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ABSTRACT
Selected substitutions at one locus can induce stochastic dynamics that resemble genetic drift at a closely

linked neutral locus. The pseudohitchhiking model is a one-locus model that approximates these effects
and can be used to describe the major consequences of linked selection. As the changes in neutral allele
frequencies when hitchhiking are rapid, diffusion theory is not appropriate for studying neutral dynamics.
A stationary distribution and some results on substitution processes are presented that use the theory of
continuous-time Markov processes with discontinuous sample paths. The coalescent of the pseudohitchhik-
ing model is shown to have a random number of branches at each node, which leads to a frequency
spectrum that is different from that of the equilibrium neutral model. If genetic draft, the name given
to these induced stochastic effects, is a more important stochastic force than genetic drift, then a number
of paradoxes that have plagued population genetics disappear.

THIS article investigates the hypothesis that linked that adaptive substitutions can cause the level of genetic
variation at a linked neutral locus to be only weaklyselection rather than genetic drift is the major sto-

chastic force in many natural populations. Certain kinds dependent on the population size (Gillespie 1999).
of linked selection can produce stochastic dynamics that This simulation confirms the basic premise in Maynard
are remarkably like those of genetic drift. If true, this Smith and Haigh (1974) that hitchhiking can cause a
hypothesis may explain a number of paradoxical obser- homogenization of levels of variation across species, but
vations about genetic variation in natural populations. points out that for this to happen, the rate of substitu-

The ideas presented here have at least four main ante- tion at the selected locus must be an increasing concave
cedents. The first, of course, is Maynard Smith and function of population size.
Haigh’s (1974) seminal article on “the hitchhiking ef- The fourth antecedent came from Will Provine during
fect.” Their investigation was prompted by a problem a conversation in Liberia, Costa Rica, in which he tried
raised in Lewontin (1974): Assuming that protein varia- to convince me that genetic drift must be a minor force
tion is neutral, “the extent of enzyme polymorphism is compared to the effects of linked selection. He used
surprisingly constant between species.” So constant, in an asexual haploid species to make his point, but his
fact, that the effective sizes of most species must be arguments carry weight for sexual, diploid species and
within one order of magnitude of each other. Maynard are a major impetus for the work reported here.
Smith and Haigh argued that hitchhiking events are The main goal of this article is to describe the effects
like population bottlenecks in their ability to reduce of a steady stream of adaptive substitutions at one locus
genetic variation to levels that will be similar across on the dynamics of a linked, neutral locus. A full mathe-
species. This article is an exploration of that idea. matical treatment of this situation is out of reach. How-

The second antecedent is the extensive literature ever, it appears that the induced stochastic effects of
showing that genetic variation is reduced in regions the substitutions on the neutral locus can be faithfully
of low recombination (Aguadé et al. 1989; Miyashita captured in a one-locus model called the pseudohitchhik-
1990; Berry et al. 1991; Begun and Aquadro 1992; ing model.
Aguadé and Langley 1994). The simplest hypothesis
to explain this phenomenon is the effects of linked
selection. While there is an active controversy over the NO CROSSING-OVER
form of this selection (Kaplan et al. 1989; Charles-

We begin with the study of a neutral locus that is soworth et al. 1993; Charlesworth 1994; Braverman
tightly linked to a selected locus that there is no crossing-et al. 1995; Gillespie 1997), there is general agreement
over between them. Both the selected and the neutralover the hypothesis that some form of linked selection
loci are represented by Watterson’s infinite-sites, no-causes the reduction.
recombination model of a gene (Watterson 1975).The third antecedent is a simulation study that showed
Evolution occurs in a finite population of size N subject
to the standard assumptions of the Wright-Fisher model.

The mutation rate at the neutral locus is called u andAuthor e-mail: jhgillespie@ucdavis.edu

Genetics 155: 909–919 ( June 2000)



910 J. H. Gillespie

Figure 2.—The average sum of site heterozygosities, ssh,Figure 1.—The rate of substitution, r, at the selected locus
for the neutral locus linked to the selected locus illustratedwhere the selection coefficient is s 5 0.1 and the mutation
in Figure 1. The neutral mutation rate is u 5 2.5 3 1024. Therate is v 5 5.0 3 1027.
drift 1 ph curve comes from Equation 1 and the ph curve
comes from Equation 2.

the mutation rate at the selected locus is called v. Each
mutation at the selected locus raises the fitness of the

1), which lowers the variation at the linked neutral locushomozygote for that mutation by an amount s over the
by an amount that overcomes the increased mutationalfitness of the homozygote for the parent allele. The
input.heterozygote fitness is exactly intermediate between the

It is a simple matter to describe the relationship be-two homozygote fitnesses. In accordance with the as-
tween ssh and N mathematically if we make two simpli-sumptions of the shift model (Ohta and Tachida
fying assumptions:1990), all fitnesses are measured relative to that of the

allele with the most recently fixed site.
1. The times of fixations at the selected locus form a

The rate of fixation of advantageous mutations at the
Poisson process with rate r.

selected locus, r, as a function of the population size is
2. The time required to fix a selected allele is so short

illustrated in Figure 1. These results were obtained from
relative to the time between substitutions (1/r) and

a computer simulation using the same approach and
the time scale of genetic drift (N) that the fixations

lisp code as described in Gillespie (1999). The values
may be viewed as occurring instantaneously.

