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ABSTRACT
Variance component analysis of quantitative trait loci (QTL) is an important strategy of genetic mapping

for complex traits in humans. The method is robust because it can handle an arbitrary number of alleles
with arbitrary modes of gene actions. The variance component method is usually implemented using the
proportion of alleles with identity-by-descent (IBD) shared by relatives. As a result, information about
marker linkage phases in the parents is not required. The method has been studied extensively under
either the maximum-likelihood framework or the sib-pair regression paradigm. However, virtually all
investigations are limited to normally distributed traits under a single QTL model. In this study, we develop
a Bayes method to map multiple QTL. We also extend the Bayesian mapping procedure to identify QTL
responsible for the variation of complex binary diseases in humans under a threshold model. The method
can also treat the number of QTL as a parameter and infer its posterior distribution. We use the reversible
jump Markov chain Monte Carlo method to infer the posterior distributions of parameters of interest.
The Bayesian mapping procedure ends with an estimation of the joint posterior distribution of the number
of QTL and the locations and variances of the identified QTL. Utilities of the method are demonstrated
using a simulated population consisting of multiple full-sib families.

THE identity-by-descent (IBD)-based variance com- a single QTL model. When multiple QTL exist in the
same chromosome, a proportion of effects of QTL notponent analysis is a powerful statistical method for
included in the model is confounded with the effect ofquantitative trait loci (QTL) mapping in outbred popu-
the QTL fitted in the model and the remaining propor-lations, such as humans. This method requires fewer
tion is absorbed into the polygenic component. As aassumptions than other methods with regard to the
consequence, the single-QTL model can lead to biasedgenetic model underlying the expression of the trait in
estimates of QTL positions and effects because of thequestion. For instance, knowledge of the actual genetic
interference between QTL located on the same chromo-mechanism of the trait, such as the number of loci, the
some (e.g., Haley and Knott 1992; Grignola et al.number of alleles per locus, the allelic frequencies, or
1996). In theory, effects of multiple QTL can be simulta-the marker linkage phases, is not absolutely required
neously fitted in the same model, but this can be difficult(Goldgar 1990; Schork 1993; Amos 1994; Fulker and
to implement in practice because even the number ofCardon 1994; Xu and Atchley 1995; Almasy and
QTL is unknown. For line-crossing experiments, JansenBlangero 1998). Conventionally, the method decom-
(1993) and Zeng (1994) developed the idea of compos-poses the overall genetic variance into several variance
ite interval mapping in which selected markers in un-components, one being due to the segregation of a
tested regions are fitted in the model as cofactors toputative QTL at the position being tested and the other
absorb effects of background QTL. Recently, Kao et al.due to the effect of a polygenic term (the collective
(1999) developed a multiple interval mapping (MIM)effects of all other quantitative loci affecting the trait).
approach, designed particularly for multiple QTL inThe key to separating the contribution of a putative
line crosses. Yet, extension of the MIM to the IBD-basedQTL from that of the polygene is the differentiated
variance component approach under the maximum-proportion of IBD alleles shared by relatives at the QTL
likelihood framework is not straightforward.and the polygene. The IBD proportion varies from one

Almost all methods of QTL mapping under the IBD-locus to another, which provides the capability of locat-
based variance component model are developed foring QTL on the chromosome.
normally distributed traits. However, many complex hu-Existing methods of QTL mapping under the IBD-
man diseases, such as breast cancer and type I diabetes,based variance component model are developed under
are dichotomous or binary. Although these traits have a
simple qualitatively expressed phenotype, their genetic
architectures are generally complex, involving multiple
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a consequence, these traits are usually called complex lowing the same procedure as described for full-sib fami-
binary diseases and are commonly formulated under a lies.
threshold model. This model assumes a latent continu- Let y represent an n 3 1 vector for the observed
ous variable (called the liability) controlling the expres- phenotypic values. When the observed phenotype is
sion of the binary trait (Lynch and Walsh 1998). Meth- controlled by multiple genes acting independently, y
ods of QTL mapping under the threshold model have can be described by the linear model
been developed in line crosses (Hackett and Weller
1995; Visscher et al. 1996; Xu and Atchley 1996; Rebai y 5 Xb 1 o

l

j51

aj 1 o
l

j51

dj 1 g 1 e, (1)
1997; Rao and Xu 1998). Yi and Xu (1999a,b) recently
developed a random model approach to directly esti- with E(aj) 5 E(dj) 5 E(g) 5 E(e) 5 0, Var(aj) 5 Pj s

2
aj ,mate and test the QTL variances in outbred populations. Var(dj) 5 Dj s

2
dj , Var(g) 5 As2

A, and Var(e) 5 Is2
e, where

Under a single-QTL model, Duggirala et al. (1997)
b is a p 3 1 vector of covariate effects (fixed effects,investigated the IBD-based variance component method
including the overall mean), X is an n 3 p design matrixusing the Mendell-Elston algorithm (Mendell and Els-
relating b to y, l is the number of QTL on the chromo-ton 1974) to approximate the likelihood function.
some(s) (or chromosomal segments) of interest, g is anBayes methods of QTL mapping have been developed,
n 3 1 vector of the additive effects of the polygenein particular, for detection of multiple QTL (Satago-
(collective additive effects of all QTL residing on otherpan and Yandell 1996; Satagopan et al. 1996; Uimari
chromosomes), e is an n 3 1 vector of residual errors, ajand Hoeschele 1997; Heath 1997; Sillanpää and
and dj are n 3 1 vectors for the additive and dominanceArjas 1998, 1999; Stephens and Fisch 1998). In Bayes-
effects of the genotypes at the jth QTL, respectively,ian analysis, Markov chain Monte Carlo (MCMC) meth-
Pj 5 (pjii9)n3n is an IBD matrix with element pjii9 beingods are commonly used to evaluate complex integrals
the proportion of genes IBD shared by individuals i andto summarize posterior distributions of all unknowns.
i9 at the j th QTL, Dj 5 (djii9)n3n is a matrix with elementA recent development in MCMC methodology is the
djii9 indicating whether individuals i and i9 share two IBDreversible jump algorithm, an extension of the Metropo-
alleles at the jth QTL, s2

