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ABSTRACT
A new statistic for detecting genetic differentiation of subpopulations is described. The statistic can be

calculated when genetic data are collected on individuals sampled from two or more localities. It is assumed
that haplotypic data are obtained, either in the form of DNA sequences or data on many tightly linked
markers. Using a symmetric island model, and assuming an infinite-sites model of mutation, it is found
that the new statistic is as powerful or more powerful than previously proposed statistics for a wide range
of parameter values.

DETECTING genetic differentiation of subpopula- appear to be best, but, for high diversity samples, the
tions is an important problem in several areas of sequence-based statistics should be used. Unfortunately,

population biology, including areas of evolutionary ge- there are no absolute criteria known for when the chi-
netics, ecology, and conservation biology. When data square statistic should be employed and when the se-
are obtained from two or more localities in the form quence-based statistics should be used. It would be desir-
of allele frequencies at one or more unlinked loci, stan- able to have a single statistic that performs well at all
dard chi-square tests (or likelihood-ratio tests) of homo- levels of diversity. In this note, a new sequence-based
geneity are appropriate (Workman and Niswander statistic is introduced that appears to have this property.
1970) and can be quite powerful for detecting differenti- Under a symmetric two-island model with mutations
ation. Even when the expected counts in some cells are occurring according to the infinite-sites model, this new
small, permutation methods can be utilized to give good statistic is found to be as powerful or more powerful than
results (Lewontin and Felsenstein 1965; Roff and other statistics that have been proposed for detecting
Bentzen 1989). If the data consist of DNA sequences, genetic differentiation. This superior power is found
or haplotyping at two or more linked sites, the same over a wide range of haplotype diversity.
methods can be employed, if distinct sequences or hap- The new statistic, referred to as the nearest-neighbor
lotypes are treated as alleles. However, if the haplotype statistic (Snn), is a measure of how often the “nearest
diversity is very high and the sample sizes are small, neighbors” (in sequence space) of sequences are from
most haplotypes may appear in the sample only once the same locality in geographic space. This is made
and the methods based on haplotype frequencies will more precise below. The statistic is applicable when
have low power and, in extreme cases, can become com- genetic data are collected on individuals sampled from
pletely useless. Using these methods, longer sequences, two or more localities. It is assumed that haplotypic data
which must contain more information, can result in are obtained, either in the form of DNA sequences or
lower power than short sequences. This problem is most data on many tightly linked markers.
severe with small samples and long sequences. To han- To define Snn, it is helpful to first establish some nota-
dle these kinds of data, Hudson et al. (1992) proposed tion. For concreteness, suppose the data collected are
the use of sequence-based statistics in the permutation mitochondrial sequences obtained from n individuals,
tests. These sequence-based statistics utilize information some of which are from locality 1 and some from locality
on the numbers of differences between haplotypes and 2. (The statistic automatically generalizes to more locali-
not just the frequencies of the haplotypes. The particu- ties.) We assume all sequences are the same length with
lar sequence-based statistics considered by Hudson et no gaps. Arbitrarily number the individuals from 1 to
al. (1992) were shown to be more powerful than the n, and denote the sequence of individual i by si. Let dij
chi-square statistic when haplotype diversity was very equal the number of nucleotide sites at which si differs
high, but were found to be relatively weak when the from sj. Focus on a particular individual, say, individual
diversity was low. Thus, for low diversity samples, the k, and let mk denote the minimum of {dkj}, j 5 1, 2, . . . ,
chi-square statistic (or a likelihood-ratio statistic) would k 2 1, k 1 1, . . . , n. Thus, mk is the distance to the

nearest neighbor(s) of individual k. (Neighbor here
reflects closeness in sequence space, not in geographic
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TABLE 1

Power of tests (cases examined by Hudson et al. 1992)

Power

n1 n2 4Nu 4Nc 4Nm K S* Z* HS x2 Snn

35 5 5.0 0.0 2.0 0.58 0.62 0.62 0.78 0.77
30 10 0.79 0.83 0.83 0.91 0.94
25 15 0.87 0.90 0.90 0.96 0.98
20 20 0.88 0.92 0.91 0.97 0.98
10 10 5.0 0.32 0.34 0.32 0.36 0.42

