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ABSTRACT
Amplified fragment length polymorphisms (AFLPs) currently are among the most widely used marker

systems. In many studies, AFLPs are analyzed on the basis of the presence or absence of a band on an
electrophoretic gel. As a result, dominant homozygous individuals are not distinguished from heterozygous
individuals, resulting in a considerable loss of information. This article shows how codominant information
can be obtained if the amount of PCR products is quantified. Due to measurement variation, genotyping
on the basis of such information is not error-free. We propose use of normal mixture distributions to
determine the most likely genotype, given the data. The method is exemplified using AFLP data from
sugar beet.

MOLECULAR markers are increasingly being used gous individuals, since for the latter the amount of PCR
in plant breeding research. Codominant markers products should be only half that of homozygous indi-

are preferable to dominant markers due to the larger viduals. Thus, if the OD can be measured quantitatively,
information content. A codominant molecular marker there is a basis for identifying the genotype, i.e., to ex-
allows unequivocal distinction of homozygous and het- tract the full codominant information.
erozygous genotypes on an electrophoretic gel. By con- Due to various sources of random variation (marker
trast, for dominant markers, dominant homozygous and assay, measurement errors, gel differences, differences
heterozygous individuals cannot be distinguished on in duration of development, and concentration of devel-
the basis of the presence or absence of bands on a gel. oper, etc.), however, the measurements vary among in-
Nevertheless, dominant markers continue to be very dividuals even if they have the same genotype, and a
popular, mainly because of economical reasons. In this distinction among genotypes is not generally error free.
article, we consider the analysis of amplified fragment The error variance may be so large that distributions of
length polymorphisms (AFLPs), a marker system that the three genotype classes overlap. Estimation of geno-
has been used in many studies. In the past, numerous type frequencies in the population and of genotyping
articles have analyzed AFLPs on the basis of band pres- is therefore not straightforward and use of statistical
ence/absence, extracting only dominant information. methods may be helpful.
The present article suggests a codominant analysis, In this article, we specifically consider the following
which allows far more information to be exploited. We problem: A PCR-based dominant marker system (AFLP
expect this method to be of wide interest to plant breed- or other) is used to score a population of plants for
ers and geneticists, since it makes more efficient use of their genotype at the marker locus. For each individual,
dominant marker data. the concentration of PCR products at a band position

In principle, the genotype of a dominant marker can on an electrophoretic gel is measured quantitatively,
be inferred from the optical density (OD) of the band either directly as pixel information or indirectly via an
on the gel or from the fluorescence in a gel-free marker OD value. There are three genotypes, which may be
assay. For simplicity, both types of data are henceforth denoted A1A1, A1A2, and A2A2, where A1 is the null allele
referred to as OD values. For homozygous individuals, and A2 is the dominant allele. The objectives are (1) to
the OD value is expected to be larger than for heterozy- assign each individual to one of the genotype classes and

(2) to estimate the frequencies of the three genotypes in
the population. If genotype frequencies are known, only
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task (1) remains. For example, for a segregating F2 popu-enbau- und züchtung, Universität Kiel, Germany) on the occasion of
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städt, Germany. and Basford 1988; Hastie and Tibshirani 1996;

Genetics 155: 1459–1468 ( July 2000)



1460 H.-P. Piepho and G. Koch

Lynch and Walsh 1997) for these purposes. The meth- (CAR), i.e., the probability that a randomly selected
individual is correctly classified.ods are exemplified using real data on AFLP markers

in a segregating F2 population of sugar beet. There are two possible simplifications of the model:

1. The mixing proportions pi 5 P(g 5 i) are known a
priori. For example, in a segregating F2 populationTHEORY
the proportions may be known to be p1 5 0.25, p2 5

It can be assumed that conditionally on the genotype 0.50, p3 5 0.25. This is the case for the example
class the observed values for individual plants follow considered in the next section.
some continuous distribution. The joint distribution of 2. The variances of the three components are equal.
individuals from all three genotype classes is then a

Hence, we consider four different models:mixture of three distributions, with mixing proportions
equal to the genotype frequencies. If genotype frequen- a. u 5 (m1, m2, m3, s1, s2, s3, p1, p2, p3)9 is completely
cies are unknown, they can be estimated by estimates free (apart from the usual boundary constraints si .
of the mixing proportions. Allele frequencies can be 0, pi . 0, and p1 1 p2 1 p3 5 1). There are thus
estimated from the genotype frequencies in the usual eight free parameters (only two of the three mixing
way. Using the estimated distribution of the data, indi- proportions are free to vary).
viduals may be assigned to one of the three genotype b. s1 5 s2 5 s3 5 s. There are six free parameters.
classes based on a posterior probability of genotype class c. p1 5 0.25, p2 5 0.50, p3 5 0.25. There are six free
membership. parameters.