of r obtained from this simulation play an important
role in what follows. The usual approximation for this With these two assumptions, the mean time back to the
rate, 2Nvs, is also plotted. common ancestor of a pair of randomly chosen neutral

Our main interest is in the properties of the neutral alleles is
locus that is linked to the selected locus. Variation at
the neutral locus is measured by the sum of site heterozy- 1

r 1 1/2N
5

2N
1 1 2Nr

.
gosities (SSH),

The mean number of mutations on the two lineages
SSH 5 o

S

i51

2xi(1 2 xi),
leading to the common ancestor is just 2u times the
mean time back to the common ancestor, or

where S is the number of segregation sites at the neutral
locus and xi is the frequency of one of the two mutations

ssh 5
4Nu

1 1 2Nr
. (1)at the ith site. For an isolated neutral locus the mean

value of SSH, which we call ssh, is
This formula is plotted in Figure 2 and is indistinguish-

ssh 5 E{SSH} 5 4Nu. able from the simulated values except for the largest
population sizes, where it is too low. (The reason forFigure 2 gives the average sum of site heterozygosities
the lack of agreement for large N is discussed later.) Asof the neutral locus that is linked to the selected locus
the population size increases,described in Figure 1. After an initial rise, ssh falls slowly

with increasing population size. At first this seems para-
lim
N→∞

ssh 5
2u
r

, (2)doxical because, for an isolated neutral locus, ssh in-
creases linearly with population size. The reason for this
contrary behavior is that the rate of substitution at the which is also illustrated in Figure 2. The second formula

converges rather quickly to the simulated values, anselected locus increases with population size (see Figure
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observation that could, of course, be gleaned from Equa-
Ne 5

N
1 1 2Nr

. (4)tion 1 itself. Biologically, this observation suggests that
the stochastic effects of linked selection completely

Consistent with this view is the fact that 4Neu is equaldominate those of genetic drift once the population size
to the value of ssh given in Equation 1. However, whileis . z104. By extrapolation, in an infinite population we
this suggestion is accurate for some properties (like ssh),would still have a stochastic force affecting the neutral
it is off the mark for others. For example, Figure 5 showslocus, but that force would not be genetic drift. We now
that Tajima’s D-statistic (Tajima 1989), a measure ofwant to argue that this force, although not genetic drift,
departure from the neutral frequency spectrum, is nega-shares many properties with genetic drift.
tive when both stochastic effects are present.In an infinite population, three fates await a neutral

In an infinite population, the stochastic effects ofallele whose frequency is xi in a given generation:
linked selection on a neutral locus can be examined
mathematically, but not by using diffusion theory as1. A selected mutation that ultimately fixes in the popu-
is often done to study genetic drift. Rather, we use alation could appear on the same chromosome as
continuous-time Markov model with discontinuous sam-one copy of our allele and that copy would then be
ple paths. That diffusion theory is not appropriate fol-whisked to fixation by hitchhiking. The probability
lows fromthat a favorable mutation appears on a copy of our

allele is just its frequency, xi. E{(Dxi)3} 5 rxi(1 2 xi)(1 2 2xi),
2. A selected mutation that ultimately fixes in the popu-

which is similar in magnitude to Var{Dxi}. To use diffu-lation could appear on the same chromosome as
sion approximations, E{(Dxi)3} must be of a smaller ordersome other allele. In this case our allele will be elimi-
of magnitude than Var{Dxi}.nated from the population.

Many of the sorts of problems that have been solved3. No selected mutation that ultimately fixes enters the
for genetic drift have analogs in this new context. For

population, in which case the frequency of our allele
example, consider the stationary distribution of a neu-

remains unchanged. tral locus with two alleles that mutate to one another
with rate u and are linked to a selected locus with substi-The frequency of our allele, after a hitchhiking event
tutions occurring at rate r. As the only force actingthat may have occurred has run its course, may be sum-
between hitchhiking events is mutation, the frequencymarized as follows:
of one of the alleles is given by

x(t) 5
1
2
(1 2 e22ut) 1 x(0)e22ut,x9i 5 51 with probability rxi

0 with probability r(1 2 xi)
xi with probability 1 2 r.

where t is the time since the last hitchhiking event and
x(0) 5 1 if the allele was the one fixed at the last eventThe change in xi is
and x(0) 5 0 if it was not. Suppose that the latter hap-
pened [so x(0) 5 0], then

Dxi 5 5(1 2 xi) with probability rxi

2xi with probability r(1 2 xi)
0 with probability 1 2 r. Prob{Xt , x} 5 Prob{T , 2ln(1 2 2x)/2u},

where Xt is the frequency of the allele at time t and T,
The mean and variance in Dxi are which is exponentially distributed with rate r, is the

time back to the most recent hitchhiking event. Thus,E{Dxi} 5 0
Prob{Xt , x} 5 1 2 (1 2 2x)r/2u.Var{Dxi} 5 rxi(1 2 xi).

From here it is a simple matter to show that the densityThe variance in Dxi is of the same form as that for
for x is

genetic drift. This is the first hint that the stochastic
effects of linked selection share some properties with

r

2u
|1 2 2x|r/2u21.

those of genetic drift.
In a finite population, the variance in the change of This is the pseudohitchhiking analogue to the b-density

xi becomes that describes the balance between drift and mutation
under the Wright-Fisher model.