aj and s2
dj are the additive andlis-Hastings sampler, which permits posterior samples

dominance variances of the jth QTL, respectively, A 5to be collected from posterior distributions with varying
(Aii9)n3n is the additive genetic relationship matrix withdimensions (Green 1995). Bayes methods, implemented
element Aii9 being twice the coancestry coefficient be-via reversible jump MCMC, can yield posterior densities
tween offspring i and i9 (not conditional on markerfor not only the QTL locations and the corresponding
information), s2

A is the additive variance of the polygeneeffects of a specified number of QTL but also the QTL
(see Table 1), I is an identity matrix, and s2

e is thenumber itself. The reversible jump MCMC has been
residual variance. Note that the dominance effect of theused to map QTL for normally distributed traits in both
polygene is assumed to be absent in model (1).line-crossing experiments (Satagopan and Yandell

The expectation and variance-covariance matrix of y1996; Sillanpää and Arjas 1998, 1999; Stephens and
areFisch 1998) and complex pedigrees (Heath 1997;

Uimari and Hoeschele 1997).
E(y) 5 Xb (2)In this article, we develop a Bayes method to map

QTL for both normally distributed and binary traits and
under the IBD-based variance component model. We
treat the additive and dominance effects of QTL as Var(y) 5 V 5 o

l

j51

Pj s2
aj 1 o

l

j51

Dj s2
dj 1 As2

A 1 Is2
e, (3)

random variables so that their variances are directly
estimated. The proposed method is implemented via

respectively. When families are independent, there arethe reversible jump MCMC, where we allow simultane-
no covariances between effects of members from differ-ous estimation of the number of QTL and the locations
ent families. Therefore, the matrices Pj, Dj, and A areand variances of the identified QTL.
all blockdiagonal. If individuals i and i9 are full sibs, pjii9

takes one of the four states {(0 1 0)/2, (0 1 1)/2, (1 1
THE GENETIC MODEL 0)/2, (1 1 1)/2}. If i and i9 are from different families,

then pjii9 5 0. The four states show that individuals iLinear model for normally distributed traits: Con-
and i9 share no alleles, share the paternal but not thesider n individuals in a population of interest. The popu-
maternal alleles, share the maternal but not the paternallation is assumed to consist of many independent fami-
alleles, and share both alleles identity-by-descent, re-lies. For convenience of presentation, only full-sib
spectively. Similarly, djii9 takes one of the two values {1,families are considered with phenotypic values of the
0}. If individuals i and i9 share both alleles IBD, djii9 5parents excluded from the data. Parents of these full-
1; otherwise, djii9 5 0. Note that pjii9 and djii9 vary fromsib families are randomly sampled from a large outbred
sib pair to sib pair but element Aii9 of matrix A is apopulation in Hardy-Weinberg and linkage equilib-

rium. Extended pedigree structures can be handled fol- constant across all sib pairs. Because of this, s2
aj, s2

dj, and
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TABLE 1

Description of symbols used in the text

Symbol Description

b Vector of covariate effects
aj, dj Vectors of the additive and dominance effects of the genotypes at jth QTL
s2

aj, s2
dj Additive and dominance variances of jth QTL

g, s2
A Vector of additive effects of polygene, polygenic additive variance

Pj 5 (pjii9)n3n pjii9 being the proportion of genes IBD shared by individuals i and i9 at the jth QTL
Dj 5 (djii9)n3n djii9 indicating whether individuals i and i9 share two IBD alleles at the jth QTL
A Additive genetic relationship matrix

s2
A can be separated, which is the theoretical basis of Pr(pq

ii9|IM) 5
Pr(pq

ii9)Pr(IM|pq
ii9)

opq
ii9
Pr(pq

ii9)Pr(IM|pq
ii9)

,
the variance component model of QTL mapping.

Multipoint inference of the IBD matrices Pj and Dj:
where Pr(pq

ii9) is the prior distribution of the IBD state,In linkage analysis, the IBD matrix of a QTL is not
equal to 1⁄4 for each of the four possible IBD states. Afterobservable because the QTL genotype cannot be seen.
some algebraic manipulations, we haveIn full-sib families without inbreeding, the diagonal ele-

ments of the matrices Pj and Dj are unity, but the off-
Pr1IM|pq

ii9 5
0 1 0

2 2 5 1TD1T12D2 · · · Tkq D(00)Tqk11 · · · DM21TM21M1,diagonal elements vary depending on how many IBD
alleles are shared by the two siblings. Thus the rationale
is to infer the distributions of IBD variables pjii9 and djii9 Pr1IM|pq

ii9 5
0 1 1

2 2 5 1TD1T12D2 · · · Tkq D(01)Tqk11 · · · DM21TM21M1,
using markers in the same linkage group. In outbred
populations, markers may be partially informative, and

