ar Ar Lens

(Figs6 and7). Xgrail predicts acceptor sites at a sensitivity level
of 54% and produces 0.14% false positives. NetPlantGene comes

up with 0.01% false positives at this sensitivity level, more than™ s b MI2I%6 66 1 6 6 2 1706
an order of magnitude improvement. The donor prediction of®™ma® ﬁ ggﬁ? g A G e
Xgrail has a sensitivity of 47% and produces 0.16% false by S75487 8 3 3 08 8 B 2030
positives. NetPlantGene did not come up with any false positive =
predictions at this sensitivity level. We conclude from this that the®®™®* 2 X4 » 2 1 & 8 4 ﬁ?zp
splice site prediction of NetPlantGene is significantly more
agcurate tharl)’] both Xgrail and GeneFinder. As igrjwformatign on thd™™bery  adh - XI1558% 9 94 % % 9 WM
training set used for constructing Xgrail is not available re2 adh  X06281 5 9 7 ¢ 9 & 2i06
(Uberbacher, personal communication) the performance reportebkriey adh? X12733 ¢ 5 2 B 4 3 201
here for Xgrail must be viewed as an upper limit. We cannot adh3  X12734 8 8 2 § 6 6 164
exclude that several of the test set sequences used in this stuesg adhi2 M35468 9 7 3 9 8 11 2608
were used for training the Xgrail method (Grail 2, version 1.30). peanimiller  sdhi Ms9082 @ 6 2 § 7 9 2007
Ze mays adhis  X04040 © g 0o 9 T I 2979
NetPlantGene and alternative splicing a2z XOBI5 9 5 2 9 6 & B
pine tree adh2 TU48373 9 7 3 9 9 7 2559

Although splicing efficiency appears to be low in plants, adh3 48374 9 7 3 o 9 IO 282p
alternative splicing is rarely observed, compared with metazoa oo RS A A G4 ggg
(2). NetPlantGene predictions for known cases of alternatively
spliced coding sequences from dicots were investigated. M
A.thalianaitself, the RuBisCO activase gene (M86720) contains
six introns, the last one having two alternative acceptor 8ifps (  NRgenes  Enay ¥ D Dr Dr A Ar Ar Leos
All sites are predicted by the method, apart from the first
alternative acceptor site of intron 6. The first alternative, 11 Ntambidopsie nia1 219050 3 3 1 3 3 0 3359
upstream from the second, did indeed have a high network scorg,..., ne XI4060 3 3 4 3 3 10 4092
but was later discarded by the rules. ,

The HprA gene fronCucumis sativugx58542) contains 12 b+ :t:é Eﬁgg g g 2 i g ;g ggi
introns, the last one showing an alternative choice between two )
donor sites separated by 35 28)( NetPlantGene predicts each Peme  ma LI 335 3 3 & 465
of the 24 sites with high score (>0.85) including the secondbean nal - X53603 3 3 1 3 3 2 274
alternative position from intron 12, which is the one utilized in nia 01029 444 44 13 6035
most species. The first site is also predicted, but with a lower scoreihory nia Xgal2 3 3 3 3 3 B 52
(0.74) together with one false positive donor in the CDS. rice nia XIS 1 1L L 1 0 0 1Em

The GdcsH gene frorAlaveria trinerviais spliced by three nla  XIs®20 1 & 1 2 2D 165
introns, the first one having two alternative acceptor sites, barley nial X§7845 L L 4 1 1 % 437
separated by 6 n29). All introns are predicted, but only the nig? o X80I73 2 ¢ 02 271 2969
second alternative acceptor site of the first intron is. Lastly, threechloreita  nie  U39931 18 ¢ © 18 & 5 7060
genes coding for glycine-rich RNA-binding proteins from _velvex nia  XN64136 10 3 8 10 3 20 S8

tobacco (D16204-D16206) contain one intron each in the CDS,
with alternative donor sites for all of the®0). The upstream D means number of donor sitesp e number of predicted sitesy Ehe
donor was predicted for one gene (D16205), while none of theumber of false positives, angbs indicates the length of the CDS in the
other donors were, whatever the gene. GenBank entry (p, partial).

Alternative splicing was also reported in the gene encoding the
large subunit of RNA polymerase Il froflvthalianaand soybean.
The intron is situated outside the CDS, in theeler sequence. |ocating the missing exon, and identifying the likely borders of two
Both sites for this alternate intron were predicted in the soybeathers with divergent locations.
gene, while none of them wereArthaliana This tells us that at
least some of the predictions made in theoBi-coding sequence
are relevant, albeit NetPlantGene was trained for predictions insi
the coding sequence. Interestingly, the two entries for th& preliminary test of the performance of NPG on various plant
A.thalianagene diverged from one another by several frameshifteenes was done using two sets of genes, coding for the same
and gaps in the sequence, and moreover by positioning of thoteins, respectively alcohol dehydrogenases (ADH) and nitrate
introns, one of them is even missing in one entry, and was excludediuctases (NR). The results of this comparison (Talsleows
from the data set for these reasd®.(n this specific case we find that NPG keeps predicting nearly all of the splice sites in dicot
that NPG helps in searching for the correct features of this geiggnes, but works differently on monocot genes, predicting a