A closely related density, which can be compared toVar{Dxi} 5 xi(1 2 xi)1 1
2N

1 r2. (3)
the simulations, is that for the frequency of the unmu-
tated copies of the most recently fixed neutral allele.This formula immediately suggests that the stochastic
After a fixation t generations ago, the frequency ofeffects of linked selection can be viewed as formally no
unmutated copies of the allele isdifferent than those of genetic drift, but with a popula-

tion size reduced to e2ut.
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Thus, the fixations are reasonably spaced. However, at
N 5 20,000, the fixation time is z504 generations and
the time between fixations is z719 generations. In this
case, there is considerable overlap between the substitu-
tions, which violates the time-scale assumption and leads
to a higher than expected homozygosity. Similarly, we
saw in Figure 2 that ssh is too low when the population
size is very large.

A proper limit could be obtained from the two-locus
model by allowing N → ∞ as v → 0 in such a way that
r remains constant. Unfortunately, we do not have an
explicit formula for the dependency of r on N, so we
cannot state the conditions required for convergence
as N → ∞. However, were we willing to accept the usual
approximation,

Figure 3.—The allelic homozygosity, F, for the neutral locus
linked to the selected locus illustrated in Figure 1. The neutral

r ≈ 2Nvs,mutation rate is u 5 2.5 3 1024. The ph curve comes from
Equation 5.

then

v 5
r

2Ns
The probability that this frequency is ,x is

Prob{e2ut , x} 5 Prob{T . 2ln x/u},
should provide the proper scaling. By holding v fixed

where, as before, T is exponentially distributed with rate with increasing population size in Figure 5, we necessarily
r. Thus, the density of x is depart from the pseudohitchhiking model as N → ∞.

Another problem that is easily handled concerns the(r/u)x r/u21.
fixation process for the neutral locus. Recall that the

Under the assumption that all new mutations are origination process is made up of the times of appear-
unique, the homozygosity of the population is ance of mutations that ultimately fix in the population

and the fixation process is the times that they ultimately
F 5 #

1

0
x 2(r/u)x r/u21dx 5

1
1 1 2u/r

. (5) fix (Gillespie 1993). The origination process for the
neutral model is a Poisson process with rate u, this being
so even if there is linked selection. Watterson (1982,This result is the analogue of the well-known expression
1984) gave some partial results for the neutral fixationfor the homozygosity of a neutral population under
process, which is considerably more complicated thanmutation and drift,
the origination process as multiple sites may fix in the
same generation. In particular, he was able to show that1

1 1 4Neu
,

the number of sites that fix in a particular generation,
given that at least one site fixed, is geometrically distrib-which points out that 2u/r under the pseudohitchhik-
uted. He was not able to find the distribution of theing model plays the same role as 4Nu under the neutral
times between these fixation episodes.model. Equation 5 can also be derived by using the

In an infinite population, the time between fixationvalue of Ne given into Equation 4 in the previous formula
events may be written as the sum of two random times.and then taking the limit as N → ∞.
The first of these, Y, is the time until the first appearanceEquation 5 is compared to the two-locus simulations
of a mutation that will ultimately fix. As the originationin Figure 3. As the population size grows, the simulations
process is Poisson, this time is exponentially distributedand the equation come into close agreement. The rea-
with rate u. The second, Z, is the time until the nextson that they differ for smaller population sizes is that
hitchhiking event (which must of necessity fix the muta-Equation 5 assumes an infinite population size. Once
tion). By assumption, Z is exponentially distributed withthe population size is large enough, the agreement be-

tween the simulations and theory is very good. At the rate r. Thus, the times of the fixation episodes form a
largest population sizes, the two curves begin to diverge. renewal process with the time between events, usually
The reason for this appears to be that the assumption called the failure time, being T 5 Y 1 Z. The moments
that substitutions occur instantaneously breaks down. of T are
For example, when v 5 5 3 1027 and N 5 10,000, the
fixation time of a selected allele is 438 generations and E{T } 5

u 1 r

ur
(6)

the time between substitutions is z1265 generations.
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Figure 4.—The number of sites fixed per fixation episode Figure 5.—Tajima’s D for a sample of size 20 from the
for the neutral locus linked to the selected locus illustrated neutral locus linked to the selected locus illustrated in Figure
in Figure 1. The ph curve comes from Equation 8. 1. The drift 1 ph curve comes from a direct simulation of

the coalescent for the pseudohitchhiking model as described
in Equation 9 and the ph curve is the same but with N 5 ∞
for all population sizes.