One possible assumption is that OD values for individ- d. s1 5 s2 5 s3 5 s and p1 5 0.25, p2 5 0.50, p3 5
uals from a given genotype class are distributed nor- 0.25. There are four free parameters.
mally. This assumption can and should be checked if

To fit these models, we use the expectation-maximiza-possible. The joint distribution is then a mixture of
tion (EM) algorithm. A brief description is given in thethree normal distributions. Let g be a random variable
appendix. The models (a)–(d) may be compared bydenoting the genotype class with g 5 1 when the geno-
likelihood-ratio tests. Let uF be the parameter vector fortype is A1A1, g 5 2 when the genotype is A1A2, and g 5
a full model and uR the parameter vector of a reduced3 when the genotype is A2A2 (for simplicity we make
model relative to uF. We are interested in testing theno distinction in notation between a random variable
null hypothesis, that uF 5 uR. Under H0 uF 5 uR, theand its realization). Group membership of a randomly
statisticdrawn individual from the population follows a mul-

tinomial distribution with parameters pi 5 P(g 5 i) and T 5 22[logL(ûR) 2 logL(ûF)],
index 1. The G-component normal mixture probability

where L(·) is the likelihood function, ûF and ûR are thedensity function (p.d.f.) of yj, the OD value of the jth
maximum-likelihood estimates of uF and uR, respectively,plant ( j 5 1, . . . , n) can be written
is asymptotically (i.e., in large samples) distributed as
x2 with q d.f., where q is the difference in the number off(yj|u) 5 o

G

i51

P(g 5 i)φ(yj|mi, si), (1)
free parameters between uF and uR. To test for significant
variance homogeneity, we compare (a) (full model) vs.

where u 5 (m1, m2, m3, s1, s2, s3, p1, p2, p3)9, pi 5 P(g 5 (b) (q 5 2). To test for significant departure from the
i) are the nonnegative mixing proportions, subject to segregation rate p1 5 0.25, p2 5 0.50, p3 5 0.25, we
the constraint RG

i51pi 5 1, and φ(yj|mi, si) is a normal compare model (a) (full model) vs. model (c) (q 5 2).
distribution with mean mi and standard deviation si. If both tests are significant, we select model (a). If only
Here, we have G 5 3. the first is significant, we choose model (c). If only the

According to Bayes’ theorem (Cox and Hinkley second is significant, we choose model (b). If neither
1974), the posterior probability of genotype class mem- test is significant, we consider model (d) as the most
bership of an individual, given its phenotypic value yj, appropriate model. Since two independent tests are
is conducted per band position, we control the family-wise

error rate at a by performing each test at a significance
P(g 5 i|yj ;u) 5

P(g 5 i)φ(yj|mi,si)
f(yj|u)

, (2) level of a/2 (this is a Bonferroni procedure; see Hoch-
berg and Tamhane 1987).

where pi 5 P(g 5 i) plays the role of a prior probability of So far, we have assumed normality of the data. It is
genotype class membership. The posterior probabilities not certain that this assumption will always be met in
may be evaluated by replacing parameters with their practice. In principle, mixture distributions with compo-
estimates. On the basis of their estimated posterior prob- nents other than normal distributions can be contem-
abilities, individuals may be assigned to one of the three plated (Redner and Walker 1984), but then the prob-
genotype classes (genotyping). In the appendix, we de- lem arises as to the choice of distribution. An alternative

is to seek a normalizing transformation of the data.scribe how to compute the correct allocation rate
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dst is the absolute difference in lane position numbers
among lanes s and t. Both models were fitted by re-
stricted maximum likelihood (REML) using the MIXED
procedure of the SAS System (SAS Institute, Inc., 1997
SAS/STAT software, changes and enhancements
through release 6.12). We computed the Schwarz Bayes-
ian criterion (SBC) for both models as (i) SBC 5 162.82
and (ii) SBC 5 161.54. The larger SBC for model (i)
indicates that there is little evidence of residual spatial
correlation (Wolfinger 1996).