Pr1IM|pq
ii9 5

1 1 0
2 2 5 1TD1T12D2 · · · Tkq D(10)Tqk11 · · · DM21TM21M1,thus it is important to use a multipoint method to extract

the maximum amount of marker information. A num-
andber of multipoint methods have been proposed to calcu-

late the distributions of IBD (Fulker et al. 1995; Krug-
Pr1IM|pq

ii9 5
1 1 1

2 2 5 1TD1T12D2 · · · Tkq D(11)Tqk11 · · · DM21TM21M1,
lyak and Lander 1995; Almasy and Blangero 1998;
Xu and Gessler 1998). The method of Kruglyak and

where 1 5 (1 1 1 1)T, Dk 5 diag(pk
00 pk

01 pk
10 pk

11), D(00) 5Lander (1995) is the most efficient with regard to ex-
diag(0 0 0 1), D(01) 5 diag(0 0 1 0), D(10) 5 diag(0 1 0 0),tracting the maximum amount of information from
D(11) 5 diag(1 0 0 0), and Tkl is the transition matrixmarkers. However, their method is also the most inten-
between pk

ii9 and pl
ii9,sive in terms of computational time and complexity.

The method of Fulker et al. (1995), on the other hand,
is an approximate method, but it is a much simpler

Tkl 5 1
C2

kl Ckl(1 2 Ckl) (1 2 Ckl)Ckl (1 2 Ckl)2

Ckl(1 2 Ckl) C2
kl (1 2 Ckl)2 (1 2 Ckl)Ckl

(1 2 Ckl)Ckl (1 2 Ckl)2 C2
kl Ckl(1 2 Ckl)

(1 2 Ckl)2 (1 2 Ckl)Ckl Ckl(1 2 Ckl) C2
kl

2 ,and faster algorithm. The method of Xu and Gessler
(1998) is a compromise between the two. The multi-
point method used in this study is a modified version
of Xu and Gessler (1998) and is described below. where Ckl 5 r 2

kl 1 (1 2 rkl)2 and rkl is the recombination
Consider M ordered markers on the chromosome of fraction between loci k and l.

interest. If a marker is fully informative, the IBD states Since dq
ii9 5 1 if pq

ii9 5 1, and dq
ii9 5 0 otherwise, at the

of the marker shared by sibs are observed. Otherwise, time when the probability distribution of pq
ii9 is calcu-

the probabilities of IBD states of a marker can be in- lated, that of dq
ii9 is also generated as a by-product. The

ferred based on the observed genotypes of this marker conditional expectations of pq
ii9 and dq

ii9 are calculated by
(Xu and Gessler 1998). Denote the probabilities of
IBD states of marker locus k by pk

00, pk
01, pk

10, pk
11, respec-

E(pq
ii9|IM) 5 Pr1pq

ii9 5
111

2 uIM2tively, for the four states. Assume that the QTL is located
between marker k and k 1 1 for 1 # k # M 2 1. What
we want is to calculate the probabilities of IBD states

1
1
23Pr(pq

ii9 5
011

2 uIM2 1 Pr1pq
ii9 5

110
2 uIM24of the QTL conditional on the probabilities of IBD

states of all markers, i.e., Pr(pq
ii9|p1

ii9, . . . , pM
ii9). When

andthe marker IBD states are not directly observed,
Pr(pq

ii9|p1
ii9, . . . , pM

ii9) should be denoted by Pr(pq
ii9|IM),

E(dq
ii|IM) 5 Pr1pq

ii9 5
111

2 uIM2.where IM means the marker information. From Bayes’
theorem, the probability of IBD states of QTL given the
marker information is Both the conditional distributions and conditional
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expectations of the IBD matrices {Pj} and {Dj} can be lj takes the uniform distribution on the chromosome(s)
into consideration. The prior distributions of b, s2

A, s2
e,used in the Bayesian analysis of QTL mapping. With

the conditional distribution method, the states of {Pj} s2
aj, and s2

dj are assumed to be uniforms on predefined
and {Dj} have to be sampled from their conditional distri- intervals, although other priors can be used. The lower
butions in the Bayesian procedure. In a maximum-likeli- and upper bounds for all variance components are usu-
hood (ML) analysis of IBD-based variance components, ally set to zero and the phenotypic variance present in
Gessler and Xu (1996) discovered that the conditional the data, respectively.
distribution and expectation methods have virtually no A Markov chain Monte Carlo method is used to gener-
difference, but the conditional expectation method is ate the joint posterior distribution of all unknowns given
computationally much more efficient than the condi- in Equation 4. The idea of MCMC is to simulate a ran-
tional distribution method. Because of this, we use only dom walk in the space of the unknowns. The random
the conditional expectations in the proposed method, walk eventually converges to a stationary distribution.
i.e., replacing {Pj} and {Dj} by their conditional expecta- The stationary distribution represents the posterior dis-
tions. tribution of the unknowns. Various approaches have

been suggested to conduct the MCMC. The Metropolis-
Hastings algorithm is a general term for a family of

BAYESIAN MAPPING FOR NORMALLY
Markov chain simulation methods that are useful forDISTRIBUTED TRAITS
drawing samples from Bayesian posterior distributions