Var{T } 5
u2 1 r2

u2r2
. (7)

The asymptotic index of dispersion for a renewal pro-
cess is the variance in the failure time divided by the
square of the mean failure time (Cox 1962). For our
case, this is

n → 5
n with probability 1 2 r 2

n(n 2 1)
4N

n 2 1 with probability
n(n 2 1)

4N
1 with probability r.R 5

u2 1 r2

(u 1 r)2
. (9)

The properties of this coalescent, while amenable to aFor example, in the simulations for the case N 5 20,000
mathematical analysis, are most easily studied by a directand u 5 2.5 3 1024, we observed that r 5 1.39 3 1023

simulation of the coalescent using a slight generaliza-and R 5 0.8027. The previous formula gives R 5 0.7969,
tion of the method described by Hudson (1990). Here,which, once again, is in very close agreement.
we also add mutations to the coalescent and calculateThe number of mutations that fix, given that at least
Tajima’s D-statistic as a way of reducing the propertiesone fixes, is 1 plus a random number whose distribution
of the coalescent to a single number. The results of suchis a Poisson randomized by uZ. As a Poisson randomized
a simulation for both finite and infinite populations areby an exponential is geometrically distributed, we have
compared to those of the two-locus simulation in Figurethat the number of sites that fixes at each episode is
5. The agreement is quite good for smaller populationgeometric with mean
sizes, but the two-locus simulation and the direct coales-
cent simulations diverge for larger population sizes. The1 1 u/r. (8)
reason for the divergence is clearly the problem of over-

Figure 4 illustrates that this mean agrees very well with lapping selected substitutions as discussed above.
those observed in the simulations. Note that the mean In this section we have been comparing a two-locus
number of mutations that fix in an interval of length t simulation to calculations that flow from a pair of as-
is sumptions: the Poisson nature of the selected substitu-

tion process and the instantaneous fixation time of se-t
E{T }

(1 1 u/r) 5 ut, lected substitutions. These two assumptions allow us to
model the behavior of the neutral locus without any
explicit use of the dynamics of the selected locus otheras expected. It is worth noting that this is the only fully
than knowledge of the value of r. We call this one-characterized fixation process known at this time.
locus model the pseudohitchhiking model, the prefix pseudoThe final observation concerns the nature of the coa-
serving to emphasize that the full hitchhiking dynamicslescent. In a finite population, the coalescent will be
are not part of the one-locus model. We have seen thatthe usual neutral coalescent until the first hitchhiking
the properties of the pseudohitchhiking model are veryevent, at which point all of the extant lineages coalesce.
close to those of the two-locus model when the assump-The death process for the number of extant lineages,

n, is governed by the following transition probabilities: tions of the model are met. In particular, we require
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that the hitchhiking events form an isolated stream of
Ne 5

N
1 1 2N ry2impulses.

and that the mean sum of site heterozygosities is
CROSSING-OVER

ssh 5
4Nu

1 1 2N ry2
. (11)

When crossing-over occurs between the selected and
neutral loci, selection no longer carries the hitchhiking At this point we have reached an impasse: What is
allele to fixation, which requires a modification of the the value of y? If we choose to make y a parameter of
pseudohitchhiking model. In this section we consider the model, then its value can be derived from the results
a modification that gives acceptable results for tight of Maynard Smith and Haigh (1974). But y will surely
linkage. The development of the model itself is quite be a random variable reflecting the stochastic dynamics
instructive and provides insights into factors that must of hitchhiking. In this case, the values of y associated
be considered in developing a more sophisticated ver- with a sequence of hitchhiking events will form a station-
sion. ary sequence of independent, identically distributed

In the first step of the generalization of the pseudo- random variables. Unfortunately, there is no available
hitchhiking model, we allow the frequency of the neu- theory that allows us to derive the distribution of y.
tral hitchhiking allele to stop before reaching fixation. Before addressing the problem of adding randomness
When a favorable mutation first enters the population, to the model, we examine the model with a determinis-
it is on the same chromosome as only one copy of a tic y and use this as a benchmark to measure further
neutral allele. The frequency of that copy will increase refinements in the model.
from 1/2N to some new value, call it y, at the expense Maynard Smith and Haigh (1974) describe the ef-
of all other copies of the allele and all other alleles, fects of the substitution of a new advantageous mutation
which will have their frequencies reduced by a fraction at one locus on the frequency of two neutral alleles at
1 2 y. Thus, after a hitchhiking event has run its course, a linked locus. The new mutant is originally on the same
the frequency of the neutral alleles will have changed chromosome as one of the two neutral alleles and causes
according to the following scheme: the frequency of that allele to increase by an amount

that is determined by three parameters: the selection
coefficient, s, the rate of recombination, r, and the

x9i 5 5(1 2 y)xi 1 y with probability rxi

(1 2 y)xi with probability r(1 2 xi)
xi with probability 1 2 r. population size, N. (The latter parameter is relevant

only through the assumption that the frequency of the
newly arisen selected mutation is 1/2N; there is no ge-The values of xi9 do not exactly match the verbal descrip-
netic drift in their model.) The final frequency of thetion above because we have failed to reduce the fre-
neutral allele that was linked to the advantageous muta-quency of the ith allele from x to x 2 1/2N to reflect
tion isthe changed status of the one copy of that allele that is

linked to the selected mutation. This small perturbation
x∞ 5 1 2 r(1 2 x0)(1 2 p0)#

∞

0

e2rzdz
1 2 p0 1 p0e sz

,can be included and shown to alter the calculations
below by a quantity of order (1/2N)2, which is deemed

(12)negligible.
The change in xi is

where x0 was the frequency of the hitchhiking allele in
the population before the advantageous allele appeared
and p0 5 1/2N is the initial frequency of the advanta-

Dxi 5 5y(1 2 xi) with probability rxi

2yxi with probability r(1 2 xi)
0 with probability 1 2 r,

geous mutation. This result, as presented, is a continu-
ous-time additive diploid version of Equation 8 in the
Maynard Smith and Haigh (1974) article.