BlgtPIantGene performance in other plants
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Figure 13.NetPlantGene splice site prediction for the cDNA fromAthvctoriagreen fluorescent protein. A donor site is predicted at position 405 with a confidence
of 0.94. The mutated version of the CDS does not result in any splice site predictions.

fraction of them only, always more than a half. The results on pineTo ensure a conservative estimate of the performance of the
ADH genes is surprisingly good, owing to the phylogeneti@lgorithm presented in this paper we have used a large part of the
distance with monocots. A dramatic fall in performance iswailable data to test the performance (nearly 25% of the available
observed with NR genes from green algae. Besides the varyisgjice sites have been used). Furthermore, we have made sure the
capacity to recognize the true sites, according to phylogetlye sequence similarity between the entries used for training the
outside the dicots, NPG shows an increased level of falseural networks and the test sequences is low.

predictions compared with.thaliana The level of false predic-  When comparing the results of the final algorithm with the
tions varies from species to species, even among dicots. meults obtained using the local network only, it is clear that a lot
explanation for these variations is clearly the very different sizés gained by combining the local and global networks. At 80%
of the plant genomes in the comparison. These observatianse donor site recognition the combination assigns 0.011% false
would benefit from further investigations on a wider scale. Apositives only, while the local network alone assigns 0.20% false
such, they fit with the observation of differences in splicingositives. At 95% recognition the numbers are 0.097% and
capacity between monocots and dicots, and point to the useto60%. For the acceptor site recognition the corresponding
NPG as a way to anticipate how a gene from one species will hembers are: at 80% recognition 0.034% and 0.20%; and at 95%

spliced when transferred into another plant species. recognition 0.26% and 0.56%. Furthermore, the combination was
able to predict more than half of the true donor sites without false
Green fluorescent protein positives. Comparison with three other approaches, GeneMark,

GeneFinder and Grail, showed that the method presented here has

The coding sequence for the green fluorescent protein from tha order of magnitude fewer false sites at nearly all sensitivity
jelly fish Aequorea victorids used as a reporter gene in a numbelevels.

of organisms and experimental assays. If the gene is expressedne of the main criticisms of neural networks is their ‘black
the organisms glow green. Expression of the geAdlimliana  box’ status, meaning that one will gain no insight into the
has proven unsuccessful because the gene is spliced at a crygit@racteristics of the problem when using neural networks. In this
splice site. A mutant has been made that is not spliced $tudy we have analyzed the inner workings of the trained local
A.thaliana(31). To test the performance of NetPlantGene, thand global networks. This has led to the discovery of the main
cDNA encoding the green fluorescent protein and its mutatddatures of the algorithms used by the local and global networks.
version were tested for potential splice sites. NetPlantGeffigis clear that the base distribution plays an important role when
correctly identifies the cryptic donor splice site in the wild typédentifying transition region between coding and non-coding

(Fig. 13). No site is predicted in the modified sequence. nucleotides in the global context. Especially, the elevated A and
T content of the introns iA.thalianais an important factor in
CONCLUSION identifying the transitions, but surprisingly a reading frame

recognition scheme develops by itself through the training
Neural networks have been trained to recognize splice sitesgrocess.
A.thalianaDNA. This task is not trivial for several reasons. First, The analysis of the coding/non-coding network together with
the number of possible AG and GT dinucleotide$6® times  the fact that the network combination has severe difficulties in
larger than the number of true splice sites. Secondly, the fact tidentifying true acceptor sites without making false predictions as
a portion of the AG and GT sites may have been active as spligell, led us to the discovery thathalianaintrons often have a
sites once and therefore are very similar to real splice sites makeslongation of the T-tract ending in a cryptic acceptor splice site.
this a difficult task. Thirdly, it is not known for sure how much ofThis might explain why the splicing machinery prefers cryptic
the information needed for splicing is available directly in thecceptor sites located downstream in the exon and not cryptic
DNA sequence and how much is contributed from other sourcesites located upstream in the intron, when the true acceptor site is
e.g. the structure of the pre-mRNA and information contained eliminated 9,21).
the spliceosome and other parts of the cell machinery. The lasAs global sequence information is essential for computational
reason of course puts a potential theoretical upper limit on tiselection of splice sites at low levels of false positives, one may
possible quality of a prediction based on the nucleotides in tlask how global information influences spliceosome assembly in
genomic DNA sequence alone. the cell nucleous? Inference of a too detailed model from this
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work would clearly be far too speculative, but it is interesting thd®
the network, by training, develops detectors which correspond b
experimentally observed features: the triplet reading frame angl
the AT-high to AT-low transition regions. Recently it has been
shown that the reading frame in internal exons is scanned for
potential stop codons (see réf for a review), and also that
AT-richness plays a prominent functional role in the splicing 015
plant introns 4).
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