An analysis of variance based on model (i) for aj

(Table 1) showed that common slopes b1 and b2 can
be assumed for all four band positions. Thus, it was
concluded that the regression can be used for correcting
the OD values of all other band positions. The correc-
tion term subtracted from all OD values was c 5 b1x 1Figure 1.—Plot of OD values (y) vs. lane number for a
b2x2. The regression terms were estimated as b1 5monomorphic band. Fitted line is a polynomial of the form
0.000912310 and b2 5 20.000228513 by fitting them 1 b1xj 1 b2x 2

j .
model yij 5 mi 1 b1xj 1 b2x 2

j 1 aj 1 eij jointly to the four
monomorphic bands, where mi is an intercept term cor-

Gutierrez et al. (1995) discuss application of the Box responding to the ith band and aj is a random effect of
and Cox (1964) power transformation to normal mix- the jth lane. Since the REML analysis of models (i)
tures. This family of transformations is very flexible and and (ii) revealed no evidence of spatial correlation,
includes the logarithmic transformation as a special corrected OD values were regarded as stochastically in-
case. It is given by dependent in the subsequent analyses. We also consid-

ered the possibility of correcting OD values separately
for each individual using monomorphic band positions.h(y;l) 5 y(l) 5





(yl 2 1)/l if l ? 0

log(y) if l 5 0. This option was discarded, however, due to low correla-
tion among different monomorphic band positionsNote that taking l 5 1 is equivalent to not transforming
across individuals.the data. The simplest way to obtain a maximum-likeli-

Figure 2 shows the detrended OD values at the 13hood estimate of l is by a grid search (for details see
polymorphic band positions for 46 individual plants.Gutierrez et al. 1995). Once an appropriate transfor-
The expected segregation at a locus is 1:2:1. For somemation has been found, a normal mixture may be fitted
band positions, the null bands (genotype A1A1) appearto the transformed data.
to be clearly discernible from the other alleles (e.g.,
band positions 2, 5, 9, and 13), while for others the

EXAMPLES distinction is not so clear. In all cases, the separation
between the heterozygous and the homozygous domi-As an example we used OD values at 13 band positions
nant genotypes is not clear cut. Our purpose is to ini-of an AFLP marker for 46 individual F2 plants (sugar
tially fit models (a)–(d) and subsequently select an ap-beets). OD values were preprocessed to subtract system-
propriate model for genotyping. The log-likelihoods ofatic trends discernible from four monomorphic band
models (a)–(d) as fitted to data from each of these 13positions. Figure 1 shows a plot of OD values for one
band positions are shown in Table 2. For band positionsof these monomorphic band positions vs. lane number
2, 3, 7, and 12, there is a significant departure from theon the gel. There is a clear nonlinear trend. To remove
expected diallelic segregation rate (p1 5 0.25, p2 5trends, a quadratic polynomial regression model was
0.50, p3 5 0.25). Also, band positions 2, 3, 4, 6, 11, andfitted to each monomorphic band position. Using the
12 show significant heterogeneity of variance. Underdata of the four band positions, we performed a joint
model (a), estimated variances often differ by severalanalysis of covariance based on the model yij 5 mi 1
decimal places (see Table 3). Noteworthy examples areb1xj 1 b2x 2

j 1 d1ixj 1 d2ix 2
j 1 aj 1 eij, where yij 5 OD value

bands 6, 9, 11, and 12, where one group has a strikinglyfor the jth lane and the ith band position, xj 5 lane
small mixing proportion, and this is associated with aposition number (centered at mean lane number of
conspicuously small variance. For band positions 1, 5,25), and aj 5 random lane effect with zero mean and
8, 9, 10, and 13, the simultaneous assumptions of homo-variance s2

a. To check for spatial correlation among adja-
geneous variances and of diallelic segregation are tena-cent lanes, we fitted two models for aj : (i) independent
ble according to the likelihood-ratio tests. Note that theeffects aj and (ii) effects correlated according to a

Gaussian model, cov(as, at) 5 s2
a[exp(2d 2

st/r2)], where sample size (n 5 46 plants) is rather small, so the results
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TABLE 1

Analysis of variance for regression of (uncorrected) OD value on lane number

Source d.f. MSa F P value

Band (mi) 3 3.77 1208 ,0.0001
Linear (b1xj) 1 0.0348b 2.79 0.1090
Quadratic (b2x 2

j ) 1 0.315b 25.26 ,0.0001
Band*linear (d1ixj) 3 0.00810 2.60 0.0553
Band*quadratic (d2ix 2

j ) 3 0.00133 0.43 0.7349
Lane (aj) 43 0.0125 3.99 ,0.0001
Error (eij) 172 0.00312

Band, band position; xj, lane position number 2 25.
a Mean squares based on sequential reduction in residual sums of squares due to fitting the term in question

(type I). Fitting sequence is in the order of appearance of terms in the table.
b Tested against the mean square for lane.

of likelihood-ratio tests, which are valid only asymptoti- This compares favorably well with the expected segrega-
tion of 1:2:1. The example shows that the statisticalcally, should just be taken as a rough guide.