and the mean and variance in Dxi are Equation 12 can be rearranged as
E{Dxi} 5 0 x9 5 x(1 2 y) 1 y, (13)

Var{Dxi} 5 ry2xi(1 2 xi).
where

Note that this model reduces to that of the previous
x 5 x0section when y 5 1. When drift is added,

x9 5 x∞

Var{Dxi} 5 xi(1 2 xi)1 1
2N

1 ry22. (10) and

From this we see that the effective size of the population y 5 1 2 r(1 2 p0)#
∞

0

e2rzdz
1 2 p0 1 p0

sz
, (14)

is
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plot of Equation 16 with the values of E{y2} coming from
the Maynard Smith and Haigh simulation. The agree-
ment between this version of the pseudohitchhiking
model and the two-locus simulation is much better than
that using the deterministic value of y2. The improve-
ment comes from the fact that the E{y} from the finite-
population simulation is considerably larger than the
deterministic value of y. The reason for this appears to
be that in finite populations the sample path of an
advantageous mutation, given that it fixes, has a mean
trajectory that lies above the trajectory of the determinis-
tic process. Conditioning on fixation will favor sample
paths that move rapidly away from zero, for obvious
reasons.

Of course, the full dynamics of the pseudohitchhiking
Figure 6.—Simulation results comparing the sum of site model will depend on the complete distribution of y

heterozygosities (ssh) for the neutral locus in the two-locus rather than on just E{y2}. We can examine a completemodel to that of three versions of the pseudohitchhiking
model by assuming that y is b-distributed and obtainingmodel with those of a neutral locus linked to a selected locus.
its mean and variance from the same Maynard SmithIn all three simulations N 5 20,000, 4Nu 5 1.0, s 5 0.1, and

v 5 1.5 3 1027. The pseudohitchhiking simulations use r 5 and Haigh two-locus simulations that were described in
4.29 3 1024, as obtained from the two-locus simulations. The the preceding two paragraphs. This distribution is then
deterministic y2 curve uses values of y obtained from Equation used in a direct simulation of the pseudohitchhiking14. The E{y2} curve uses values of E{y2} obtained from a simula-

model from which the average value of ssh is recorded.tion of the Maynard Smith and Haigh model as described in
The results of these simulations are illustrated in thethe text. Beta-distributed y curve uses a b-distribution for y.
fourth curve in Figure 6. There is essentially no differ-
ence between these results and those from Equation 16.

which could provide a value for y in the pseudohitchhik- This is not unexpected as ssh for neutral models de-
ing model. However, rather than obtaining y by numeri- pends only on the first and second-order moments in
cal integration of Equation 14, it is easier to obtain the the change in the neutral allele frequencies and these,
value from a deterministic simulation of the additive in turn, depend only on the first two moments of y.
diploid version of the Maynard Smith and Haigh differ- Other properties of the pseudohitchhiking model may
ence equations. well depend on higher-order moments of the process

Figure 6 presents values of ssh for a two-locus simula- and will require the use of a sequence of random values
tion as well as those using Equation 11 with the value of y rather than the fixed value E{y2}.
of r taken from the selected locus in the two-locus simu- The agreement between the pseudohitchhiking
lation and the value of y obtained numerically as de- model with random y and the two-locus simulations for
scribed above. The agreement is good, as it must be, larger values of r is still not as good as we would hope.
for very tight linkage. However, for weaker linkage the There are two potential sources for the discrepancy.
two-locus and pseudohitchhiking results diverge sig- The first is that the dynamics of selected substitutions
nificantly. (For very loose linkage they will converge in the Maynard Smith and Haigh simulations are not
again as hitchhiking becomes unimportant.) identical to those of the two-locus simulations. In the

To add randomness, we first note that the values of y latter, which is an infinite-sites model, there are always
form a sequence of independent identically distributed several alleles segregating at the selected locus. In fact,
random variables, and thus that sometimes two advantageous alleles with the same fit-

ness will move through the population at the same time.
Var{Dxi} 5 xi(1 2 xi)1 1

2N
1 rE{y2}2 (15) Such dynamics are considerably more complicated than

those of the Maynard Smith and Haigh simulations,
and which always have exactly two segregating alleles at the

selected locus. At this time I have no way to assess the
ssh 5

4Nu
1 1 2NrE{y2}

. (16) impact of this difference.
A second source for the discrepancy concerns the

assumption that the frequencies of all of the nonhitch-These observations suggest that randomness may re-
quire nothing new other than the substitution of E{y2} hiking alleles in the pseudohitchhiking model are low-

ered by the same constant factor 1 2 y. When y is deter-for y2. The values for E{y2} can be obtained from a simula-
tion of the Maynard Smith and Haigh model in a finite ministic, this is the correct assumption. However, when

y is random it is not correct to assume that all of thepopulation using the same parameters as used in the
two-locus simulation. The third curve in Figure 6 is a nonhitchhiking alleles are lowered by the same factor.
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In fact, the nonhitchhiking alleles should all be lowered
by a different random amount, reflecting the various
effects of drift and recombination that occur during the
hitchhiking event. In some cases, there may even be
two separate hitchhiking alleles. It appears to be quite
difficult to add this particular element of randomness,
although further work may uncover a way.

Although further refinements of the pseudohitchhik-
ing model will be forthcoming, the remainder of this
article is concerned with the properties of the model
as defined above.