The observables are the phenotypic values y 5 {yi}n
i51, (Hastings 1970). The Metropolis algorithm and the

the covariate data X, and the marker data IM. The loca- Gibbs sampler are two commonly used special cases of
tions of markers on chromosomes are known a priori. the Metropolis-Hastings algorithm (Metropolis et al.
The list of unobservables contains the number of QTL 1953; Geman and Geman 1984). The reversible jump
l, the locations of QTL l 5 {lj}l

j51, and the model effects MCMC is an extension of the Metropolis-Hastings sam-
u 5 (b, s2

a1, · · · , s2
al, s2

d1, · · · , s2
dl, s2

A, s2
e), where lj pler, permitting posterior samples to be collected from

denotes the distance of the jth QTL from one end of posterior distributions with varying dimensions (Green
the chromosome in which the QTL resides. With the 1995). With our Bayesian analysis, the number of QTL
IBD-based variance component approach, the polygenic is treated as an unobservable, which naturally leads us
effects and the additive and dominance effects have to consider the problem within the general framework
been integrated out in the likelihood, and, therefore, of variable dimensional parameter estimation.
we do not have to generate them in the MCMC process. The proposed MCMC algorithm starts from an initial

From Bayes’ theorem, the joint posterior distribution point (l 0, l0, u0) and proceeds to update each of the
of the parameters {l, l, u} given the observables and unknowns in turn. For an initial QTL position, we can
prior information is calculate the corresponding expectations of the IBD

matrices using the multipoint method. Updating u andp(l, l, u|y) ~ p(y|l, l, u)p(l, l, u). (4)
l is implemented using the Metropolis algorithm. Up-

Here, we have suppressed the notation for conditional dating the QTL number l requires a change in the
on the observed markers and covariate data. The first dimension of the model and thus needs a reversible
term in Equation 4 is the conditional distribution of jump step. More specifically, given the current state of
the phenotypic data given all unknowns, which is usually (l, l, u), we proceed with the MCMC as follows.
called the likelihood, and has the following form:

Updating u: All elements of u are updated simultane-
ously. New proposals for the elements of u are sam-f(y|l, l, u) 5 (2p)2n/2|V|21/2exp52 1

2
(y 2 Xb)TV21(y 2 Xb)6.

pled from the symmetric uniform densities around
(5) their previous values. The proposals are accepted si-

multaneously with probabilityThe second term in Equation 4 is the joint prior distribu-
tion of l, l, and u, the parameters of our interest. Assum-

min



1,

f(y|l, l, u*)
f(y|l, l, u)




, (7)ing prior independence of the parameters, we can fac-

torize the joint prior distribution p(l, l, u) into the
where u* represents the proposed u. If the proposalfollowing products:
is not accepted, then the state remains unchanged.

p(l, l, u) 5 p(l)p(b)p(s2
A)p(s2

e)p
l

j51

[p(lj)p(s2
aj)p(s2

dj)]. Updating l and l: we adopt the method of Sillanpää
and Arjas (1998, 1999) to implement the reversible(6)
jump MCMC. They used three different types of
moves: (1) modify the QTL locations when the num-The prior distribution of the number of QTL, l, is

assumed to be truncated Poisson with mean ml and a ber of QTL is unchanged; (2) add one new QTL to
the model; and (3) delete an existing QTL from thepredefined maximum number L. When no information

regarding the QTL locations is available, the prior of model. If l 5 0, we cannot delete a QTL. On the
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other hand, if l 5 L, the maximum number of QTL the variances are all accepted simultaneously; otherwise,
the QTL number remains unchanged.assigned a priori, we cannot add a QTL. When 0 ,

l , L, the different types of moves have proposal When pd happens, we delete a QTL from the model,
each existing QTL being equally likely to be deleted. Ifprobabilities of pm 5 1/3, pa 5 1/3, or pd 5 1/3

to remain unchanged, to add, or to delete a QTL, the j9th existing QTL is proposed to be deleted from
the model, the acceptance probability isrespectively. Note that other values of pm, pa, and pd

can be used.
min




1,

|V*|21/2exp{2 1/2(y 2 Xb)TV*21(y 2 Xb)}
|V|21/2exp{2 1/2(y 2 Xb)TV21(y 2 Xb)}When the number of QTL remains unchanged, we

modify the locations of the existing QTL. Following
Sillanpää and Arjas (1998, 1999), we do not fix the 3

l 2pa

mlpd




, (10)

order of QTL when updating the QTL locations. Ele-
ments of l are modified one at a time using the Metropo- where V* 5 Rl

j51Pjs
2
aj 2 Pj9s

2
aj9 1 Rl

j51Dj s
2
dj 2 Dj9s

2
dj9 1

lis algorithm. For the jth QTL, a proposal l*j is sampled As2
A 1 Is2

e. If the proposal is accepted, we delete a QTL
from a uniform distribution on the interval [lj 2 d, lj 1 from the model. Otherwise, the number of QTL remains
d], where d is the tuning parameter. The expectations unchanged.
of the IBD matrices for new location l*j , denoted by In Equations 9 and 10, the first term of the acceptance
P*j and D*j , are then formed according to the new posi- ratio is the likelihood ratio, and the second term con-
tion (l*j ) and the marker information. The proposal is tains the prior ratio and the proposal ratio. Note that
accepted with probability here the Jacobian of the transformation is one because

adding one QTL or deleting one QTL does not influ-
min




1,

|V*|21/2exp{2 1/2(y 2 Xb)TV*21(y 2 Xb)}
|V|21/2exp{2 1/2(y 2 Xb)TV21(y 2 Xb)}




, ence the parameters of the other QTL.