As an example for genotyping we use band position method is a useful aid in distinguishing the genotypes.
The correct allocation rate (see appendix) based on1. The data are shown in Table 4. Model (d) was used

to compute posterior probabilities, since this fitted best model (d) was estimated as CAR 5 0.896; i.e., z90% of
the individuals are expected to be classified correctly.according to likelihood-ratio tests (Table 2). The param-

eter estimates were m̂1 5 0.371, m̂2 5 0.793, m̂3 5 1.026, To check tenability of the normality assumption, the
Box-Cox transformation was applied to model (d). Theand ŝ2 5 0.0107. The resulting grouping is indicated

by underscoring in Table 4. Figures 3 and 4 provide a maximum-likelihood estimate of l was 0.32. This is
somewhat removed from l 5 1, which corresponds tographical representation of the fitted normal mixture

model. While the A1A1 genotype is relatively clearly re- the untransformed data. Note, however, that the associ-
ated value of the maximized log-likelihood of 0.876 ismoved from the rest of the data, the distributions for

genotypes A1A2 and A2A2 show considerable overlap. The only marginally different from the value obtained for
the untransformed data (0.143), so there is little evi-figures give an impression of how difficult it would be

to distinguish genotypes A1A2 and A2A2 by eye. Also note dence of nonnormality. The associated likelihood-ratio
test for H0: l 5 1 is not significant at a 5 0.05. Thus,that the abscissa value of the point of intersection among

two component normal curves in Figure 3 is the class
limit for plants/OD values classified as belonging to

TABLE 2either the one or the other component. There were 16
plants genotyped as A1A1, 20 as A1A2, and 10 as A2A2. Log-likelihoods for models a–d

Model: a b c d
No. of parameters: 8 6 6 4

1 3.447 1.107 1.175 0.143
2 15.127 9.487 10.626 8.316
3 21.756 10.106 10.747 9.935
4 34.464 27.504 33.050 26.387
5 29.381 27.274 27.988 25.815
6 20.376 12.805 16.951 12.166
7 51.306 49.599 36.220 34.987
8 32.947 32.573 32.568 31.976
9 19.573 16.574 16.786 16.509
10 27.772 27.710 27.414 27.327
11 30.748 26.872 29.539 24.859
12 14.555 1.337 4.336 1.017
13 17.114 16.905 16.987 16.755

Model identified as appropriate by likelihood-ratio test is
underlined. x2(d.f. 5 2; a 5 0.025) 5 7.38; the critical likeli-
hood difference in the log-likelihood values for comparisonFigure 2.—Plot of OD values (y) for 46 individual plants

at 13 band positions (BD). Some dots represent more than of model a vs. b and a vs. c is 3.69 (in these pairs of models
the difference in the number of parameters is 2).one observation.
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we conclude that fitting a normal mixture to the un- A total of 14 band positions were analyzed. To study
the asymptotic behavior of OD values as the amount oftransformed data is tenable.
PCR product increases, an exponential function of the
form

WHY EXTREME OD VALUES SHOULD BE AVOIDED
y 5 A 2 B exp(Cz) (3)

The OD value observed for a given band is a function
of the PCR product concentration at the band. It may was fitted to the resulting plot of y (OD) vs. mixing

proportions z (z 5 0–1 for A2A2 5 0–100%) by nonlinearhappen that due to the measurement process, the OD
value is bounded upward. In this case, the relationship least squares. Note that under model (3), y approaches

an asymptote from below at y 5 A as z approaches infinitybetween concentration and OD value should be nonlin-
ear, with a horizontal asymptote at ODmax as the concen- (C , 0), so it is well suited to model asymptotic behavior.