THE COALESCENT

As a first step, consider the genealogy of n alleles
Figure 7.—The average values of Tajima’s D for different

sampled from a pseudohitchhiking population with de- sample sizes. Those E{D(n)} curves come from samples drawn
terministic y and N 5 ∞. In this case, the only way that from a direct simulation of the pseudohitchhiking model for
a coalescence can occur is if there is a hitchhiking event. a sample of size n. The D(n) curves come from a direct simula-

tion of the coalescent using Equation 18. In both cases, r 5The probability of such an event in a particular genera-
0.138, y 5 0.3, and u 5 5 3 1024.tion is r. If there were an event, then a single copy of one

of the alleles in the population increases its frequency to
y. The probability that i of the n sampled alleles are

The next increment in complexity involves the addi-
descended from that fortunate allele is the binomial

tion of genetic drift. In any particular generation, a
probability

coalescence may be due to the finiteness of the popula-
tion or to hitchhiking. In the former case, the coalescent1ni 2yi(1 2 y)n2i. can only shrink from n to n 2 1 while in the latter case
the size of the coalescent can shrink from n to n 2 i, i 5

A coalescence occurs when i $ 2. Unlike the neutral 1 . . . (n 2 1). Thus, the probabilities of all possible
case, a coalescence can involve more than two lineages, transitions are
which is the root cause of D , 0.

We can summarize these observations as follows:

The probability that a coalescence does not occur in a
n → 5

n w.p. 1 2 r 2
n(n 2 1)

4N
2 r[(1 2 y)n 1 ny(1 2 y)n21]

n 2 1 w.p.
n(n 2 1)

4N
1 r1n22y2(1 2 y)n22

n2i w.p. r1 n
i 1 12yi11(1 2 y)n2i21, i 5 1 . . . (n 2 1).

particular generation is

(1 2 r) 1 r[(1 2 y)n 1 ny(1 2 y)n21].
(18)The probability that a coalescence does occur in a partic-

ular generation is These transition probabilities, plus the usual assump-
tion that the times to successive coalescences are expo-

ro
n

i52
1ni 2yi(1 2 y)n2i. nentially distributed, allow a complete probabilistic de-

scription of the coalescent for small n. However, for
The probability that the coalescent shrinks from n alleles n . 4 the results are completely unwieldy. On the other

to n 2 i alleles in a particular generation is hand, it is very easy to simulate the coalescent in the
same manner that is done for neutral coalescents (Hud-
son 1990).r1 n

i 1 12yi11(1 2 y)n2i21.
Figure 7 gives examples of the calculation of Tajima’s

D using a direct simulation of the pseudohitchhikingWhen n 5 2, the probability of a coalescence is ry2.
model and using a coalescent simulation with the transi-Thus, the mean number of mutations separating these
tion probabilities given above. The two approaches givetwo alleles is
identical answers, as they should. There are two interest-
ing aspects to these results. The first is that Tajima’s D2u

ry2
. (17)

becomes more negative with increasing population size.
The negativity comes from the fact that a coalescenceThis same result can be obtained by taking the limit of
can involve more than two lineages, the increasing mag-Equation 11 as N → ∞:
nitude comes from a decreasing role of genetic drift and
with it, a decreasing frequency of n → n 2 1 transitions.lim

N→∞

4Nu
1 1 2N ry2

5
2u
ry2

.
The second interesting aspect of Figure 7 is the in-
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crease in D that accompanies increasing sample sizes. allele with frequency x ≈ 0 never experiences a hitchhik-
ing event. For simplicity, assume that y is constant. TheTajima’s D for the entire population is 22.2 when

N 5 10,000. Thus, as the sample size increases, D does fate of this rare allele over the first few generations is
summarized in Table 1.approach the population value. However, the approach

is not sufficiently fast for D to be a reliable estimator of The probability that the allele is never chosen is
the population D. D has a dual role as an estimator and

p
∞

i50

[1 2 x(1 2 y)i].for hypothesis testing. D is scaled such that |D| . 2 is
cause to reject the neutral model. However, it is clear
from Figure 7 that even though a population may have For very small x, this becomes
a large skew in its frequency spectrum, D will not exhibit

1 2 xo
∞

i50

(1 2 y)i 1 O(x2) z 1 2 x/y.a mean value that is close to the significance level for
the sort of sample sizes typically used in population
studies. Thus, there is reason to doubt that D has suffi- Thus, the probability that the allele does hitchhike is,
cient power to distinguish between models with typically asymptotically, x/y. It might seem surprising at first that
sized samples when using only a single locus. Of course, an allele might not catch a ride at least once during the
much more power is achieved when loci are combined. infinity of hitchhiking events in the population. The

If y is random, then the death process for the coales- reason it does not is that its frequency is initially very
cent is low and then declines by a factor (1 2 y) with each

subsequent event, making hitchhiking progressively less
likely. If a very rare allele does catch a ride, its frequency
will increase ton → 5

n w.p. 1 2 r 2
n(n 2 1)

4N
2 rE{(1 2 y)n 1 ny(1 2 y)n21}

n 2 1 w.p.
n(n 2 1)

4N
1 r1n22E{y2(1 2 y)n22}

n 2 i w.p. r1 n
i 1 12E{yi11(1 2 y)n2i21}, i 5 1 . . . (n 2 1),

x*(1 2 y) 1 y ≈ y,

where x* is its frequency in the generation when it first
(19) catches a ride.

where all of the expectations are taken with respect to The rate of fixation of neutral alleles can now be
the distribution of y. If y is assumed to be b-distributed, written in the suggestive form,
then all of these expectations can be computed. The
properties of this coalescent will be explored in a future k 5 2Nu 1xy2y 5 2Nu 1 1

2Ny2y 5 u.
article.