(8) BAYESIAN MAPPING FOR BINARY TRAITS

where l2j means all elements of l excluding the jth For a complex disease trait, the observed phenotype
element, is defined in a binary fashion, i.e., wj 5 1 if an individual

is affected, and wj 5 0 otherwise. We propose an underly-
ing normal variable yj that determines the binary obser-

V 5 o
l

j51

Pj s2
aj 1 o

l

j51

Dj s2
dj 1 As2

A 1 Is2
e, vation. The link between yj and wj is through a threshold

t, i.e.,
and

wj 5




1
0

if yj . t
if yj # t

. (11)V* 5 o
l

j9?j

Pj9s
2
aj9 1 P*j s2

aj 1 o
l

j9?j

Dj9s
2
dj9 1 D*j9 s2

dj 1 As2
A 1 Is2

e .

The liability y is nothing new but an unobservable quan-
titative trait that can be described by Equation 1. TheIf the proposal is not accepted, the state remains un-
threshold model is overparameterized so that some con-changed, and the algorithm proceeds to update the
straints must be superimposed. As usual, we take t 5 0location of the next QTL.
and s2

e 5 1 (Albert and Chib 1993). The expectationWhen pa happens, we add a QTL to the model. The
of the liability y is the same as that of Equation 2, butlocation of the new QTL, ll11, is proposed from the
the variance-covariance matrix isuniform density on the chromosome(s) under consider-

ation. The expectations of the IBD matrices for the
Var(y) 5 V 5 o

l

j51

Pj s2
aj 1 o

l

j51

Dj s2
dj 1 As2

A 1 I. (12)
new QTL, denoted by Pl11 and Dl11, are then formed
according to the new position (ll11) and the marker

In the threshold model, the observables are the binaryinformation. The additive and dominance variances of
phenotypic values w 5 {wi}n

i51, the covariate data, andthe new QTL, s2
al11 and s2

dl11, are drawn from their priors.
the marker data. The unobservables include the vector

The proposal is accepted with probability of liability y 5 {yi}n
i51, the number of QTL l, the locations

of QTL l 5 {lj}l
j51, and the model effects u 5

min



1,

|V*|21/2exp{2 1/2(y 2 Xb)TV*21(y 2 Xb)}
|V|21/2exp{2 1/2(y 2 Xb)TV21(y 2 Xb)} (b, s2

a1, · · · , s2
al, s2

d1, · · · , s2
dl, s2

A).
The joint posterior distribution of the unobservables,

{y, l, l, u}, after suppressing the notation for condition-
3

mlpd

(l 1 1)2pa




, (9)

ing on the marker data and the covariate data, can be
expressed as

where V* 5 Rl
j51Pjs

2
aj 1 Pl11s

2
a l11 1 Rl

j51Djs
2
dj 1 Dl11

p(y, l, l, u|w) ~p(w|y, l, l, u)p(y|l, l, u)p(l, l, u), (13)s2
dl11 1 As2

A 1 Is2
e. If the proposal is accepted, we add

a QTL to the model, and the new QTL location and where the likelihood has the form of
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chromosome with a marker distance of 10 cM. Fourp(w|y, l, l, u) 5 p
n

i51

p(wi|yi) 5 p
n

i51

{1(yi . 0)1(wi 5 1)
equally frequent alleles were simulated at each marker
locus. Two QTL residing at positions 25 and 75 cM,1 1(yi # 0)1(wi 5 0)}, (14)
respectively, and 12 additional independent loci of

where 1(X P A) is the indicator function, taking the equal effect (called polygene) were simulated for a con-
value of 1 if X is contained in A, and 0 otherwise. Note tinuous phenotype. The dominance effect of the poly-
that p(w|y, l, l, u) 5 p(w|y) because w is solely deter- gene was assumed to be absent. The variances of the
mined by y. The second term in Equation 13 is the first QTL were s2

a1 5 s2
d1 5 0.6 and those of the second

conditional distribution of the liability given all other QTL were s2
a2 5 s2

d2 5 0.4. The polygenic variance was
unknowns and has the same form as Equation 5. Finally, set at s2

A 5 1.0. The normally distributed phenotype of
the last term in Equation 13 is the joint prior distribution each individual took the sum of an overall mean, values
of l, l, and u. of QTL additive and dominance effects, polygenic ef-

From this joint posterior density, it can be seen that fect, and a residual error sampled from a standardized
the posterior distribution of the parameters l, l, and u normal distribution. In addition, we generated a binary
can be computed using the method for normally distrib- phenotype for each individual using the normally dis-
uted data if the liability y is known. To implement the tributed phenotypic value as the underlying liability.
MCMC algorithm for binary traits, therefore, we need The binary phenotype took 1 if the liability exceeded
to generate the liability y. Since it is difficult to simulate 0, and 0 otherwise. The overall mean was set to 0, which
directly from the conditional distribution of y given w led to 50% population incidence. We simulated 500
and other parameters, we use the method of the Gibbs full-sib families, each with 6 siblings (a total of 3000
sampler (Chan and Kuk 1997). The details are as fol- individuals). For comparison, we analyzed both the nor-
lows. mal data and the binary data. No phenotypic values and

Starting with some initial values y(0) 5 (y(0)
1 , · · · , marker linkage phases were recorded for all parents.

y(0)
n )T consistent in signs with the observed data w, we

In each of the MCMC analyses, we ran a single long
proceed to generate y(t11) 5 (y(t11)