Figure 5 shows plots for two band positions, togethertration of PCR products increases (see examples in Fig-
ure 5). It is clear that the information content of OD with the fitted curves. The fit of the exponential func-

tion to these particular data was remarkably good. Withvalues decreases as ODmax is approached. For most mea-
surement devices, the upper limit is well known or is most of the 14 band positions, an asymptote was ap-

proached with increasing z. The estimated asymptoteeasily determined experimentally. Wherever possible,
extreme OD values due to, e.g., overloading of the gel was usually between 1.6 and 2. Inspection of the four

replicates indicated consistent differences among bandor overexposure of the X-ray film should be avoided.
In what follows, we consider an experiment to study the positions in the asymptotic value (results not shown).

The dotted OD curve in Figure 5 rapidly approacheseffect of extreme OD values. Implications for a need to
transform the data are discussed. ODmax, so distinction among A2A2 plants (z 5 1) and

A1A2 plants (z 5 0.5) is difficult; in other words, theWe ran an experiment with material from two sugar
beet plants used in previous linkage mapping projects. information content of the measured OD values is low.

The curvature of the solid OD curve is less pronounced,The two plants were the parents of a cross used to derive
a mapping population (F2) for another study. From and the relationship between y and z is nearly linear,

so the distinction of A2A2 plants (z 5 1) and A1A2 plantsprevious analyses, the two plants were known to exhibit
polymorphisms for a number of band positions. Thus, (z 5 0.5) is more clear cut. The example stresses the

need to tune the system so that all OD values remainthe plants were known to be either A1A1 or A2A2 at a
number of loci. DNA was extracted from both plants. in the medium range of possible values.

If the relationship between y and z is known to beThe extracted DNA was mixed in different proportions
(0–100% A2A2). The mixing proportion can be assumed y 5 f(z), the inverse function z 5 f21(y) can be used to

infer z from y. It can also be conjectured that this inverseto be proportional to the concentration of PCR products
found on the gel. For each mixing proportion we gener- transformation achieves approximate normality if some

of the observed values of y are close to the boundary.ated AFLPs in two replications. For each replication,
two samples of PCR product were subjected to electro- In the case of the exponential function (3), this requires

estimation of the parameters A, B, and C using indepen-phoresis. Thus, there were a total of four analyses per
mixing proportion. dent data from several controls running on the same

TABLE 3

Estimates of normal mixture with unknown mixing proportions and
heterogeneous variances (model a)

Band position m1 m2 m3 s2
1 s2

2 s2
3 p1 p2 p3

1 0.300 0.468 0.866 0.00159 0.00245 0.0256 0.198 0.125 0.677
2 0.242 0.946 1.162 0.00169 0.0201 0.000182 0.196 0.664 0.141
3 0.234 0.840 1.094 0.000836 0.0173 0.0000141 0.239 0.680 0.081
4 0.296 0.899 1.122 0.00125 0.00454 0.000213 0.348 0.479 0.173
5 0.479 1.242 1.437 0.00627 0.00231 0.00207 0.196 0.629 0.175
6 0.643 0.785 1.295 0.324E-07 0.00472 0.0150 0.043 0.177 0.780
7 1.231 1.338 1.477 0.00177 0.000438 0.00207 0.092 0.479 0.385
8 0.376 0.995 1.179 0.00254 0.00159 0.00248 0.283 0.524 0.193
9 0.348 0.501 0.885 0.00214 0.36E-06 0.0156 0.195 0.043 0.761
10 0.349 0.929 1.138 0.00193 0.00232 0.00203 0.283 0.437 0.281
11 0.763 1.098 1.171 0.00396 0.303E-08 0.0118 0.124 0.043 0.833
12 0.437 1.000 1.210 0.0202 0.0208 0.666E-08 0.221 0.714 0.065
13 0.414 1.149 1.382 0.00454 0.00313 0.00428 0.283 0.480 0.238

Sugar beet data.
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TABLE 4

Genotyping for band position 1 (model d)