2Nu is the mutational input each generation, the next
NEUTRAL EVOLUTION term is the probability that a new allele gets a ride (x/

y with x 5 1/2N), and the final y is the probability ofAs a stochastic force, pseudohitchhiking is very similar
fixation of an allele whose frequency is y. When N →to genetic drift. Certain properties of population geneti-
∞, we are left with a model where neutral alleles jumpcal models should be essentially independent of which
into the population at the rate u/y. When they do enter,of these two stochastic forces is present. The rate of
their initial frequency is y.neutral evolution, k 5 u, is one such property. Although

It is instructive to see how the pseudohitchhikingthe fact that the frequency of a neutral allele is a martin-
model (in an infinite population) would have fared hadgale under the pseudohitchhiking model makes this
it, rather than genetic drift, been the stochastic forcecalculation entirely trivial, if we take a somewhat long-
used in Kimura and Ohta’s (1971) classic article onwinded route through the derivation, it will give us some
the neutral theory. That article used two observations,insights into the nature of neutral evolution in very large
k ≈ 1027 and F ≈ 0.9, to estimate two parameters, u 5 1027

populations with hitchhiking.
and Ne 5 2.5 3 105, for a species with one generation perConsider first the probability that a very rare neutral
year. Had the pseudohitchhiking model been used, the
estimate of u would have remained the same. Using the

TABLE 1 obvious generalization of Equation 5,
The fate of a neutral allele

F 5
1

1 1 2u/ry2
,

Probability
Generation Frequency not chosen we have 2u/ry2 ≈ 0.1 or
0 x 1 2 x
1 x(1 2 y) 1 2 x(1 2 y) r 5

2 3 1026

y2
2 x(1 2 y)2 1 2 x(1 2 y)2

A A A
for the rate of hitchhiking as a function of y. For exam-i x(1 2 y)i 1 2 x(1 2 y)i

ple, y 5 0.2, r 5 5 3 1025. Thus, the development of



918 J. H. Gillespie

the neutral theory would have worked just as well with away from regions of low recombination is around p 5
pseudohitchhiking in an infinite population as with ge- 0.006. Using Equation 17, we have
netic drift in a finite population. Real populations may
have both stochastic factors playing significant roles. r 5

2u
py2

5 3.3 3 1027y22,

where we have used u 5 1029 as a typical nucleotideDISCUSSION
substitution (and mutation) rate for a silent site. Such

The possibility that stochastic effects from linked se- a rate of hitchhiking is not patently unreasonable even
lection events are a more important stochastic force if the only source of hitchhiking events are amino acid
than genetic drift, i.e., that substitutions within the same locus as the silent site.

Within a locus, r ≈ 1025 between distant sites. If the
2rE{y2} @

1
N

, strength of selection acting on a typical substitution
were around 1023, then r/s ≈ 0.01, which would imply
y ≈ 1. Thus, r ≈ 1027, which is typical for the rate ofhas some very important implications:
amino acid substitution in a coding region. However,

Levels of polymorphism at neutral sites would be insensi- if y 5 1 and N 5 ∞, all of the mutations in a sample
tive to population size. By contrast, when genetic drift would be singletons, which is not observed, so some
is the main stochastic force, ssh 5 4Nu is linearly refinements of both the models and the parameters
dependent on population size. are needed before we accept the notion that linked

If, as seems plausible, rE{y2} is less variable between spe- selection may be a more important force than drift.
cies than is N, then levels of variation should be rela- Of course, the real impact of hitchhiking involves
tively constant between species. events from many closely linked loci. The effects of

The frequency spectrum of alleles should be skewed hitchhiking events from more distant loci decrease with
from the neutral spectrum in a direction that leads r. A full quantitative analysis of this combined effect will
to negative values of Tajima’s D. The skew should be be discussed in a future publication as there are some
more extreme in regions of low recombination. complications stemming from the interactions of substi-

Assuming the correctness of the underlying model of tutions at closely linked loci on each other. Nonetheless,
selection, estimates of such quantities as Ns in large even this simple argument suggests that amino acid
populations (i.e., N @ 2rE{y2}) are actually estimates substitutions themselves could represent the hitchhik-
of s/(2rE{y2}) and, as such, should be much more ing agents required for our theory to be valid.
similar across species than would be the case under There is a much more intriguing, though largely un-
genetic drift. If there were some correlation across explored, source of linked perturbations: meiotic drive.
species in the magnitude of positive and negative While there are some well-known and dramatic cases
values of s, then this may even help explain why so of male drive elements in natural populations such as
many estimates of Ns are close to 1. segregation-distorter in Drosophila (Hiraizumi et al.