20.0 0.46 0.44 0.21 0.21 0.46
15 15 0.0 0.47 0.52 0.52 0.63 0.66

20.0 0.70 0.66 0.54 0.60 0.74
25 25 0.0 1.0 0.99 1.00 0.99 1.00 1.00

20.0 1.00 1.00 0.99 1.00 1.00
0.0 2.0 0.94 0.96 0.95 0.99 1.00

20.0 1.00 0.99 0.98 1.00 1.00
0.0 5.0 0.69 0.75 0.79 0.91 0.92

20.0 0.90 0.88 0.87 0.95 0.96
0.0 10.0 0.41 0.46 0.53 0.68 0.69

20.0 0.68 0.63 0.70 0.81 0.81
50 50 0.0 5.0 0.91 0.95 0.97 1.00 1.00

20.0 1.00 0.99 1.00 1.00 1.00
0.0 10.0 0.71 0.78 0.85 0.96 0.97

20.0 0.95 0.93 0.97 1.00 1.00
25 25 0.156 0.0 5.0 0.17 0.17 0.16 0.19 0.22

0.624 0.18 0.18 0.17 0.19 0.23
0.313 0.0 0.30 0.29 0.28 0.33 0.37

1.25 0.31 0.30 0.30 0.35 0.38
0.625 0.0 0.41 0.41 0.40 0.50 0.53

2.5 0.46 0.46 0.44 0.56 0.57
1.25 0.0 0.53 0.54 0.53 0.67 0.69

5.0 0.62 0.64 0.64 0.78 0.79
2.5 0.0 0.61 0.66 0.68 0.83 0.84

10.0 0.78 0.77 0.79 0.91 0.91
5.0 0.0 0.69 0.75 0.79 0.91 0.92

20.0 0.90 0.88 0.87 0.95 0.96
10.0 0.0 0.76 0.83 0.87 0.95 0.96

40.0 0.98 0.96 0.85 0.90 0.98
15.0 0.0 0.78 0.86 0.88 0.96 0.97

60.0 0.99 0.98 0.74 0.76 0.99

For each row of this table, 4000 independent samples were generated under a symmetric two-island model.
For each of these samples, 4000 random permutations were carried out to estimate the P value of each of the
statistics for the sample. n1 and n2 are the sample sizes from locality one and locality two, respectively. N is the
population size of each subpopulation. u is the neutral mutation rate per generation. c is the per generation
recombination rate between the ends of the segment sequenced. m is the migration fraction per generation.
K S*, Z*, and HS are the sequence-based statistics considered by Hudson et al. (1992). x2 is the chi-square
statistic and Snn is the nearest-neighbor statistic. The power estimates are the proportion of samples with
estimated P value ,0.05.

of nearest neighbors of individual k. And let Wk equal nearest neighbor is from a different locality. The statistic
Snn is simply the average of the Xk:the number of individuals with dkj 5 mk, that are from

the same locality as individual k. In other words, Wk is
Snn 5 o

n

j51

Xj/n.the number of nearest neighbors to individual k that
are from the same locality as individual k. Now define
Xk 5 Wk/Tk. Thus, Xk is the fraction of nearest neighbors Snn is a measure of how often the nearest neighbors of
of individual k that are from the same locality as individ- sequences are found in the same locality. If a population
ual k. Thus, if individual k has only a single nearest is strongly structured, one expects to find the nearest
neighbor, then Xk is one if the nearest neighbor is from neighbor of a sequence in the same locality. Thus, Snn

is expected to be near one when the populations at thethe same locality as individual k, and Xk is zero if the
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TABLE 2

Power of tests in very small sample sizes

Power

n1 n2 4Nu 4Nc 4Nm SS Het K S* Z* HS x2 Snn

6 6 0.75 0.0 2.0 5.0 0.62 0.20 0.20 0.18 0.18 0.28
1.0 6.8 0.69 0.23 0.24 0.21 0.21 0.30
2.0 13.6 0.82 0.33 0.33 0.26 0.27 0.36
4.0 27.0 0.90 0.39 0.40 0.24 0.24 0.40

10.0 67.4 0.96 0.43 0.43 0.09 0.09 0.43
0.75 0.75 5.1 0.65 0.19 0.19 0.18 0.17 0.26
1.00 1.0 6.7 0.72 0.25 0.25 0.22 0.22 0.30
2.0 2.0 13.7 0.85 0.36 0.36 0.27 0.27 0.38
4.0 4.0 27.2 0.93 0.43 0.42 0.18 0.18 0.41