Posterior probabilities
Inferred

Plant no. yj P(g 5 1|yj ; u) P(g 5 2|yj ; u) P(g 5 3|yj ; u) genotypea

1 0.50352 0.91890 0.08109 0.00001 1
2 1.02187 0.00000 0.14752 0.85248 3
3 1.00067 0.00000 0.21554 0.78446 3
4 0.24993 1.00000 0.00000 0.00000 1
5 0.72965 0.00145 0.98881 0.00975 2
6 0.51983 0.85592 0.14407 0.00001 1
7 0.84046 0.00002 0.90048 0.09950 2
8 0.44155 0.99247 0.00753 0.00000 1
9 1.08310 0.00000 0.04353 0.95647 3
10 1.07510 0.00000 0.05140 0.94860 3
11 1.11756 0.00000 0.02101 0.97899 3
12 0.91048 0.00000 0.66272 0.33728 2
13 0.33385 0.99989 0.00011 0.00000 1
14 1.02769 0.00000 0.13226 0.86774 3
15 0.72197 0.00196 0.98978 0.00825 2
16 0.62192 0.09435 0.90480 0.00085 2
17 0.79758 0.00010 0.95834 0.04156 2
18 0.55370 0.60837 0.39155 0.00008 1
19 0.34027 0.99986 0.00014 0.00000 1
20 0.93731 0.00000 0.52256 0.47744 2
21 0.39479 0.99881 0.00119 0.00000 1
22 0.97274 0.00000 0.33568 0.66432 3
23 0.81114 0.00005 0.94486 0.05508 2
24 0.71932 0.00218 0.99003 0.00779 2
25 1.01909 0.00000 0.15530 0.84470 3
26 0.86932 0.00000 0.82824 0.17176 2
27 0.64001 0.04843 0.95025 0.00133 2
28 0.44115 0.99259 0.00741 0.00000 1
29 0.94275 0.00000 0.49287 0.50713 3
30 0.79481 0.00011 0.96067 0.03922 2
31 0.74733 0.00072 0.98501 0.01427 2
32 0.47030 0.97686 0.02314 0.00000 1
33 0.74373 0.00083 0.98596 0.01321 2
34 0.87761 0.00000 0.80095 0.19904 2
35 0.88196 0.00000 0.78542 0.21458 2
36 0.70676 0.00359 0.99048 0.00592 2
37 0.86202 0.00001 0.84973 0.15026 2
38 1.23773 0.00000 0.00156 0.99844 3
39 0.29053 0.99998 0.00002 0.00000 1
40 0.27762 0.99999 0.00001 0.00000 1
41 0.25516 1.00000 0.00000 0.00000 1
42 0.32316 0.99993 0.00007 0.00000 1
43 0.26162 0.99999 0.00001 0.00000 1
44 0.80053 0.00008 0.95571 0.04420 2
45 0.86990 0.00000 0.82643 0.17357 2
46 0.34973 0.99980 0.00020 0.00000 1

Most probable genotypes are underscored.
a 1, A1A1; 2, A1A2; 3, A2A2.

gel as the genotypes to be scored, which is not usually if the transformed data are more nearly normal than
are the untransformed data. Also, it is not clear whetherfeasible for routine work. The inverse of function (3)

is linear in log(A 2 y), where A 5 ODmax. This suggests ODmax is constant over band positions. We considered
Box-Cox transformations of (A 2 y) to achieve normalitythat we may use the transformation log(ODmax 2 y),

providing ODmax is known. This transformation is only [note that log(A 2 y) is a special case]. In the case at
hand, we observed ODmax ≈ 2. Box-Cox transformationuseful for further analysis by normal mixtures, however,
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Figure 5.—Plot of OD value (y) vs. proportion of A2A2Figure 3.—Fitted normal mixture for band position 1
(z) for two band positions. Dashed curve, y 5 1.60 2 1.16[model d; component normal distributions, weighted by P(g 5
exp(23.63z); solid curve, y 5 2.15 2 1.67 exp(20.80z).i)]. Classification of OD values: A1A1, solid circles; A1A2, open

circles; A2A2, solid squares. Component distribution is given
by pi φ(yj|mi, si).

mated. Imposing the constraint m2 5 (m1 1 m3)/2 is
expected to avoid or largely decrease the likelihood of

of (2 2 y) for the data of band position 1 yielded an obtaining unrealistic fits, e.g., a mixture in which two
estimate of l 5 1.45 with a log-likelihood value of 0.281. of the three component normal distributions have very
Again, since the likelihood is only slightly different from similar means but widely different variances, a common
that obtained for the untransformed data, this result is problem when fitting normal mixtures. Again, however,
not indicative of nonnormality of (2 2 y) and hence of this requires knowledge of the relationship y 5 f(z),
y. Thus, the untransformed data were used for analysis. which is not usually available. Perusal of our data indi-

It can be conjectured that the expected concentration cates that the simple transformation z 5 log(2 2 y)
of PCR products (z) for the heterozygous plants is inter- does not generally lead to data commensurate with the
mediate between the expected concentration of the two constraint m2 5 (m1 1 m3)/2. This issue will be pursued
homozygous genotypes. Thus, we may contemplate the further in future work.
constraint m2 5 (m1 1 m3)/2. This suggests that z values
can be analyzed by a normal mixture with only two
parameters for the means. Note that for our analyses DISCUSSION
of OD values (y), three independent means were esti-

The method proposed here is closely related to dis-
criminant analysis (McLachlan and Basford 1988).
The main difference lies in the fact that discriminant
analysis uses a training sample with known individual
group memberships, while for our problem, the group
membership (genotype) of individuals (plants) in the
training sample is not known.