Genetic variation should be proportional to levels of 1960) and the t-allele in Mus (Lewontin and Dunn
recombination. 1960), not much is known about segregation distortion

in females, where, because only one of the four productsEver since Lewontin raised the issue, population ge-
of meiosis makes it into a gamete, it is much more likelyneticists have wrestled with the apparent lack of sensitiv-
to occur. The reason that so little is known about femaleity of levels of variation to the variation in population
meiotic drive is due to the technical problem of disasso-sizes between species and to the homogeneity of varia-
ciating viability and drive effects of chromosomes. But, iftion between species. Various solutions have been pro-
particular chromosomes in nature were driven to higherposed, but few can readily account for the fact that the
frequency by a segregation advantage, then all of thesilent nucleotide site heterozygosities of most diploid
alleles on those chromosomes would increase in fre-species are within one order of magnitude of each other.
quency just as required in our model. Given the at-We have before us a rather simple solution to the prob-
traction of a drift-like stochastic force that is indepen-lem, and one that does not cause a radical change in
dent of population size, the possibility that chromosomesour understanding of the stochastic dynamics of popula-
might experience transient drive should be seriouslytions. Rather, it suggests a reinterpretation of the param-
considered.eters of our stochastic models and a slight, though im-

The stochastic effect of linked substitutions as cap-portant, change in the nature of the coalescent.
tured in the pseudohitchhiking model is remarkablyIs linked selection a more important force than drift?
like genetic drift. The mean change in frequency of anIn regions of low recombination, including mitochon-
allele is zero and the variance in the change is propor-dria, the answer is quite possibly in the affirmative. What
tional to x(1 2 x). Should the domain of genetic driftabout regions of the genome with “normal” levels of

recombination? In Drosophila, the site heterozygosity be extended to include this new force or should it be
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Braverman, J. M., R. R. Hudson, N. L. Kaplan, C. H. Langley andgiven another name entirely? When classifying the “fac-
W. Stephan, 1995 The hitchhiking effect on the site frequency

tors of evolution,” Wright (1955) used only the second- spectrum of DNA polymorphisms. Genetics 140: 783–796.
order moments. Thus, his definition of “random drift” Charlesworth, B., 1994 The effect of background selection against

deleterious mutations on weakly selected, linked variants. Genet.does encompass pseudohitchhiking. Under Wright’s
Res. 63: 213–227.classification, our title’s phrase “genetic drift in an infi- Charlesworth, B., M. T. Morgan and D. Charlesworth,

nite population” makes perfect sense. If another name 1993 The effect of deleterious mutations on neutral molecular
variation. Genetics 134: 1289–1303.should prove useful, “genetic draft,” as suggested to me

Cox, D. R., 1962 Renewal Theory. Methuen & Co. Ltd., London.by Bill Gilliland, is a good candidate as it is close to Gillespie, J. H., 1993 Substitution processes in molecular evolution.
genetic drift and it continues the hitchhiking idiom I. Uniform and clustered substitutions in a haploid model. Genet-

ics 134: 971–981.by alluding to drafting to gain speed as practiced by
Gillespie, J. H., 1997 Junk ain’t what junk does: neutral alleles inbicyclists. a selected context. Gene 205: 291–299.

Other forms of linked selection will lead to different Gillespie, J. H., 1999 The role of population size in molecular
evolution. Theor. Popul. Biol. 55: 145–156.dynamics for neutral alleles. Some, like the TIM model

Hiraizumi, Y., L. Sandler and J. F. Crow, 1960 Meiotic drive in(Takahata et al. 1975), will lower the heterozygosity
natural populations of Drosophila melanogaster. III. Implications

and will skew the frequency spectrum to give D , 0 of the segregation-distorter locus. Evolution 14: 433–444.
Hudson, R. R., 1990 Gene genealogies and the coalescent process.(Gillespie 1997). Thus, there is room for a great deal

Oxf. Surv. Evol. Biol. 7: 1–44.of additional work to describe the stochastic effects of
Kaplan, N. L., R. R. Hudson and C. H. Langley, 1989 The hitchhik-

linked selection in other contexts. Many of these effects ing effect revisited. Genetics 123: 887–899.
Kimura, M., and T. Ohta, 1971 Protein polymorphism as a phasemay contribute even more to the divorce of genetic drift

of molecular evolution. Nature 229: 467–469.and population size.
Lewontin, R. C., 1974 The Genetic Basis of Evolutionary Change. Co-

lumbia University Press, New York.I thank Dick Hudson, Chuck Langley, Ralph Haygood, Masaru
Lewontin, R. C., and L. C. Dunn, 1960 The evolutionary dynamicsIizuka, and the Davis Evolution discussion Group for their many useful

of a polymorphism in the house mouse. Genetics 45: 705–722.comments on this work. This article is dedicated to my friend and
Maynard Smith, J., and J. Haigh, 1974 The hitch-hiking effect ofcolleague Will Provine in recognition of his important contributions

a favorable gene. Genet. Res. 23: 23–35.to the history of ideas in population genetics and for his tenacious
Miyashita, N., 1990 Molecular and phenotypic variation of the Zw

campaign to consider a wider view of genetic drift. The research locus region in Drosophila melanogaster. Genetics 125: 407–419.
reported here was funded in part by National Science Foundation Ohta, T., and H. Tachida, 1990 Theoretical study of near neutral-
grant DEB-9527808. ity. I. Heterozygosity and rate of mutant substitution. Genetics

126: 219–229.
Tajima, F., 1989 Statistical method for testing the neutral mutation

hypothesis by DNA polymorphism. Genetics 123: 585–595.LITERATURE CITED
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