10.0 10.0 67.6 0.97 0.53 0.51 0.03 0.03 0.44
10 10 0.75 0.0 5.0 5.5 0.61 0.18 0.18 0.17 0.20 0.24

1.0 7.5 0.68 0.22 0.23 0.21 0.25 0.27
2.0 15.0 0.81 0.26 0.27 0.24 0.30 0.34
4.0 29.7 0.90 0.31 0.34 0.30 0.35 0.40

10.0 74.5 0.95 0.37 0.40 0.30 0.32 0.46
0.75 0.75 5.6 0.63 0.19 0.19 0.17 0.21 0.24
1.0 1.0 7.47 0.71 0.23 0.23 0.22 0.26 0.28
2.0 2.0 14.8 0.84 0.30 0.31 0.29 0.33 0.37
4.0 4.0 29.5 0.92 0.35 0.35 0.30 0.33 0.41

10.0 10.0 74.1 0.97 0.46 0.42 0.20 0.20 0.45

Simulations carried out as for Table 1. SS is the mean number of polymorphic sites in the samples. Het is
the average haplotype diversity of the samples. Other quantities are as defined in Table 1.

two localities are highly differentiated and near one- Z*, and HS were the most powerful sequence-based sta-
tistics found by Hudson et al. (1992).half when the populations at the two localities are part

of the same panmictic population (and sample sizes In Table 1, we find that Snn has equal or higher power
than the x2 statistic in all cases except one. (The excep-from the two localities are equal). To assess whether Snn

is significantly large for a particular sample (indicating tion is the first case in Table 1 in which the power of
Snn was 0.77 while the power of x2 was 0.78, a very smallthat the populations at the two localities are differenti-

ated), the usual permutation scheme is applied to esti- difference.) For most cases in this table, Snn has equal
or only slightly higher power than the test based on x2.mate a P value. Specifically, a permutation consists of

randomly reassigning sequences to localities, so that the However, in cases with small sample sizes (n1 5 n2 5 10
or 15), especially with recombination, there is substan-number of sequences from each locality is always the

same as in the original sample. The proportion of per- tially higher power with the Snn statistic. (In the case
with n1 5 n2 5 10 and 4Nc 5 20, the power with Snn ismuted samples with Snn larger than or equal to the ob-

served value is the estimated P value. 0.46, while the power with x2 is 0.21.) These results
motivated us to look at more cases with small sampleTo assess the power of permutation tests using Snn to

detect geographic differentiation, the same symmetric size, which are shown in Table 2.
For samples of size 6 from each locality, the Snn statistictwo-island model considered by Hudson et al. (1992)

was used. The parameters of this model are N, the island is substantially more powerful than the x2 statistic at all
levels of variation examined (see Table 2). For samplespopulation size, u, the neutral mutation rate, c, the

recombination rate between the ends of the segment of size 10 from each locality, Snn is only slightly more
powerful than x2 at low levels of variation, but at highersequenced, and m, the migration fraction per genera-

tion. An infinite-sites model was assumed (and thus no levels of variation, Snn has very much higher power than
x2. In contrast to the chi-square statistic, higher muta-recurrent mutations occur in these simulations.) The

results of these simulations are shown in Tables 1 and tion rates (longer sequences) always lead to more power
using the nearest-neighbor statistic, which accords with2. Table 1 shows the results for all parameter values and

sample sizes considered by Hudson et al. (1992). In the intuition that longer sequences should provide
more information. With low to moderate levels of varia-Table 2, more results for small sample sizes are given.

For comparison, the power of the permutation tests tion, the Snn statistic is more powerful than the sequence-
based statistics of Hudson et al. However, with the smallbased on the chi-square statistic (x2) and on K S*, Z*,

and HS are also shown in the tables. The statistics K S*, sample sizes considered in Table 2, it appears that K S*
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and Z* may have slightly higher power than Snn when Source code (in the language C) for a program that
carries out the test on Unix or Linux machines is inlevels of variation are very high. (See the case n1 5 n2 5

6 and 4Nu 5 4Nc 5 10.) a file, snn.c, available at http://home.uchicago.edu/
Summarizing, we find that among the statistics tested, zrhudson1.

Snn is the most powerful statistic, or nearly as powerful
as the best statistic, under all conditions examined. It
should be emphasized, however, that all assessments
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