We have considered four different versions of a nor-
mal mixture, depending on whether or not variances
are homogeneous and whether or not the mixing pro-
portions are known a priori. Each of these models may
be useful in a given situation. With the sugar beet data,
a segregation of 1:2:1 was to be expected, but apparently
some loci did not fit this expectation well. It is a useful
feature of the method presented here that the null
hypothesis of a specific segregation rate can be tested.
From the statistical point of view, parsimonious models
are preferable to complicated models. This may even
be true when the more complicated model is moreFigure 4.—Fitted normal mixture for band position 1

(model d). realistic, especially when there are only limited data to
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estimate the parameters. If the segregation ratio is tion. It is the intermediate cases where it has greatest
merit.known a priori, the known proportions pi should be used

If OD values are bounded upward due to the measure-rather than estimated.
ment process, it is advisable to tune the system in suchConversely, if estimation pi is of primary interest, large
a way that measured OD values are not close to thesamples will be needed, certainly more than n 5 46
bound. With OD values close to the bound, separationindividuals as in our study. To obtain an idea of the
of genotypes is likely to be poor. When one P(g 5 i) isnecessary sample size, consider the case where the geno-
small and the mean of the corresponding componenttype of individual plants can be identified without error.
is similar to that of another component g 5 i9, it canThen we are in a multinomial sampling situation. The
happen that none of the individuals is classified intostandard error of an estimate of p under multinomial
the genotype class g 5 i. The likelihood of this problemsampling is SE 5 √p(1 2 p)/n, where n is the sample
occurring increases when the bulk of OD values is con-size. For example, if p 5 0.5, we need a sample size of
centrated near a boundary. Also, nonnormality is likelyn 5 100 to achieve a standard error of 0.05. A 95%
to be a problem, and transformation of the data mayconfidence limit around the estimate will then have a
be necessary. The measurement process may cause awidth of z0.2, implying a rather poor estimate. The
large number of values to take the boundary value (e.g.,situation becomes worse when genotypes cannot be
OD 5 2). In this case, a mixture distribution with trun-identified without error, as in our situation.
cated component distributions (e.g., truncated normals)A model with common variance tends to yield more
may be useful, and fitting of these by the EM algorithmstable results. The assumption of homogeneous vari-
should be relatively straightforward. It is stressed again,ances can be tested. Especially with limited data, it often
however, that such extreme measurements should behappens that one of the fitted variances is very small
avoided, if possible, since the information content isrelative to the others. There is a danger that, e.g., a group
limited.of only a few observations is erroneously recognized as

With our procedure, estimation of parameters anda separate genotype class, with a very small variance.
genotyping are based on the same data set. Therefore,The likelihood of normal mixtures tends to have multi-
estimates of a posteriori probabilities tend to be too opti-

ple local maxima. Also, when the variances are allowed
mistic and should be interpreted with caution. Never-

to vary among groups, the likelihood is unbounded theless, using the complete data for both estimation and
above (Kiefer and Wolfowitz 1956). To locate the genotyping will be more efficient than data splitting. To
maximum-likelihood solution, it is necessary to try sev- have the same number of genotyped individuals, the
eral starting values. Day (1969) noted that “spurious sample size would have to be increased if estimation
maximizers of the likelihood, corresponding to parame- were to be based on independent data. This added cost
ter points having some component standard deviations is seldom justified in practice.
very small relative to others, are generated by any small In summary, it is recommended to use as simple a
number of sample points grouped sufficiently close to- model as possible for genotyping, preferably one with
gether.” These observations suggest that models with homogeneous variances and with known genotype fre-
homogeneous variance yield more stable results. Day quencies. Our experience is that this type of model
(1969) recommended the use of maximum likelihood often works well and poses no numerical difficulties.
(ML) when it is known that the variances for the compo- Analyzing the whole data set in one step is preferable
nent densities are equal. Lynch and Walsh (1997) state to data splitting.
that due to the practical difficulties encountered when