1 , · · · , y(t11)
n )T, t 5 0,

chain with 5 3 105 cycles of simulations. The first 200
1 · · · , sequentially in the following manner. Given the

samples were discarded and the chain was then thinnedcurrent state (y(t), l(t), l(t), u(t)) of all unknowns, we simu-
(we saved one iteration in every 50 cycles) to reducelate
serial correlation in the stored samples so that the total

y(t11)
1 from f (y1|y(t)

2 , y(t)
3 , · · · , y(t)

n , w; l(t), l(t), u(t)), number of samples kept in each analysis was 104.
.. The initial value for the QTL number was set at 1.

and the corresponding initial location was given at the
y(t11)

i from f (yi|y(t11)
1 , y(t11)

2 , · · · , y(t11)
i21 , y(t)

i11, · · · , y(t)
n , w; l(t), l(t), u(t)), 50-cM position of the chromosome. The prior Poisson

... mean of the number of QTL was ml 5 2 and the maxi-
mum number of QTL was L 5 4. The starting values

y(t11)
n from f (yn|y(t11)

1 , y(t11)
2 , · · · , y(t11)

n21 , w; l(t), l(t), u(t)).
were 0.0 for the overall mean, 1.0 for both the polygenic
and residual variances, and 0.5 for both the additiveTo carry out the above simulations, we use the fact
and dominance variances of the QTL. The prior for the

f(yi|yj, j ? i; w1, · · · , wn; l, l, u) 5 f(yi|yj, j ? i; wi; l, l, u).
overall mean was uniform over the range [22.0, 2.0].
The priors for all variance components were chosen asSince y 5 (y1, · · · , yn)T has a N(Xb, V) distribution, it
uniform on [0.0, 4.0], the right endpoint being equalfollows that f(yi|yj, j ? i; l, l, u) is also normal with mean
to the true phenotypic variance of the liability. The

E(yi) 1 Cov(yi, y2i)(Var(y2i))21(y2i 2 E(y2i))
prior for the QTL locations was uniform over the whole
chromosome. The tuning parameter of the proposaland variance
distribution was set at 2 cM for QTL locations and 0.1

Var(yi) 2 Cov(yi, y2i)(Var(y2i))21Cov(y2i, yi), for the overall mean and all variance components.
We used the QTL intensity function of Sillanpääwhere y2i 5 (y1, · · ·, yi21, yi11, · · ·, yn)T. Thus, f(yi|yj, j ?

and Arjas (1998) to detect the number and locationsi; wi, l, l, u) is a truncated (above 0 if wi 5 1; below 0
of QTL. In practice, we divided the chromosome intoif wi 5 0) normal distribution. Devroye’s algorithm is

then used to simulate a truncated normal variable (De- intervals of equal length (according to the Haldane
vroye 1986). distance) and then calculated the proportion of QTL

in each interval from the MCMC samples. The interval
length was chosen to be 1 cM long. As done in Stephens

A SIMULATION STUDY and Fisch (1998) and Sillanpää and Arjas (1999),
the QTL variances were estimated from samples inDesign of the simulation experiment: The proposed
which QTL locations fall into the regions with suffi-method is illustrated in the analysis of a simulated exam-
ciently high estimated QTL intensities.ple. We simulated a single chromosome of length 100

cM. Eleven codominant markers were placed on the Results: The Bayesian posterior QTL intensities for
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Figure 2.—Approximate posterior distributions of the (a)
overall mean, (b) polygenic variance, and (c) residual variance
for normally distributed data.

and coincide with the simulated number of QTL. As
expected, the posterior variance of QTL number for

Figure 1.—Histograms of the posterior QTL intensity for the normal data is smaller than that for the binary data.
(a) normally distributed data and (b) binary data. The true Finally, the posterior modes of the QTL numbers over-
number of QTL is two, located at positions 25 and 75 cM, lap with the true number of QTL in both data analyses.respectively.

The posterior samples for the overall mean, the poly-
genic variance, and the residual variance from the nor-

both the normal and the binary data are presented in mal data analysis, and those for the overall mean and
Figure 1. The QTL intensity graphs are concentrated the polygenic variance from the binary data analysis, are
around the true locations of the simulated QTL. One depicted in Figures 2 and 3, respectively. The posterior
peak of the posterior QTL intensity for the normal data means and standard errors of these parameters are given
is on [24, 25] and the other on [76, 77]. The correspond- in Table 3. From the figures and the table, it appears that
ing peaks for the binary data are on [23, 24] and [74, estimates of these parameters are close to the simulated
75], respectively. These results support quite strongly a values with small standard errors from the normal data.
model having two QTL in the chromosome. Comparing However, the polygenic variance is greatly overestimated
the shapes of the posterior QTL intensities for the bi- and the estimated standard error is large from the binary
nary and normal data analyses, we can see that binary data analysis although the mean is still estimated accu-
data analysis does lose some information, but the infor- rately.
mation retained is still sufficient to detect both QTL. The chromosome regions with sufficiently high poste-

The approximate posterior distributions on the QTL rior QTL intensity are given in Table 3. The posterior
number, obtained from the two types of data, are pre- samples, in which QTL locations fall into these regions,
sented in Table 2. The posterior expectations are essen- are used to estimate the QTL variances. Figures 4 and

5 depict such posterior samples for the QTL variancestially the same for the binary data and the normal data

TABLE 2

Inferred posterior distribution and posterior mean of the number of QTL

No. of QTL 0 1 2 3 4 Mean

Frequency for normal data 0.0000 0.0011 0.9705 0.0282 0.0002 2.0297
Frequency for binary data 0.0000 0.0022 0.9039 0.0904 0.0035 2.0952
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errors are small. In the binary data analysis, however,
the additive and dominance variances of the QTL are
overestimated, and the standard errors are larger than
those for the normal data.