We thank two referees for helpful comments.
fitting mixtures with heterogeneous variances of the
components, it is often preferable to set all variances
equal to each other.
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Simplifications of the fitting procedure are effected

in two cases:

1. The mixing proportions pi 5 P(g 5 i) are known a
APPENDIX priori. In this case, pi are fixed and the updating of

pi in the M-step can be omitted.Estimating the model: The most frequently used
2. The variances of the three components are equal.method of estimation is that of ML. The most popular

In this case the common standard deviation (squarealgorithm for maximizing the likelihood of mixtures
root of the common variance) is estimated byis the EM algorithm of Dempster et al. (1977). This

algorithm, as applied to our model, is briefly sketched.
For details, see, e.g., McLachlan and Basford (1988) s(h11) 5 !oG

i51on
j51P(g 5 i|yj;u(h))(yj 2 m(h11)

i )2

oG
i51on

j51P(g 5 i|yj;u(h))
.

and McLachlan and Krishnan (1997). The basic idea
(A3)of the EM algorithm is to regard the observed data y as

incomplete. The missing data pertain to the unknown It should be remarked that the likelihood for normal
membership of the individuals to one of the genotype mixtures with heterogeneous variances tends to have
classes. It is convenient to introduce a random variable multiple local maxima, so several sets of starting values
zij with zij 5 1 if for the jth plant g 5 i and zij 5 0 need to be tried. Also, if one of the means is set equal
otherwise. The EM algorithm regards zij (i 5 1, 2, 3; j 5 to any of the observations and the corresponding stand-
1, . . . , n) as missing. The complete data log-likelihood ard deviation approaches zero, the likelihood is not
is bounded above, and therefore, strictly speaking, the

global maximum does not exist (Kiefer and Wolfo-
log L(u) 5 o

G

i51
o
n

j51

zij log{piφ(yj|mi,si)}. witz 1956). Several strategies to cope with these prob-
lems (e.g., that of Hathaway 1985) are implemented

The EM algorithm alternates iteratively between two in the various packages for fitting normal mixtures (for
steps, the E-step (for expectation) and the M-step (for a review see Haughton 1997). We used the EMMIX
maximization). The E-step maximizes the conditional program (Peel and McLachlan 1998) to fit models
expectation of log L(u), given the observed data y 5 (a) and (b). For fitting models (c) and (d), the EM
(y1, . . . , yn)9, using the current fit u(h) for u; i.e., it algorithm was programmed using the SAS System.
maximizes Correct allocation rate: The correct allocation rate is

the expected proportion of correctly classified individu-Q(u; u(h)) 5 Eu(h){logL(u)|y}.
als. To compute this rate, we need the classification
limits yL and yR so that individuals are classified as follows:Since log L(u) is linear in the unobserved zij, the E-

step is performed by replacing zij with its conditional Classification Condition for OD value y
expectation given yj, using the current estimate u(h) for

g 5 1 y , yLu. Thus, zij is replaced by
g 5 2 yL # y # yR

Eu(h)(zij|yj) 5 P(g 5 i|yj; u(h)), (A1) g 5 3 yR , y

where P(g 5 i|yj; u) is given in (2). The M-step updates The classification limit yL is the point of intersection
between p1φ(yj|m1, s1) 5 p2φ(yj|m2, s2) for m1 , yL , m2.u(h) with u(h11), where u(h11) maximizes Q(u; u(h)). Thus,
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The classification limit yR is the point of intersection
CAR1 5 F1yL 2 m1

s1
2between p2φ(yj|m2, s2) 5 p3φ(yj|m3, s3) for m2 , yR , m3

(see Figure 3). For homogeneous (heterogeneous) si,
yL and yR are the solution of a linear (quadratic) equation CAR2 5 F1yR 2 m2

s2
2 2 F1yL 2 m2

s2
2

in yL and yR, respectively. For example, when si is homo-
geneous,

CAR3 5 1 2 F1yR 2 m3

s3
2 . (A6)

yL 5
s2log(p1/p2)

m2 2 m1

1
m2 1 m1

2
(A4)

The overall correct classification rate is

yR 5
s2log(p2/p3)

m3 2 m2

1
m3 1 m2

2
. (A5) CAR 5 o

g

i51

piCARi. (A7)

Let F(·) denote the cumulative distribution function We estimate CAR by plugging in sample estimates for
of the standard normal and CARi the correct allocation parameters. This approach provides a rough assessment

of the true CAR.rate for the ith component. Then