The point estimates and the estimation errors of the
QTL locations are also given in Table 3. For both types
of data, the estimated QTL locations are very close to
the corresponding true values. However, the standard
errors are much larger for the binary data than those
for the normal data.

For comparison, the simulated normal data set was
analyzed using the ML method (Xu and Atchley
1995). Figure 6 shows the likelihood profile along the
chromosome when a single QTL was fitted to the model.
We can see that the likelihood-ratio profile shows two
peaks, the higher peak being at position 25 cM and the
lower peak at position 76 cM, overlapping with the true
locations of the two simulated QTL (at 25 and 75 cM,
respectively). This result is consistent with results of the
reversible jump MCMC analysis. The ML estimates of
variances of the first QTL are ŝ2

a1 5 0.8253 and ŝ2
d1 5

0.8900. The estimated variances of the second QTL are
ŝ2

a2 5 0.7839 and ŝ2
d2 5 0.5667. The ML estimates of

QTL variances are not so close to the corresponding
true values as the estimated posterior means in the re-
versible jump MCMC analysis.

Figure 3.—Approximate posterior distributions of the (a)
overall mean and (b) polygenic variance for binary data.

DISCUSSION

We have presented here a Bayesian procedure thatfrom the normal data and the binary data analyses,
respectively. The posterior densities of QTL variances allows detection of multiple QTL for both normally

distributed and binary traits under IBD-based varianceare concentrated around the corresponding true values
for both types of analyses, although the binary data component analysis. The proposed Bayesian procedure

is implemented via a reversible jump MCMC algorithm,analysis shows a wider distribution. More explicitly, we
calculated the means and the standard errors of the which enables moves to be made between models with

different numbers of QTL. We model complex binaryposterior samples for the QTL variances (see Table 3).
For the normal data, the estimated posterior means of traits under the classical threshold model of quantitative

genetics (Lynch and Walsh 1998). The Bayes methodthe additive and dominance variances of the QTL are
close to the simulated true values, and the standard of mapping QTL for binary traits is developed based

TABLE 3

The highest posterior QTL intensity intervals, Bayesian estimates of QTL locations, the additive and
dominance variances of the QTL, and polygenic and residual variances

Sum of QTL
Data Interval the QTL location
type (cM) intensity (cM) m s2

aj s2
dj s2

A s2
e

z18–29 0.9967 24.3013 0.7101 0.6886
Normal (1.1678) 0.028 (0.2480) (0.1994) 0.8696 1.1587

z72–84 0.9938 77.0253 (0.0559) 0.5701 0.3362 (0.2415) (0.1419)
(2.2326) (0.1954) (0.1534)

z17–30 0.9405 23.2892 0.8443 1.0681
Binary (2.1665) 20.0396 (0.4618) (0.5966) 1.5801

z64–86 0.9101 74.4903 (0.0816) 0.4493 0.7652 (0.7561)
(4.7986) (0.3237) (0.5289)

Posterior standard errors of the estimates are given in parentheses.
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Figure 4.—Approximate posterior distribu-
tions of the QTL additive and dominance vari-
ances for normally distributed data. (a) The first
QTL additive variance determined from interval
18 cM to z29 cM. (b) The first QTL dominance
variance determined from interval 18 cM to z29
cM. (c) The second QTL additive variance deter-
mined from interval 72 cM to z84 cM. (d) The
second QTL dominance variance determined
from interval 72 cM to z84 cM.

on the idea of data augmentation. This treatment pro- chical model by treating the variance as the parameter
of interest. As a result, information about the numbervides an easy way to generate the values of the normally

distributed latent variable, which in turn allows the use of alleles is not required, which has significantly im-
proved the robustness of the Bayes method.of Bayesian mapping for normally distributed traits. The

methodology can be easily generalized to multiple or- The IBD-based variance component approach of QTL
mapping is based on the proportion of alleles with iden-dered categorical traits (Albert and Chib 1993).

Bayesian mapping statistics have been well studied in tity-by-descent shared by relatives. Inference on IBD ma-
trices does not need the information of marker linkagethe context of line-crossing experiments (Satagopan

and Yandell 1996; Satagopan et al. 1996; Sillanpää phases. The IBD states of markers are calculated in
advance and remain as a prior in the Bayesian procedure.and Arjas 1998, 1999; Stephens and Fisch 1998), in

which the parameter of primary interest is the average With the proposed method, we can completely avoid the
complicated problem concerning sampling of additiveeffect of allelic substitution (the first moment). The

variance of the allelic substitution is given as a prior and dominance effects of QTL and marker and QTL
genotypes. The IBD-based variance component Bayes-and no further inference is made to the prior variance.

When applied to complex pedigrees, the Bayes method ian mapping is not limited to nuclear families. In the
simulation study, we used full-sib families to demon-can be formulated to fit different models of QTL varia-

tion (e.g., biallelic or normal QTL effects; Heath 1997; strate the utility of the method solely for the purpose
of simplicity. In theory, the Bayes method described inUimari and Hoeschele 1997; Bink et al. 1998). In con-

trast to line-crossing experiments in which the number this article can be applied easily to extended or complex
pedigrees by using a general algorithm to compute theof alleles at the QTL is known exactly, in outbred popu-

lations, the number of alleles per locus is rarely known. IBD proportion shared by an arbitrary relative pair. Such
a general algorithm has been given by Almasy andIn most cases, we can assume two alleles in a relatively

homogeneous population, as made by Heath (1997) Blangero (1998). For large and complex pedigrees,
however, the computational burden may be prohibitive,and Uimari and Hoeschele (1997). As a consequence,

one must also estimate the allelic frequency to infer the due to the need for computation of the variance-covari-
ance matrix V and its inverse.genetic variance via ŝ2

a 5 2p̂(1 2 p̂)â2. Although the
biallelic model may be proper in most situations, it can In the simulation study, we put two QTL on a single

chromosome and 12 independent loci on other unspeci-potentially fail if the actual number of polymorphic
alleles is not two. The IBD-based variance component fied chromosomes as a “polygene.” Our model always

includes a polygenic term to absorb background QTL.Bayesian mapping goes up another level in the hierar-
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Figure 5.—Approximate posterior distribu-
tions of the QTL additive and dominance vari-
ances for binary data. (a) The first QTL additive
variance determined from interval 17 cM to z30
cM. (b) The first QTL dominance variance deter-
mined from interval 17 cM to z30 cM. (c) The
second QTL additive variance determined from
interval 64 cM to z86 cM. (d) The second QTL
dominance variance determined from interval 64
cM to z86 cM.

The polygenic variance varies depending on the model somes) in the model instead of being absorbed into
the polygenic term. The other strategy is to map QTLeffects fitted. Without this polygenic term, variances due

to QTL on unmarked chromosomes or chromosome simultaneously for all chromosomes. In the latter situa-
tion, if the marker map is sufficiently dense, the poly-regions will join the residual variance. A large residual

variance will reduce the power of QTL detection. In genic term can be ignored because eventually all QTL
will be identified and their effects will be explicitly esti-practice, we can take one of three strategies for QTL

mapping. One strategy is to analyze one chromosome mated. These three mapping strategies may produce
similar results.at a time. Marker information on other chromosomes

can be completely ignored. In this case, variances of The reversible jump MCMC sampler performed well
for the simulated normally distributed and binary data.QTL on other chromosomes will be collected by the

polygene (not the residual). The second strategy is to A plot of the changes in the number of QTL against
the number of iterations for the binary data used in theinclude the previously identified QTL (at other chromo-
simulation study is presented in Figure 7. It shows that
the reversible jump MCMC algorithm mixes well over
the number of QTL. A similar plot was obtained for the
normally distributed data. We detected no influence of
initial values of unknowns on the mixing of the MCMC
sampler. For example, with the simulated data, starting
with l0 5 4, the QTL number l quickly dropped to 1
after several hundred iterations and subsequently be-
haved the same as starting with l0 5 1. The mixing
behavior of the number of QTL is greatly affected by
the prior distributions for QTL additive and dominance
variances (Stephens and Fisch 1998). As expected, in-
creasing the upper bounds of the uniform prior distribu-
tions has the general effect of decreasing the acceptance
rates of adding a new QTL to the model and deletingFigure 6.—Likelihood-ratio profile of ML mapping from
a QTL from the model. With the upper bound c 5 4.0normally distributed data. There are two QTL, located at posi-

tions 25 and 75 cM, respectively. used in our simulation studies, the observed acceptance
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able. However, our treatment simplifies the MCMC algo-
rithm and does not result in a significant reduction in
efficiency particularly when the marker map is dense.
It has been shown that, conditional on the IBD states
of a marker locus, the IBD matrices of a QTL on one
side of the marker are not correlated to those of a QTL
on the other side (Xu and Atchley 1995). In case of
two tightly linked QTL in the same marker interval,
the IBD matrices of these two QTL are always highly
correlated no matter what methods are used to infer
them. The correlation between two QTL can be com-
pletely eliminated by the assumption that any marker
interval includes at most one QTL. Under this assump-
tion, the acceptance probabilities for adding one QTL
and deleting one QTL should be modified (StephensFigure 7.—The trace of the number of QTL for the binary
and Fisch 1998).data, for 104 saved samples after burn-in.

Finally, Bayesian statistics have the inherent flexibility
introduced by their incorporation of multiple levels of

rates for both adding and deleting steps were z0.4% randomness and the resultant ability to combine infor-
for both the simulated normally distributed and binary mation from different sources. Therefore, the Bayesian
data. These acceptance rates were similar to those in approach could be extended to allow more complicated
Sillanpää and Arjas (1998). The acceptance rates for models under more complicated data structures, e.g.,
both adding and deleting steps increased to 3% when the epistatic model. When a new QTL is proposed, its
the upper bound was set at c 5 1.0. By comparison, the interactive effects with all existing QTL should be pro-
acceptance proportions for updating QTL locations and posed and, if accepted, the epistatic effects should be
model effects u were found to be rather high in general included in the model. A QTL is finally added to the
and were z80% for the simulated data. model if at least one effect caused by the QTL is ac-

A major implementation issue in MCMC is to deter- cepted. This will involve additional reversible jumps on
mine the effective sample sizes. This issue is related to the dimension of the model even if the number of QTL
the assessment of convergence of the chain, the serial remains the same.
correlation between the samples, and the burn-in pe-
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